
Ant System for Service Deployment
in Private and Public Clouds

Máté J. Csorba
Dept. of Telematics,

Norwegian University of
Science and Technology,

N-7491 Trondheim, Norway
Mate.Csorba@item.ntnu.no

Hein Meling
Dept. of Electrical Engineering

and Computer Science,
University of Stavanger,

N-4036 Stavanger, Norway
Hein.Meling@uis.no

Poul E. Heegaard
Dept. of Telematics,

Norwegian University of
Science and Technology,

N-7491 Trondheim, Norway
Poul.Heegaard@item.ntnu.no

ABSTRACT
Large-scale computing platforms that serve thousands or
even millions of users through the Internet are on a path
to become a pervasive technology available to companies of
all sizes. However, existing technologies to enable this kind
of scaling are based on a hierarchically managed approach
that does not scale equally well. Moreover, existing systems
are also not equipped to handle the dynamism that may
emerge as a result of severe failures or load surges.

In this paper, we conjecture that using self-organizing
techniques for system (re)configuration can improve both
the scalability properties of such systems as well as their
ability to tolerate churn. Specifically, the paper focuses on
deployment of virtual machine images onto physical ma-
chines that reside in different parts of the network. The
objective is to construct balanced and dependable deploy-
ment configurations that are resilient. To accomplish this,
a method based on a variant of Ant Colony Optimization
is used to find efficient deployment mappings for a large
number of virtual machine image replicas that are deployed
concurrently. The method is completely decentralized; ants
communicate indirectly through pheromone tables located
in the nodes.

An example scenario is presented and simulation results
are obtained for the method.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Management

Keywords
Deployment, Resource Discovery, Cross-entropy ant system,
Cloud computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BADS’10, June 11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0086-5/10/06 ...$10.00.

1. INTRODUCTION
Cloud computing infrastructures have in recent years be-

come increasingly important for provisioning services that
demand reliability and performance, yet are capable to uti-
lize the computing resources efficiently. A major benefit of
cloud infrastructures is their ability to dynamically scale up
or down as the demand curve changes. One approach in
which such dynamic service delivery can be accomplished is
through the use of Virtual Machine (VM) images that can
be deployed on demand within the cloud. Such VM images
are packaged in a standardized way that allows for dynamic
deployment, e.g. the Amazon Machine Image format [2].
Moreover, use of a common VM packaging format also en-
able a computing model where both public and private cloud
providers can interoperate. In this context, a public cloud
provider offers a large infrastructure of compute resources
that are provided to (paying) users over the Internet. This
is sometimes called Infrastructure-as-a-Service, and Ama-
zon EC2 [2] is an example of a public cloud provider. On the
other end, we have private clouds that offer a more limited
scale of resources, typically accessible only to users directly
affiliated with the private cloud owner, e.g. a single organi-
zation. These organizations may be running Ubuntu’s En-
terprise Cloud solution [27], which is compatible with Ama-
zon EC2 in packaging format. The intention of the Eucalyp-
tus project, for example, is to support multiple cloud com-
puting interfaces while preserving the back-end infrastruc-
ture [20]. Lack of service management facilities and inter-
operability between cloud providers have been identified as
major obstacles limiting scalability of federated cloud com-
puting environments [22]. Such environments need a uni-
fied interface for dynamically managing VMs forming cloud
services. Moreover, a heterogeneous cloud computing ar-
chitecture must also tackle the placement, migration, and
monitoring of VMs across interoperability boundaries [10].
In this work however, we rely on the presumed existence
of such interoperability and service management facilities,
and focus our attention on the service placement problem.
As such our approach is independent of the specific flavors
of the underlying interoperability and management facilities
provided.

In this paper, we examine the effects of a hybrid envi-
ronment in which services are deployed in either the private
cloud, public clouds, or both depending on the present us-
age pattern. Such a scenario is especially interesting with
respect to handling load overshoots that may be caused by
dependability and/or performance requirements. For exam-

ple, as the service usage pattern change, VM instances may
be added or removed from the public cloud, while retain-
ing the same number of VM instances within the private
cloud. During execution in such a hybrid cloud environ-
ment, a plethora of highly dynamic parameters influence
the optimal deployment configurations, e.g. due to the influ-
ence of concurrent services and varying client load. Ideally,
the deployment mappings should minimize and balance re-
source consumption, yet provide sufficient resources to sat-
isfy the dependability requirements of services. However,
Fernandez-Baca [11] showed that the general module allo-
cation problem is NP-complete except for certain communi-
cation configurations, thus heuristics are required to obtain
solutions efficiently.

Our approach is based on a heuristic and decentralized
optimization method aimed at finding suitable mappings be-
tween VM replicas and nodes, in the various clusters of the
network, capable of hosting them. The set of mappings se-
lected are constrained in three dimensions ensuring: cloud
internal load balancing, cloud global load balancing, and
availability of VM replicas in multiple clusters for improved
dependability. To accomplish this we use the Cross-Entropy
Ant System (CEAS) [12], which is based on Ant Colony Op-
timization (ACO) [9]. CEAS uses ant-like agents, denoted
ants, that can move around in the network, identifying po-
tential locations where replicas might be placed.

Related Work.
The notation of regenerating replicas to replace crashed

ones was first proposed by Pu [21] in the context of the Eden
system. More recent systems [18, 19] provide automatic re-
configuration and regeneration of replicas in the context of
group communication systems, and Om [30] focus on re-
generation in a peer-to-peer wide-area storage system. An-
other recent initiative [10] propose similar mechanisms for
placement, migration and monitoring of components in the
cloud. Such systems provide the underlying mechanisms
that are necessary to support service deployment in cloud
environments. However, focus is mostly on failure recovery
by regeneration of new replicas to improve availability and
reliability, and do not try optimize the replica-to-node map-
pings. Yu and Gibbons [29] show theoretically that replica
placements of inter-correlated objects can significantly im-
pact system availability if not placed appropriately. Our
work is focused on finding suitable (near optimal) replica-
to-node mappings that improve both availability and load
balancing properties. Albrecht et al. [1] describe a generic
wide-area resource discovery system taking a database-like
approach to enable querying for available resources; they use
a centralized group-finding optimization algorithm to find
mappings. Their approach rely on extensive measurement
data collection, in some sense not unlike our ants. However
in our approach, measurements are not stored centrally in a
database or in a DHT. Instead, ants encode such measure-
ment data using a decentralized mathematical framework
that enable us to heuristically find near optimal solutions
rapidly. Many other frameworks have focused on finding
optimal placements for virtual machines under a variety of
constraints [26, 16]. Maximizing the utility of services via
deployment decision making has been investigated in [17].
However, these approaches rely on a centralized optimizer
that often has to crawl through the entire state-space of
decision alternatives. The SmartFrog [24] deployment and

management framework from HP Labs describes services as
collections of components and applies a distributed engine
comprised of daemons running on every node in a network.
Fuzzy learning is applied for configuration management in
server environments targeting efficient resource utilization
by Xu et al. in [28]. Biologically-inspired resource alloca-
tion algorithms in service distribution problems have been
targeted by the authors of [14].

Our approach is self-organizing and uses a fully decentral-
ized optimization technique based on the CEAS system [12]
which is adaptive to network dynamics and is particularly
suited for multi-constrained optimization problems. Our
previous work [8] has focused on finding efficient mappings
within relatively small scale clusters; and we experimented
with different pheromone encodings for improving scalabil-
ity in [7]. To further study the efficiency of our approach and
cross-validate our results against centralized solutions we are
also working on mixed integer programs (MIPs) capable of
providing optimal replica mappings based on a global view
of the system. Similar centralized solutions, in particular in-
teger linear programs, have been applied to clustering prob-
lems in grid file systems [25]. Preliminary results of our work
to evaluate our approach can be found in [4]. In this paper
we extend our approach to consider resource allocation in
federated public and private clouds as well as handling the
optimal utilization of resources in case of overshoot scenar-
ios.

In the next section we introduce the system model and no-
tation we use, how the deployment rules and the cost func-
tion are defined. The basics of the CEAS are presented in
Sec. 3, followed by a description of the algorithm we propose
in Sec. 4. An example scenario and corresponding simulation
results are shown in Sec. 5. Finally, in Sec. 6 we conclude
and touch upon future work.

2. SYSTEM MODEL
In this section we introduce the system model and the

notation that we use. We also clarify our assumptions, and
define dependability constraints and rules related to deploy-
ment mapping. Finally, we present a cost function aimed to
guide our heuristic search algorithm.

Model and Notation.
We model the system as a large collection, N , of inter-

connected nodes. N is partitioned into a set D of clus-
ters, as illustrated by d1 and d2 in Fig. 1. Clusters are
usually formed according to geographical location or other-
wise distinct administrative region. We assume that com-
pute clouds are provided by a single administrative entity
that can consist of several clusters. Our objective is to find
deployment mappings for this environment for a set of ser-
vices, S = {S1, S2, . . .}. Each service may contain replicated
VMs to provide the service with fault tolerance and load-
balancing. The deployment mapping for Sk is defined as a
set of mappings M : Sk → N . Let V k

i be the ith VM of
Sk, where Sk = {V k

1 , . . . , V
k
q } is the set of VMs constituting

service Sk, q being the number of VMs in the service, |Sk|.
Accordingly, let Rk

ij denote the jth replica of V k
i so that

V k
i = {Rk

i1, . . . , R
k
ipi}, where pi ≥ 1 is the redundancy level

of VM V k
i . Then, for service Sk, the set of VM instance repli-

cas becomes Sk = {Rk
11, . . . , R

k
1p1 , . . . , R

k
i1, . . . , R

k
ipi}. In the

Service S1

V1

R21 R22

V1

R11 R12

Service S2
V2

Virtual Machine replicaLegend:
Node

Node

Node

Node Node

Node

Cluster d2

Cluster d1

VM hosting and Ant execution runtime

Pheromone Table

(a) Service specification (b) Deployment environment

Nest
(at least
one per
service)

Deployment
mappings

Blue

Green
Green

Green

Blue

11

1 1

2

1

1

Figure 1: Overview of the deployment environment and service specification.

remainder of the paper, we use the terms VM replica and
VM instance interchangeably.

The objective of our deployment logic is to find suitable
mappings between VM replicas and nodes, capable of host-
ing them in the various clusters of the network. Using
CEAS, ants move around in the network, trying to identify
potential locations where replicas might be placed. Ants
have associated state; as such they can be implemented as
messages on which our algorithm is executed in every node
they visit. For each service, there is one ant species respon-
sible for finding the deployment mapping for its associated
service. This is illustrated in Fig. 1 by the green and blue ant
species representing the green and blue service, respectively.
It is important to notice that a species of ants corresponds
to a service, i.e. a set of VM replicas Sk = {Rk

11, . . .}. Thus,
an increase in the number of VM instances within a service
in itself does not lead to impairment of scalability.

As shown in Fig. 1, every node contains an execution run-
time, that supports installing, running and migrating repli-
cas. Furthermore, each node also has a pheromone table that
will be updated and read regularly by the ants. The purpose
of the pheromone table is to assist ants in selecting suitable
deployment mappings; this is in contrast to the original ant
system proposed by Dorigo et al. [9], in which pheromones
are used for ant routing. For every service that has to be
deployed, at least one node must also host an ant nest. The
tasks of a nest are twofold:

1. to emit ants for its associated service, and

2. trigger installation of VM replicas onto nodes accord-
ing to found deployment mappings.

Installation is triggered once a predefined convergence cri-
teria is reached, e.g. after a certain number of iterations of
the algorithm, or when a sufficiently low deployment cost
level is reached. The actual installation of the VMs of a
service is taken care of by the execution runtime, details
of which are not discussed here, instead we refer to related
work (in Sec. 1). Our goal is to build a core logic for op-
timizing the deployment mappings and, at the same time,

enable compatibility with existing frameworks and interfaces
for deployment in the clouds.

An iteration, r, of the algorithm is defined as one round-
trip trajectory of the ant. During an iteration r, the ant
builds and carries along a hop list, Hr, keeping track of
the visited nodes. The nest can also be replicated for fault
tolerance, thereby emitting ants for the same service from
multiple nodes. Synchronizing these nests is not necessary,
however, only one designated nest is allowed to trigger phys-
ical placement of VMs. In Fig. 1, the green service has two
nest replicas.

Mapping Rules.
The CEAS approach is a heuristic optimization method,

and as such our target is not to find the globally optimal so-
lution. This is simply because by the time the optimal map-
ping configuration could be found and installed, it might be
suboptimal due to dynamics of the system. Instead, we aim
to find a feasible mapping, meaning that it satisfies the re-
quirements for the deployment of the service, e.g. in terms of
redundancy and load-balancing. Below we will define a set
of rules, denoted Φ, to encapsulate these requirements. One
of the key functions in CEAS is the use of a cost function,
denoted F (), that evaluates the quality of a mapping Mr

found in iteration r of the algorithm. Thus, the objective of
the algorithm is to minimize the cost of the mapping F (Mr)
subject to Φ. It should be noted that the algorithm contin-
ues to optimize the mapping after an appropriate mapping
has been found and applied in the network, once a (signif-
icantly) better mapping is found, reconfiguration can take
place. The dependability rules that constrain the minimiza-
tion are defined using the two mapping functions, fj,d and
gj , below that apply to service k.

Definition 1. Let fR,d : R→ d be the mapping of replica
R to cluster d ∈ D.

Definition 2. Let gR,n : R → n be the mapping of
replica R to node n ∈ N .

Using the two mapping functions defined above we now
specify two dependability rules. The first rule, φ1 below,

requires replicas to be dispersed over as many clusters as
possible, aimed to improve service availability despite po-
tential network partitions between the clusters. Specifically,
replicas of VM V k

i are mapped to different clusters, until all
clusters are present in the mapping or all replicas have been
mapped to distinct clusters. If the redundancy level of the
VM is greater than the number of available clusters in the
network, i.e. |V k

i | > |D|, at least one VM replica is placed
in each cluster. Hence, when j = u, replicas of V k

i may be
mapped to the same cluster. The second rule, φ2, prohibits
two replicas of V k

i to be placed on the same node, n.

Rule 1. φ1 : fRj ,d 6= fRu,d ⇔ (Rj 6= Ru) : ∀d ∈
D, ∀R ∈ V k

i , ∧|V k
i | < |D|

Rule 2. φ2 : gRj ,n 6= gRu,n ⇔ (j 6= u) : ∀R ∈ V k
i

Combining the rules above we obtain a dependability con-
straint set for services Φ = φ1 ∧ φ2. In order to adhere
to φ1, the ant gathers data about the clusters utilized for
mapping VM replicas; hence, the set of clusters used in it-
eration r is denoted by Dr. Similarly, the set of replicas
from service k mapped to node n in iteration r is denoted
by mn,r ⊆ Sk. Thus, the ant builds a deployment map-
ping set Mr = {mn,r}∀n∈Hr for all visited nodes. Finally,
ants also collect load-level samples, denoted ln,r, from every
node n ∈ Hr visited. The ant uses a load list, Lr to carry
along all the samples. Load-levels observed by the ant, at
the nodes that it visits, are a result of many concurrently
executing ant species reserving resources for their respective
VM instances. Two different possibilities of implementing
this reservation mechanism that serves as a means of indi-
rect communication between ant species have been explored
in [5] and [7], here we omit the description of them.

Each VM replica, Rk
ij , of a service k has a node-local exe-

cution cost (weight of the replica), denoted by wk = {wk
ij},

i = 1 . . . q, j = 1 . . . pi. This cost is used when ants allo-
cate resources for their corresponding services. Note that,
to keep the model simple initially, we consider only identical
VM replicas (wk = w,∀i, j, k). However, in future work we
will extend the model to cater for more detailed service mod-
els that contain information on individual execution costs for
the VM replicas and also communication costs for the com-
munication links between VMs of a service. We have already
experimented with these types of costs in previous work in
the field of software component deployment [6, 5].

Cost Function.
In what follows, we will define some equations that will be

used to define the cost function. Let Cx be a list of values,
one for each node visited by an ant. Each value refers to the
execution load of the corresponding node.

Cx[n] = (

ϑx(n)∑
i=0

1

Θx + 1− i)
2 (1)

The algorithm uses two versions of Eq. (1), depending on the
parameter x ∈ {0, 1}. For x = 1, load-level observations, Lr,
are used, accounting for all concurrently executing services
on the respective nodes. When x = 0, the mappings, Mr,
made by the ant itself are used, only taking into account
the load of those VM instances that are part of the service.
The two different usages differ in the upper-bound of the

summation and the constant in the denominator, ϑx and
Θx respectively. They are presented next in Eq. (2) and (3).

ϑx(n) = |mn,r| · w + x · Lr(n) for x ∈ {0, 1} (2)

Θx =
∑
∀n∈Hr

ϑx(n) for x ∈ {0, 1} (3)

Θx is a constant representing the overall execution load of
one service or all services (depending on the parameter x).
More specifically, Θ0 is the total processing resource demand
of the service deployed by the ant, whereas Θ1 = Θ0 + L,
where L represents the additional load of replicas of other
concurrently executing services. For L, we account only for
those instances that are mapped to the nodes visited by the
ant, and as such have reserved processing power for them-
selves. Note that in (3), Θx is applied only for the subset of
nodes that the ant has visited, Hr. This is favorable for the
scalability of the algorithm, since it does not have to explore
the entire network N exhaustively.

With the notational framework in place we are ready to in-
troduce the cost function used to evaluate deployment map-
pings obtained with CEAS. To take into account the re-
quirements of load-balancing and dependability (according
to Φ) when obtaining VM replica mappings the following
cost function is defined.

F (Dr,Mr, Lr) =
1

|Dr|
·
∑
∀n∈Hr

C0(n) ·
∑
∀n∈Hr

C1(n) (4)

Note that, we use (1) to favor globally balanced mappings,
i.e. to distribute VM instance load on the network as evenly
as possible. In (4) the first term corresponds to enforcing
φ1. The second term, C0 applies solely to the VM replicas
of the service the ant is responsible for, thus penalizing the
violation of φ2. The last term, C1, is used for load-balancing
and, as such, it takes into account load imposed on nodes
by the other services in the network.

Next, we discuss how the CEAS uses the cost function to
guide the ants in finding an optimal deployment mapping
and we present the definition of pheromone values.

3. CROSS ENTROPY ANT SYSTEM FOR
REPLICA DEPLOYMENT

This section describes the basics of the CEAS method
necessary for presenting our deployment algorithm.

The core of our deployment logic is built around the CEAS
method [12], which can be considered a subclass of ACO al-
gorithms [9]. ACO systems have proven to be able to find
the optimum solution to a problem at least once with a
probability close to one. Once the optimum has been found,
convergence is assured in a finite number of iterations. The
logic employs ants searching iteratively for a solution. So-
lutions found by ants are evaluated using a predefined cost
function (F (Mr)) that takes into account the constraints of
the problem. Every iteration consists of a round-trip by
the ant and has two distinct phases. In the first phase,
the ant conducts a forward search and tries to find a map-
ping for all VMs in the service it is responsible for. Once
a complete mapping has been found, the suggested solution
is evaluated using the cost function. In the second phase
of the lifetime of an ant, called backtracking, ants deposit
pheromone markings at each node they have visited, much
like it is done in the real world when ants forage for food.

The key idea is that these pheromone values are propor-
tional to the quality of the solution, which was determined
by the cost function. The optimum is then approached grad-
ually by using the pheromone tables during forward search
for selecting VM instance mappings in nodes. Note that,
ants have two modes of operation denoted explorer ants and
normal ants. Normal ants behave as described above, us-
ing pheromone tables during forward search. On the other
hand, explorer ants ignore pheromone markings during for-
ward search; instead they do a random exploration of the
search space. The ratio of normal vs explorer ants is config-
urable; typically 5-10 % are dedicated as explorer ants. The
concept of explorers is used two ways, first to detect changes
or better opportunities in the environment, and second, to
reduce the occurrence of premature convergence leading to
sub-optimal solutions.

A cornerstone in CEAS is the Cross-Entropy (CE) method
proposed by Rubinstein [23]. In CEAS, the CE method is
used both to evaluate solutions and for updating pheromone
values. Specifically a probability matrix, pr, is modified
gradually according to the cost returned by the cost func-
tion F (). The objective of applying the CE method is to
minimize the cross entropy between consecutive probabil-
ity matrices pr and pr−1. For an introduction and other
example applications, see [12].

Let τmn,r denote the pheromone value. This value is es-
sentially an encoding of the VM instance mapping mn,r at
node n in iteration r. Hence, the pheromone database must
be able to store pheromone values that encode the various
deployment configurations for various services. Three possi-
ble pheromone encoding techniques are discussed and eval-
uated in [8]; herein the best encoding is used.

While visiting a node, explorer ants select a set of VM
replicas to map to that node with the uniform probability
1/|V k

i |, where |V k
i | is the number of replicas to be deployed.

On the other hand, normal ants select VM replicas to deploy
based on a random proportional rule. This rule is encoded
as a probability matrix, pr = {pmn,r}.

pmn,r =
τmn,r∑

l∈Mr
τln,r

(5)

Updates to the pheromone values are controlled by a tem-
perature parameter, γr. The temperature is chosen so as to
minimize the performance function, H(), below.

H(F (Mr), γr) = e
−F (Mr)

γr (6)

H() is applied consecutively to all mappings (samples) ob-
tained in all iterations. The expectation of the overall per-
formance then satisfies

Epr−1(H(F (Mr), γr)) ≥ ρ (7)

Epr−1(X) is the expected value of X s.t. the rules in pr−1;
ρ is a search focus parameter close to 0 (we use ρ = 0.01).
Further, the CE method is used to obtain a new set of
rules for the next iteration, pr, by minimizing the cross en-
tropy between two consecutive rules with respect to γr and
H(F (Mr), γr). This is achieved by applying the random pro-
portional rule, Eq. (5), for ∀mn using the pheromone value

τmn,r =
r∑

k=1

I(l ∈Mr)β
∑r
j=k+1 I(j∈Mk)H(F (Mk), γr) (8)

where the indicator function I(x) = 1 if x is true, or 0
otherwise. For details and proofs of the CE method see [23].

To avoid centralized tables or control, or batches of syn-
chronized iterations, the cost values have to be calculated
immediately when a new sample (Mr) has been obtained,
i.e. in each iteration. To enable this, an auto-regressive
version of the performance function is used, as follows

hr(γr) = βhr−1(γr) + (1− β)H(F (Mr), γr) (9)

where β ∈ 〈0, 1〉 is a memory factor. β is used to give
proper weights to the output of the performance function
introduced above. To avoid rapid undesirable changes in the
deployment mapping, the performance function will smooth
variations in the cost function. The temperature parameter,
γr, is determined by minimization s.t. h(γ) ≥ ρ (cf. [12])

γr = {γ | 1− β
1− βr

r∑
k=1

βr−kH(F (Mk), γ) = ρ} (10)

To avoid having to store and process the entire mapping
history F (Mr) = {F (M1), . . ., F (Mr)} for each iteration
r, which would make the system impractical, we instead
assume that subsequent changes in γr are relatively small.
Hence, we can apply a first order Taylor expansion on Eq. (10).
Similarly, for Eq. (8) a second order Taylor expansion can
be applied to save memory and processing power [12].

4. VIRTUAL MACHINE REPLICATION IN
CLOUD COMPUTING

We have developed an optimization algorithm using CEAS
that aims to find suitable deployment configurations for VM
replicas in a cloud computing setting. This algorithm is
described in this section.

The components of the logic are summarized in the class-
diagram in Fig. 2. The mayor component is the Nest that
is placed on one of the nodes in the network. It is allowed
for one species to have more than one nest for additional de-
pendability. Every node must have some additional proper-
ties to support the deployment logic, including an instance of
the PheromoneTable that is used as a container for the dis-
tributed information needed by the logic, i.e. τmn,r. A Nest
has in addition a set of CEAS related parameters and vari-
ables represented by the component CEASParams, which
information is shared by all the nests of the same species,
e.g. β, ρ. In addition, a Nest must be able to access in-
formation about the service that the species has to deploy,
this component is called the ServiceRecord, corresponding
to Sk. The second mayor building block, Ant, of the logic is
realizing the ants emitted iteratively by the Nest. Most of
the intelligence is carried by the Ant, represented by meth-
ods, as well as some of the variables used during one iteration
of the optimization process, e.g. the VM instance mapping
set mapping corresponding to Mr.

Algorithm 1 Summary of the behavior of Nestk at any
node n ∈ N
1: init();

2: while r < R {Stopping criteria}
3: emitAnt(serviceRecord, ...);
4: r ← r + 1 {Increment iteration counter}

In Algorithm 1 the behavior of a nest is summarized briefly.

PheromoneTable
- phTable : table[serviceId, replicaId] <phEntry[]>
+ updateEntry(serviceID, replicaID, selected, ceasp : CEASParams)
+ isMappable(serviceID, replicaID) : boolean

- phEntry[0..1]

Ant
- availDomains : int
- maxHops : int
- hopList : list <int>
- backtracking : boolean
- explorer : boolean
- serviceID : int
- ceasp : CEASParams
- mapping : table[replicaID] <int>
- utilizedDomains : int
- loadList : list <int>
- tabooList : list <int>
- cost : float
- serviceRecord : ServiceRecord
+ fwdSearchDone() : boolean
+ backtrack()
+ selectNextHop() : nodeID
+ selectPlacement()
+ addMapping(replicaID, nodeID)
+ calcCost(utilizedDomains : int, loadList : list<int>, mapping : table[replicaID]<int>) : float
+ maintenance()
+ initAnt(sRCopy : ServiceRecord, explorer : boolean)
+ calcGamma(ceasp : CEASParams, cost : float) : float
+ addLoadSample(l : int)

Node
- clusterID : int
- nest : Nest
- phTable : PheromoneTable
- nodeID : int
- allocTable : table[serviceID] <int>
- loadLevel : int
+ processAnt()

Nest
- bindingRatio : int
- explorationRatio : int
- numberOfExplorer : int
- serviceID : int
- ceasp : CEASParams
- serviceRecord : ServiceRecord
+ init(serviceID: int)
+ emitAnt(serviceRecord : ServiceRecord, ceasp : CEASParams)
+ bind()
+ releaseBindings()
+ checkRules() : boolean

ServiceRecord
- serviceID : int
- numReplicas : int
- replicas : list <ReplicaRecord>
+ bindReplica(replicaID : int,
node : Node)

ReplicaRecord
- boundTo : Node
- replicaID : int
- weight : int
+ bindTo(Node)
+ isBoundTo() : Node

Cluster
- clusterID : int
- cloudID : int

Cloud
- cloudID : int
- cost : int

CEASParams
- beta : float = 0.98
- searchFocus : float = 0.01
- m : int
- a : float
- b : float
- gamma : float

create()

<<
use

s>>

<<uses>>

<<uses>>

1..* 1

1

0..*

1

1

1..*

1..*

Figure 2: Class Diagram for the CEAS-based Deployment Algorithm

Omitting the details, a Nest emits (creates and resets) Ants
sequentially during the optimization process and continues
until a stopping criteria, such as a convergence criteria, is ful-
filled. Alternatively, nests can continue emitting ants even
after the system has stabilized and converged to a given solu-
tion, this way providing the capability of adaptation should
changes occur in the execution context. Discovery of new,
higher utility mappings resulting from context change is sup-
ported by explorer ants. Modifying the placement of the
services once they are initially deployed can be conditioned
by thresholds such as the cost of VM instance migration.
Several authors estimate the durations required for migrat-
ing operational VMs by conducting experiments. Durations
vary, as expected, depending on the hardware context, e.g.
bandwidth, and naturally on the VM package size. How-
ever, for realistic VM sizes estimates lie typically around 60
to 90 seconds, see [3], [15], [16]. These migration costs can
be factored in as threshold values to allow changes in the
deployment mappings only if the benefit is higher than the
costs of migrating.

The number of iterations required for convergence to an
initial stable solution depends on the problem size. For the
example scenario, introduced in the next section, the max-
imum number of iterations allowed for the algorithm was
2000 explorer ants followed by an additional 3000 (10% ex-
plorer and 90% normal) ants for each species that were exe-
cuted in parallel. The algorithm was able to find a solution
in all simulation runs within this amount of iterations. In-
creasing the number of nodes in itself does not make the
deployment problem more difficult. An increased network
size actually allows to algorithm to find lower cost map-
pings easier due to the larger amount of available resources.
The number of services and the amount replicas within the
services is what impacts scalability more, as the number of
species executed in parallel is proportional to the number of
services and the complexity of one species’ task increases as
the number of replicas increases [7]. The behavior of an Ant
is briefly presented in Algorithm 2.

Algorithm 2 Summary of the behavior of a single ant

1: Initialization:
2: Hr ← ∅ {Hop-list; insertion-ordered set}
3: Mr ← ∅ {Deployment mapping set}
4: Dr ← ∅ {Set of utilized domains}
5: Lr ← ∅ {Set of load samples}
6: γr ← Nestk.getTemperature() {Get nest temp.}
7: while not fwdSearchDone() {More replicas to map}
8: n← selectNextNode() {Select next node to visit}
9: if explorerAnt

10: mn,r ← random(⊆ V l
i) {Randomly select replicas}

11: else
12: mn,r ← rndProp(⊆ V l

i) {Select using Eq. (5)}
13: if {mn,r} 6= ∅ ∧ n ∈ dk {Cluster used in mapping}
14: Dr ← Dr ∪ dk {Update utilized clusters}
15: Mr ←Mr ∪ {mn,r}
16: V l

i ← V l
i − {mn,r}

17: Lr ← Lr ∪ {ln,r} {Estimated proc. load at node n}
18: cost← calcCost(Mr) {Compute cost of mapping}
19: γr ← calcGamma(cost) {Compute temp., Eq. (10)}
20: foreach n ∈ Hr.reverse() {Backtrack along hop-list}
21: n.updatePhTable() {Update pheromones, Eq. (8)}
22: Nestk.setTemperature(γr) {Update temp. at Nestk}

Every ant that is emitted receives the appropriate param-
eters from the nest, such as the explorer flag, the description
of the service to be deployed, CEAS-related parameters, etc.
After initialization the Ant proceeds with visiting new nodes
during forward search until the search is done, i.e. a map-
ping has been found for all the VMs in the service. In other
words, the stopping criteria incorporated into the method
fwdSearchDone() checks whether the set V l

i , which is list-
ing the VM instances not yet mapped by the ant during the
current iteration, has become empty. Next nodes are se-
lected via the method selectNextHop() that takes into ac-
count cluster taboo-lists and node taboo-lists. Taboo-lists
are built by the ant during its forward search and are up-
dated continuously adding references to clusters and nodes

visited to the two lists respectively. The purposes of the two
taboo-lists are to cover all available clusters first, to aid satis-
fying cluster-disjointness, and if the ant has to proceed even
after visiting all the clusters then to avoid revisiting the same
nodes. Beside the taboo-lists nodes are selected in a random
manner. Mappings at each node are selected by the method
selectP lacement() that, depending on whether the ant is an
explorer or not, uses the local PheromoneTable via Eq. 5
or not. Before leaving the node the Ant also has to sample
load-levels (Lr(n)) at the node to achieve load-balancing.
When forward search is done the Ant calculates the cost
of the mapping (F (Mr)), then recalculates the temperature
(Eq. 10) and updates the pheromone tables going backward
according to its hop-list, Hr, applying Eq. 8. When the ant
successfully returns to its nest it is reset and emitted again
in the following iteration.

Further improvements in the scalability of the basic ap-
proach of CEAS can be made by applying elitism, pheromone
sharing and self-tuned packet rate control, additional mech-
anisms that are described in [13].

5. EXAMPLE SCENARIO AND RESULTS
In this section we present an example cloud computing

scenario demonstrating the behavior of our deployment logic.
The scenario, as in Fig. 3, consists of 5 private clouds (Cloud
C, . . . , G) that are connected to the public Internet, thereby
enabling connections to public cloud providers (Cloud A,B).
Capacities in the public area can thus be utilized on demand,
but are subject to economic costs. Conversely usage of the
private clusters is free for a service with a home location in
that private cloud. Thus, deploying and hosting a VM in-
stance in a node within one of the clouds implies additional
costs |ni|, ∀ni ∈ N ; these costs are summarized in Table 1.

The tangible meaning of the above partitioning and cost
assignment is the following concept. It is natural for any or-
ganization to execute all VM instances within their privately
owned clusters as long as requirements allow, e.g. replication
requirements can be satisfied with the available amount of
private clusters, as hosting VMs in the private cloud can be
considered free compared to costs of the public clouds. In the
example setting, there is a trade-off between a large cloud
provider with several clusters and plenty of nodes available
for placement, which is more expensive to use than paying
for hosting in the smaller cloud offering with less resources.

Table 1: Usage costs for the clouds in the example
Cloud A Cloud B Cloud C . . .G

Cost |ni| 10 1 0

The deployment task in the case studied in this paper is
then to deploy 125 services in total. Administrators in each
private cloud have the task of deploying 25 services using
their own available resources and, if needed, using public
resources as well. It is not allowed, however, to utilize nodes
in a private cloud other than the home location for a service
(∞ cost for the neighboring private clouds). In this example
every service consists of 5 VM instances, among others for
dependability reasons, that have to be deployed, thus giving
the task of deploying a total number of 625 VMs to the
deployment mapping algorithm.

Deployment of the set of VM instances is done in a net-
work environment partitioned into the set of public and pri-

Cloud
ACluster d2

Node
Node

Node

. . . .

Cluster d1
Node

Node

Node

. . . .

Cluster d5
Node

Node

Node

. . . .

Cloud
BCluster d8

Node
Node

Node

. . . .

Cluster d7
Node

Node

Node

. . . .

Public Clouds

C

D

G

Private Clouds
Direction of overshoot

. . . .

Cluster d6
Node

Node

Node

. . . .

Figure 3: Example scenario

vate clouds, which in turn are partitioned further into clus-
ters. Every private cloud has two clusters possibly in a pri-
vate network domain administered by a single authority. In
addition the two public clouds Cloud A and Cloud B con-
tain 5 and 3 clusters respectively, resulting in a total of di,
i = 1 . . . 18 clusters. Furthermore, each cluster is a collection
of nodes. Clusters in the private clouds consist of 5 nodes,
whereas clusters in the public clouds contain 10 nodes each,
which gives a total of 130 nodes available in this network.

We employ one ant species for each of the services, i.e.
there will be exactly 25 ant species for each private cloud
responsible for deployment mapping of the 25 services local
to the corresponding clouds. In other words, 25 ant nests are
placed within every private cloud that execute our algorithm
and emit ants accordingly. We define a variable Λ accounting
for the additionally incurring costs of using hosts in public
clouds as a sum over all hosts that participate in mapping
M obtained during the given iteration

Λ =
∑
∀ni∈M

|ni| (11)

In our experiment, we executed our algorithm using two
extended variants of the cost function. The extension to the
original function Eq. (4) is shown in the following

F ′ = F (Dr,Mr, Lr) · (1 + g(x)), (12)

where function g(x) is defined in two variants using param-
eter x and Eq. (11).

g(x) =

{
x · Λ, if linear weighting

1− e−(x·Λ)2 , if exponential weighting
(13)

To see the resulting VM instance mapping when cloud-related
costs are absent we set x = 0. On the contrary, to include
cloud-related costs the scaling parameter is set to x > 0.
The exact value of parameter x is dependent on the values
we apply as costs of using public clouds, hence it is a scaling
parameter. In the example scenario with cloud costs {10, 1}
the scaling parameter we applied was x = 0.1.

The two different alternatives in Eq. (13) represent a linear
increment (the former) and an exponential increment (the
latter alternative) in cloud costs, when x > 0. By applying
a more fine-grained exponential weighting to cloud-related
costs VM mappings are expected to become more balanced,
avoiding under-utilization or overload of clusters.

1

2

3

4

5

6

7

8

9

10

11

12

1 50 80 130

Public Clouds Private Clouds

High cost Low cost

Node ID

N
u
m

b
er

o
f

V
M

s

Figure 4: VM instances per node, x = 0, no weight-
ing

To investigate the three alternatives we executed simu-
lations of the example setting, running the logic 100 times
using each variant of the cost function presented above. In
Fig. 4, VM instance mapping is presented in case cloud-
related costs are not taken into consideration, i.e. every
node has zero cost for hosting a VM. Simulation results
are averaged after the algorithm has converged to a solu-
tion and deviation from the average number of instances
per node is shown as error bars. We can observe that in
the first case 2 VMs are mapped on average to hosts within
the private clusters, i.e. on nodes n81..90, n91..100, n101..110,
n111..120, n121..130. That means that for the 10 nodes within
each private cloud approximately 20 VMs are mapped for
hosting, leaving (5 · 25) − 20 = 105 VMs for mapping into
the public network. Then, as anticipated we have an av-
erage around the (105 · 5)/80 = 6.6 VMs mapped to the
public hosts in the network, which lies between the two ex-
tremes of mapping 3 VMs in public and 2 in private clusters
(3 · 125)/80 = 4.7 and mapping all 5 VMs of a service to
public clusters (5 ·125)/80 = 7.8, as shown by the horizontal
dashed lines. Naturally, the algorithm does not distinguish
between the two public cloud offerings in this case.

In the second experiment (Fig. 5) we turned on cloud-
related costs and executed our algorithm under the same
circumstances otherwise as before. In this case results show
that the logic manages to find a mapping that considers the
financial penalties of using public clouds. The public cloud
with plenty of resources and high cost (nodes n1.50) is barely
used for deployment, whereas the lower cost public offering
is heavily loaded with VMs, while all the dependability re-
quirements are fulfilled, i.e. cluster-disjointness and node-
disjointness. At the same time in the private clouds con-
taining 10 nodes, as expected, 5 VMs are mapped to each
node on average. This means that each one of the 25 ser-
vices that are executed within a given private cloud places
1 VM in each of the two local clusters available at 0 cost
((2 · 25)/10 = 5). However, due to the cluster-disjointness
criteria the 3rd, 4th and 5th VM replica has to be placed to
a public cloud with the lowest increment in costs possible,
nonetheless taking into account the rest of the requirements.

1

2

3

4

5

6

7

8

9

10

11

12

1 50 80 130

Public Clouds Private Clouds

High cost Low cost

Node ID

N
u
m

b
er

o
f

V
M

s

Figure 5: VM instances per node, x > 0, linear
weighting

1

2

3

4

5

6

7

8

9

10

11

12

1 50 80 130

Public Clouds Private Clouds

High cost Low cost

Node ID

N
u
m

b
er

o
f

V
M

s

Figure 6: VM instances per node, x > 0, exponential
weighting

In the third set of simulations (Fig. 6) we executed our
deployment mapping algorithm applying the exponential cost
function, the second alternative in Eq. (13). Changes from
the previous example can mainly be observed in mappings
in the public clouds. Mappings in private clouds are not
changed due to the application of the same requirements.
Using a slightly more complicated cost evaluation in the al-
gorithm, however, we obtained more balanced deployment
mappings. Under the given cost values assigned to the differ-
ent public offerings the cheaper public cloud gets less over-
loaded with VMs while the number of mappings in the larger
public cloud increases to take over some of the execution load
while the original requirements remain satisfied.

In the examples above we have shown that the deployment
logic we are developing can be applied in a cloud comput-
ing scenario by adjusting the corresponding cost functions
evaluating VM mappings, thus adapting to different costs re-
lated to usage of resources offered by public providers. Using
the logic we are able to obtain VM instance mappings that
satisfy dependability and performance requirements while
minimizing financial penalties in the special case of handling
overshoot scenarios in private clouds.

6. CONCLUSIONS
We have presented a swarm intelligence framework target-

ing the deployment of VM instances in a cloud computing
environment. We have designed an algorithm that is fully
distributed, scales well by decomposing the problem of de-
ploying multiple services, and paves the way for a deploy-
ment logic capable of finding near optimal mappings.

Through the evaluation presented in this paper, we are
convinced that our deployment logic is applicable in a cloud
computing setting. Nevertheless, we are currently working
on a more thorough validation of our approach with new
examples. We are also developing a centralized solution us-
ing integer linear programming to obtain exact optima as a
lower bound for our simulation results. As such, we empha-
size the fact that our approach is a heuristic method and
may not reach the lower bounds; however, our approach of-
fers the significant advantages of decentralization.

7. REFERENCES
[1] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A.

Patterson. Design and implementation trade-offs for
wide-area resource discovery. ACM Trans. on Internet
Technology, 8(4), Sept. 2008.

[2] Amazon Elastic Compute Cloud,
http://aws.amazon.com/ecs2.

[3] C. Clark et al. Live migration of virtual machines. In
Proc. of the 2nd conf. on Symp. on Networked
Systems Design and Implementation - Volume 2.
USENIX Association, 2005.

[4] M. J. Csorba and P. E. Heegaard. Swarm intelligence
heuristics for component deployment. In 16th Eunice
Int’l Workshop and IFIP WG6.6 Workshop, Accepted.
Springer, Jun 2010.

[5] M. J. Csorba, P. E. Heegaard, and P. Herrmann.
Adaptable model-based component deployment guided
by artificial ants. In 2nd Int’l Conf. on Autonomic
Computing and Communication Systems
(Autonomics), Sep 2008.

[6] M. J. Csorba, P. E. Heegaard, and P. Herrmann.
Cost-efficient deployment of collaborating components.
In 8th Int’l Conf. on Distributed Applications and
Interoperable Systems. IFIP, June 2008.

[7] M. J. Csorba, H. Meling, and P. E. Heegaard. Laying
pheromone trails for balanced and dependable
component mappings. In 4th Int’l Workshop on
Self-Organizing Systems, volume 5918 of LNCS, pages
50–64, Zurich, Switzerland, Dec. 2009. IFIP TC 6,
Springer-Verlag.

[8] M. J. Csorba, H. Meling, P. E. Heegaard, and
P. Herrmann. Foraging for better deployment of
replicated service components. In 9th Int’l Conf. on
Distributed Applications and Interoperable Systems,
number 5523 in LNCS. Springer-Verlag, June 2009.

[9] M. Dorigo et al. The ant system: Optimization by a
colony of cooperating agents. IEEE Trans. on
Systems, Man, and Cybernetics Part B: Cybernetics,
26(1), 1996.

[10] E. Elmroth and L. Larsson. Interfaces for placement,
migration, and monitoring of virtual machines in
federated clouds. In 8th Int’l Conf. on Grid and
Cooperative Computing (GCC 2009). IEEE Computer
Society Press, Aug 2009.

[11] D. Fernandez-Baca. Allocating modules to processors
in a distributed system. IEEE Trans. on Software
Engineering, 15(11), 1989.

[12] P. E. Heegaard, B. E. Helvik, and O. J. Wittner. The
cross entropy ant system for network path
management. Telektronikk, 104(01):19–40, 2008.

[13] P. E. Heegaard and O. J. Wittner. Overhead reduction
in a distributed path management system. Computer
Networks, 54(6):1019–1041, 2010.

[14] T. Heimfarth and P. Janacik. Ant based heuristic for
os service distribution on adhoc networks. Biologically
Inspired Cooperative Computing, 2006.

[15] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and
S. Sekiguchi. A live storage migration mechanism over
wan for relocatable virtual machine services on clouds.
In 9th IEEE/ACM Int’l Symp. on Cluster Computing
and the Grid. IEEE, May 2009.

[16] K. Joshi, M. Hiltunen, and G. Jung. Performance
aware regeneration in virtualized multitier
applications. In Workshop on Proactive Failure
Avoidance Recovery and Maintenance, Lisbon,
Portugal, June 2009.

[17] R. Kusber, S. Haseloff, and K. David. An approach to
autonomic deployment decision making. In 3rd Int’l
Workshop on Self-Organizing Systems, Vienna,
Austria, Dec. 2008.

[18] H. Meling and J. L. Gilje. A Distributed Approach to
Autonomous Fault Treatment in Spread. In 7th
European Dependable Computing Conference, Kaunas,
Lithuania, May 2008. IEEE CS.

[19] H. Meling, A. Montresor, B. E. Helvik, and
O. Babaoglu. Jgroup/ARM: a distributed object
group platform with autonomous replication
management. Software: Practice and Experience,
38(9):885–923, July 2008.

[20] D. Nurmi et al. Eucalyptus: an open-source cloud
computing infrastructure. Journal of Physics:
Conference Series, 180, 2009.

[21] C. Pu, J. D. Noe, and A. Proudfoot. Regeneration of
replicated objects: A technique and its eden
implementation. IEEE Trans.actions on Software
Engineering, 14(7):936–945, July 1989.

[22] B. Rochwerger et al. The reservoir model and
architecture for open federated cloud computing. IBM
Journal of Research & Development, 53(4), 2009.

[23] R. Y. Rubinstein. The cross-entropy method for
combinatorial and continuous optimization.
Methodology and Computing in Applied Prob., 1999.

[24] R. Sabharwal. Grid infrastructure deployment using
smartfrog technology. In Int’l Conf. on Networking
and Services, Santa Clara, USA, pages 73–79, Jul
2006.

[25] H. Sato, S. Matsuoka, and T. Endo. File clustering
based replication algorithm in a grid environment. In
9th IEEE/ACM Int’l Symp. on Cluster Computing
and the Grid. IEEE, May 2009.

[26] A. Verma, P. Ahuja, and A. Neogi. pmapper: power
and migration cost aware application placement in
virtualized systems. In 9th Int’l Conf. on Middleware,
pages 243–264, Dec. 2008.

[27] S. Wardley, E. Goyer, and N. Barcet. Ubuntu
enterprise cloud architecture, Aug 2009.

[28] J. Xu et al. On the use of fuzzy modeling in
virtualized data center management. In Int’l. Conf. on
Autonomic Computing, June 2007.

[29] H. Yu and P. B. Gibbons. Optimal inter-object
correlation when replicating for availability.
Distributed Computing, 21(5):367–384, Feb. 2009.

[30] H. Yu and A. Vahdat. Consistent and automatic
replica regeneration. ACM Trans. on Storage,
1(1):3–37, Dec. 2004.

