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Abstract. Developing applications for distributed computation is be-
coming increasingly popular with the advent of grid computing. However,
developing applications for the various grid middleware environments re-
quire attaining intimate knowledge of specific development approaches,
languages and frameworks. This makes it challenging for scientists and
domain specialists to take advantage of grid frameworks. In this paper, we
propose a different approach for scientists to gain programmatic access
to the grid of their choice. The principle idea is to provide an abstrac-
tion layer by means of a virtual file system through which the grid can
be accessed using well-known and standardized system level operations
available from virtually all programming languages and operating sys-
tems. By abstracting away low-level grid details, domain scientists can
more easily gain access to high-performance computing resources with-
out learning the specifics of the grid middleware being used. We have
implemented such a virtual file system on HIMAN, a peer-to-peer grid
middleware platform. Our initial experimental evaluation shows that the
virtual file system only cause a negligible overhead during task execution.

1 Introduction

Grid computing is an appealing concept to support the execution of computa-
tionally intensive tasks; grid computing generally refers to the coordination of
the collective processing power of scattered computing nodes to accommodate
such large computations. Peer-to-peer grid computing extends this idea, enabling
all participants to provide and/or consume computational power in a decentral-
ized fashion. Although appealing at first sight, grid computing frameworks are
complex pieces of software and thus typically come with some obstacles limiting
adoption to expert programmers capable of and willing to learn to program us-
ing the grid middleware application programming interfaces (APIs). Therefore,
a major challenge faced by developers of grid computing frameworks is to ex-
pand the base of grid application developers to include non-expert programmers,
e.g. domain specialists using their own domain-specific tools. One approach is to
devise transparency mechanisms to hide the complexities of the grid computing
system.

In this paper, we propose the design of a programming interface for a peer-to-
peer grid middleware through a virtual file system (VFS) [1,6,21]. The rationale



behind this idea is that the file system interface is well-known, and is accessible
from just about any domain specific tool or even simple file-based commands.
The approach also lends itself to devising a file system organization exposing
varying degrees of complexity to its users. For example, complex management
operations can be performed using one part of the file system hierarchy, whereas
domain specialists can submit tasks through another part of the file system
limiting the exposure to a most essential part of the system.

We have implemented such a VFS layer above a middleware core based on our
HIMAN platform [11,13]. The VFS layer sits between the end user/programmer
and the client program enabling them to assign a task to be executed on the grid
simply by calling the write() function of the virtual file system on a specific
virtual path. Similarly, when task execution has completed, the user can easily
obtain the results by invoking the read() function on another virtual path. To
evaluate the overhead imposed by the VFS layer, we compared a simple parallel
matrix multiplication task running with and without the VFS layer. The results
confirm our intuition that the VFS layer only adds a negligible computational
overhead.

The rest of the paper is organized as follows: Section 2 gives an overview
of the related efforts. Section 3 presents a general overview of grid middleware
architectures. Section 4 describes the new added virtual file system layer and
how it interacts with the other components in the middleware. Section 5 presents
and discusses the results obtained from the performed experiments. Section 6
presents conclusions and future work plans.

2 Related Work

The concept of virtual file systems was first introduced in the Plan 9 operating
systems [21] to support a common access style to all types of IO devices, be it
disks or network interfaces. This idea has since been adopted and included in the
Linux kernel [6], and support is also available on many other platforms, including
Mac OS X [8] and Windows [1,4]. There are a wide range of applications of such
a virtual file system interface, including sshfs, procfs, and YouTubeFS.

In the context of grid computing, providing access to a (distributed) file
system architecture is both useful and commonplace. Transmitting the data
necessary for computation is made easier with a distributed file system, and a lot
of research effort has gone into data management for the grid, e.g. BAD-FS [14],
and finding efficient protocols for data transfer, e.g. GridFTP [7]. BAD-FS [14]
is different from many other distributed file systems in that it gives explicit
control to the application for certain policies concerning caching, consistency and
replication. A scheduler is provided with BAD-FS that takes these policies into
account for different workloads. The Globus XIO [12] provides a file system-based
API for heterogeneous data transfer protocols aimed for the Grid. This allows
applications to take advantage of newer (potentially) more efficient data transfer
protocols in the future, assuming they too provide the XIO APIs. These file
systems tackle the problem of interacting with the data management component



and file transfer protocols of a data grid environment. However, none of them
try to solve the generic interaction with the computational grid middleware for
task submission, results collection in a suitable manner.

An interposition agent is a piece of software that inserts itself between two
existing layers of software in order to modify their discourse [16]. In [17, 25],
different roles of interposition agents are described and classified in more detail.
Some interposition agents provide integration between two applications located
on the same machine.

Other interposition agents provide seamless integration between two appli-
cations located on different machines. Parrot [25] provides seamless integration
between standard Unix applications and remote storage systems. This integra-
tion makes a remote storage system appear as a file system to a Unix application.
One drawback is that the user has to specify the location of the remote machine.
Besides, all commands has to be included in a Parrot command, which decreases
the provided transparency. Bypass [24] is a general purpose tool for building in-
terposition agents based on split execution. Instead of locating an instance of
the interposition agent on the home machine, the user interacts with a shadow
process which communicates with the interposition agent on the remote machine.

Other examples are: GCB [23], DCache [15], Paradyn [20], and SOCKS [19].
All of these systems provide an intermediate layer between two applications to
provide or enhance the integration or to perform an additional intermediate role.
The user has to know how to deal with the front end application which is system
specific. The proposed VFS layer provides an interface which is well known to
all computer users and locates itself as the front end application. The user does
not have to provide any information about the remote machine. In addition,
it provides a data management interface (i.e. file system) for a computation
management application (i.e. computational grid). To our knowledge, most of
the existing computational grid middleware environments [2,3,5,9,10,18,19,22]
require a special language level API for interaction with the scheduler and to
collect the results.

3 HIMAN Overview

The VFS layer has been implemented on HIMAN [13], a pure peer-to-peer grid
middleware that support serial and parallel computational tasks. HIMAN has
three main components: (i) a worker component responsible for task execution,
(ii) a client component responsible for task submission and execution monitoring,
and (iii) a broker responsible for the task allocation. All nodes in the grid have all
three components. The client and broker of a submitting node is then responsible
for task submission, allocation, and execution monitoring. Any node can submit
tasks, and can also serve as executor for other tasks at the same time.



4 Virtualizing Grid Access

Existing grid computing platforms require that the user configure a wide range
of parameters, have sufficient background in distributed computing, and profi-
cient knowledge of the grid middleware APIs to be able to execute tasks on the
grid. This might be appropriate for expert users, but for regular users, a sim-
ple and familiar interface is desirable. By far the most ubiquitous programming
interface available on computer systems is the file system interface. Thus, our
proposed VFS layer placed above our HIMAN grid computing middleware ex-
poses such an interface to the application programmer, making it easy to interact
with the middleware using a well-known interface. Moreover, it enables users to
submit tasks using the write() function, and monitor and collect results from
the computation using the read() function of the VFS layer.

4.1 The VFS Layer

Our VFS layer is implemented as an additional interface layer above the client
using the Callback file system library [1]. Callback is similar to the FUSE library
available on Linux and Mac OS X [6,8], and enable building virtual file systems
in user space. The Callback library contains a user mode API to communicate
with user applications, and a kernel mode file system driver for communicating
with the Windows kernel. The role of the Callback library in our VFS layer is
to enable users to provide input files and collect result files using simple file
system commands. In order to make the proposed VFS applicable and easy to
implement in other grid systems which are based on different platforms, the
communication between the VFS layer and the client is performed by means of
simple UDP text-based commands. In order to implement VFS on another grid
middleware, a small UDP communication module must be added to the client.

The installation of the VFS layer on a grid client machine is very simple. The
user simply runs an MSI package, which installs the VFS layer as a Windows
service. The service is configured to startup automatically when the user logs on,
or manually by executing a net start command. Once the service is started,
the VFS drive will be mounted. The VFS layer will communicate with the grid
client upon the execution of specific file system commands. The virtual drive
will be unmounted automatically when the user logs off, or it can be unmounted
manually by executing a net stop command.

The VFS layer is composed of two main modules: Task Submission Module
(TSM) and Result Collection Module (RCM).

Task Submission Module TSM contains two routines. The first is the virtual
volume routine, and will be called when the Callback file system is mounted,
and creates a virtual volume visible in Windows Explorer. This new volume will
be used by the user to provide the input files. The second is the task submission
routine and is responsible for forwarding the input files to the client in order to
start the task submission process. Task submission requests are handled in the



CbFsFsWrite() function of the Callback user mode library, so that it is triggered
only when a write() command for a specific file is executed on the virtual drive.
The default case is when the program file is copied to the virtual drive. This can
be changed by the user to determine which write() command will trigger the
TSM. The task submission procedure depicted in Fig. 1 involves the following
steps:

1. The user executes a write() command, through the file system interface
(e.g. Windows Explorer), to write the input files into the virtual volume.

2. The file system interface forwards the command to the Windows kernel.
3. The kernel forwards the command to the Callback file system driver.
4. The file system driver responds by calling the CbFsFsWrite() function in

the Callback user mode library.
5. This function invokes the task submission procedure in the TSM.
6. The task submission procedure responds by presenting the input files in the

file list of the virtual volume, so that they can be accessed with the file
system interface, and forwarding the input files to the client.

7. The client submits the task to the grid.
8. During the execution, the user can monitor the execution process (i.e. the

progress) by executing a read() command on a specific text file on the
virtual drive.

Fig. 1: Task submission procedure

Result Collection Module The objectives of the result collection module are
twofold: (i) provide a file system interface through which the user can collect the
result files from task execution, and (ii) signal the completion of task execution to
the user. The result collection procedure depicted in Fig. 2 involves the following
steps:

1. When task execution is completed, the results are sent to the client process
on the submitting node [13].



2. The client sends the collected results to the RCM.
3. The RCM responds by creating a new virtual directory (e.g. Results) in

the virtual drive, and creating virtual files in this directory referring to the
result files. Creation of the Results directory indicates to the user that task
execution has complete.

4. The user can collect the result files by executing a move command on the
files in the Results directory to move the result files to a physical path.

5. Windows Explorer forwards the command to the kernel.
6. The kernel forwards the command to the Callback file system driver.
7. The file system driver responds by calling the CbFsRenameOrMoveEvent()

event procedure in the Callback user mode library.
8. The CbFsRenameOrMoveEvent() procedure responds by moving the result

files to the given physical path, and removing them from the file list of the
Results directory of the virtual drive.

Fig. 2: Result collection procedure

4.2 A Simple Example

In this section we provide a simple example describing how to use the VFS layer
for executing a parallel task of matrix multiplication. To accomplish this, the user
must provide as input: an executable code file (e.g. code.dll), and the necessary
data input files (e.g. input?.data). The number of input files correspond to the
number of parallel subtasks that will be generated by the HIMAN middleware
during execution of the task.

For illustration, the DOS command prompt is used (interactively) below to
issue file system commands to interact with the grid middleware. The virtual
drive is mounted on drive Z:, and the input files are stored in C:\Input\. The
following steps describe the whole execution procedure, including results collec-
tion.



1. The user writes the data files to the virtual drive by typing:

copy C:\Input\*.data Z:

2. The user writes the code file to the virtual drive by typing:

copy C:\Input\code.dll Z:

As explained in Section 4.1, this command will trigger the TSM to invoke
the client to begin task execution, and to a create virtual file progress.txt

on drive Z: for monitoring progress.

3. During the execution, the user can monitor the execution progress for the
subtasks by typing:

type progress.txt

Subtask 1. Worker:193.227.50.201 Progress: 10%

Subtask 2. Worker:74.225.70.20 Progress: 15%

Subtask 3. Worker:87.27.40.100 Progress: 20%

Subtask 4. Worker:80.50.96.119 Progress: 6%

Subtask 5. Worker:211.54.88.200 Progress: 12%

4. The user can repeat the above command to keep up with the execution
progress.
The user need not consider management issues such as scheduling, fault tol-
erance, and connectivity. These issues are seamlessly handled by the HIMAN
grid middleware [13]. In case of a worker failure, the worker address will be
changed for the associated subtask in the progress file.

5. When the execution of one or more subtasks is completed, this will be re-
vealed in the progress.txt file as follows:

Subtask 1. COMPLETED

Subtask 2. Worker:74.225.70.20 Progress: 90%

Subtask 3. Worker:87.27.40.100 Progress: 88%

Subtask 4. COMPLETED

Subtask 5. COMPLETED

6. Upon the completion of all subtasks, the Results virtual directory will ap-
pear, enabling the user to move all the virtual files to a physical directory
as follows:

move Z:\Results\*.* C:\Results

5 Initial Performance Evaluation

In order to demonstrate the applicability of our VFS layer, we have performed a
simple experimental evaluation to reveal the overhead caused by the VFS layer



compared to interacting directly with the HIMAN middleware (through a GUI
interface).

Two experiments were performed using a classic parallel matrix multiplica-
tion task for multiplying two square matrices of size: a) 1500 × 1500 and, b)
2100 × 2100. In both cases, different number of workers (i.e. parallel subtasks)
varying from one to six were used. The results are shown in Fig. 3.
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Fig. 3: Task transmission time against the number of workers using the client
GUI and the VFS interface

In Fig. 3, it is clear that the computational overhead which is represented
by the increase in the task transmission time in case of using the VFS interface
instead of the built in client GUI, is nearly negligible. Since the transmission of
the input files to workers is done in a serial fashion, the overhead is due to the
time taken by the VFS to build the virtual files in memory and to communicate
with the client for transmitting each of input files.

The two approaches, GUI and VFS, have identical CPU overhead simply
because in both cases all pre-processing procedures are carried out by the grid
client. The memory overhead is also identical since in both cases, the task input
files are loaded into memory in order to be processed by the grid client upon the
execution.

6 Conclusions and Future Work

Given the complexity of grid computing middleware, providing an easy to use
interface for task submission is a significant challenge. In this paper, we have
proposed a new technique for accessing computational grid middleware through
a virtual file system interface. The proposed technique has been implemented on
the HIMAN middleware, enabling non-expert users to submit compute tasks to



the grid. Our initial evaluation indicate that the overhead imposed by the VFS
interface over the direct interaction approach is negligible.

Our current implementation support only serial task execution; in future
work we will extend the VFS layer with support for parallel task execution.
Moreover, we also plan to design a VFS-based grid portal that supports multiple
grid computing frameworks, e.g. Globus and Condor. To accomplish this we will
leverage the FUSE [6] framework on Linux to provide cross platform support
for programming languages and runtime environments that can run on multiple
operating systems. We will also add support for multi-user scenarios with various
security and scalability options.
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