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Abstract—This paper presents the design and implementation
of a simple and elegant middleware architecture providing virtual
sensors as representatives for any type of physical sensors. With
our middleware, clients can seamlessly discover sensor-hosted
services through Zeroconf and it provides a standardized com-
munication interface that applications can use without having to
deal with sensor-specific details. The limited capabilities of most
types of sensors prevent the inclusion of a full communication
stack with IP addressing. Yet, through the use of virtual sensors, a
uniform communication interface based on UDP/TCP sockets can
be exposed to clients. This will significantly simplify application
development for integrated services involving multiple types of
sensors. Our benchmarks shows that our middleware scales well
beyond the requirements of a private smart home.

I. INTRODUCTION

Wireless communication technologies enables seamless com-
munication between residential network entities such as set-
top-boxes, sensors, control units and other devices, and are
typically far less costly to install than their wired counterparts
due to cabling. These technologies have opened up a whole
range of new applications in the utility segment, like remote
control of heating, security and safety systems and health
monitoring.

However, the heterogeneity of communication protocols and
the mixture of addressing schemes used by networked devices
of different make and model is one of the biggest challenges
when developing integrated smart home services. Most smart
home systems offered today are based on proprietary all-in-
one solutions, where the sensors and actuators might use a
proprietary RF protocol over the 868MHz band, while others
might use ZigBee, Bluetooth or WiFi. Furthermore, most
devices have their own application-level protocol for commu-
nicating control commands and retrieving data. Moreover, due
to the limited capabilities of many types of sensors, a full
communication stack with IP addressing is simply unfeasible.
Yet, it would significantly simplify application development
if interaction with the sensors were based on UDP or TCP
sockets and IP addressing schemes. Currently, these issues
hampers innovation and development of new (possibly third-
party) smart home services. Another obstacle to the adoption
of smart home technology is the complexity of setting up
and managing the networking between devices, deterring most

home owners from acquiring such solutions. Hence, it is
paramount to the success of networked homes that device
configuration is performed automatically.

This paper builds on previous work [6] and presents the
design and implementation of a simple, yet elegant middleware
architecture providing virtual sensors as representatives for
any type of physical sensors. Improvements over the previous
version includes a cleaner, more generic system architecture
and added support for publish/subscribe style of interaction.
Additionally, we have included a performance evaluation,
which was missing in the previous paper. Our middleware,
which we have named SenseWrap, combines the Zeroconf
protocols with hardware abstraction, giving a service-oriented
and lightweight middleware for application programmers to
interact with. A virtual sensor provides transparent discovery
of arbitrary sensor devices through the use of Zeroconf pro-
tocols [3]. This enables applications to discover sensor-hosted
services through Zeroconf and it provides a standardized com-
munication interface that applications can use without having
to deal with sensor-specific details. That is, virtual sensors also
provides a uniform communication interface to clients, based
on UDP/TCP sockets or even HTTP. This is accomplished
by abstracting functionalities common to most sensor models,
and writing custom wrappers (drivers) for the specifics of each
sensor model. This way, applications need not know anything
about the physical or logical communication protocols used
by the sensors, making the same network services usable
with any sensor model sharing the same basic functionality.
For instance, a light-controlling application should be able to
operate independently of the actual luminosity sensors used.
Note that the architecture is generic and can be used in a
wide range of application areas where sensors needs to be
connected; however, for the sake of illustration, the examples
presented here are framed in a smart home setting.

By using virtualized sensors, third-party developers do not
need to learn any custom sensor APIs to interact with the
sensors, even though the capabilities of the sensors are limited
to low-level RF communication. Assuming sensor vendors
provide the sensor communication API, third-party developers
can supply the necessary custom wrappers for the middleware
to use, or vendors can provide such wrappers. Virtual sensors



gives flexibility to applications, since replacing sensor devices
does not require modifying the implementation of applications
using those sensors. This is assuming the basic interaction is
the same or similar. Furthermore, with technology innovation,
new sensor models may natively support Zeroconf and link-
local IP addressing. Applications can then use these with
minimal changes, bypassing the virtual sensors.

The rest of this paper is organized as follows: Section II
presents the background for the paper, gives an overview of
related work, and state our assumptions. Section III presents
the architecture of our middleware for virtualized sensors,
and Section IV provide some relevant implementation details.
Section V presents and evaluates test results and Section VI
concludes the paper.

II. BACKGROUND AND ASSUMPTIONS

The middleware focuses on self-configuration and will offer
support for developing integrated services, where multiple
services can interact to offer synergies across different tech-
nologies: For instance, a light-control service could interact
with the movement sensors associated with the alarm service,
in addition to luminosity sensors, to decide whether the light
should be switched on.

In the context of the IS-home project, we assume a net-
worked device capable of running our middleware; this could
be a simple embedded computer running the Linux operating
system, like a base station, router etc. Further, we assume
the computer has multiple interconnection interfaces, e.g.
ZigBee, Bluetooth, WiFi, GPRS, Ethernet and USB ports for
connecting alternative network devices. This computer may
run one or more network services, and may act as a gateway
between different network applications and devices.

Zeroconf is an essential component in our middleware
architecture; sensors and other network devices will be regis-
tered with and discoverable through Zeroconf. Hence, a brief
overview of Zeroconf is given below.

A. Zero Configuration Networking

Zero configuration networking is endorsed by the Internet
Engineering Task Force (IETF) [10], through various RFCs.
Zeroconf automates three core services: IP addressing, name
resolution and service discovery [3]. In other words, IP ad-
dresses will need to be assigned automatically to each device
and coupled with a meaningful name, and services have to
be discovered automatically as they enter the network. This is
achieved with the following combination of techniques [3]:

• Link-local addressing is used to assign IPv4 addresses
without relying on a DHCP server present on the network.

• Multicast DNS (mDNS) is used to provide name binding
without a DNS server present.

• DNS Service Discovery (DNSSD) enable users to browse
for services without having to know anything about the
hosts providing them.

The philosophy behind the Zeroconf platform is rooted in
the assumption that end users are interested in services, not

devices. The goal is that users should be able to select services
from a list through a graphical user interface.

Each Zeroconf-enabled device keeps its own list of services
that is kept up to date in a distributed and thought-out manner,
using a combination of techniques such as multicasting and
polling to keep track of available services present on the
network. Combined, these methods prevents the network from
being flooded with control traffic.

Universal Plug and Play (UPnP) [7] is an open ended collec-
tion of protocols that offers some of the same functionality as
Zeroconf. Our reason for going with Zeroconf is that UPnP is
rather heavyweight, communicating with SOAP XML objects
over HTTP and has a flawed service discovery protocol, built
on an abandoned IETF draft [2]. Please see work [6] for a
more detailed comparison between UPnP and Zeroconf.

B. Related work

In previous work, Construct [5] offers a distributed middleware
for pervasive systems and provides mechanisms for capturing
sensor data and converting them into RDF formatted data
for storage. Like SenseWrap, Construct employs Zeroconf
to locate services, but does not allow discovery of sensor
devices as in our middleware. While our focus is on finding
a standardized way for applications to communicate with
sensors, the main focus of Construct appears to be on data
capture and the processing of information. SStreaMware [9] is
another middleware that shares some features with SenseWrap,
but is an all-encompassing solution where sensor interaction
is performed via a provided graphical user interface and
not at application level. Our approach to virtualizing sensors
based on Zeroconf, using protocol adapters to interface with
applications is more lightweight and allows better application
level adaptation.

Hourglass [12] is an infrastructure for connecting sensor
networks to applications. It provides a data collection network,
that aggregate functionality from several disparate sensor
networks, and offer this to Internet-based applications. Com-
pared to our architecture, Hourglass focuses on the underlying
network links and data streams more than the service aspect.
The main effort is on handling unreliable connectivity by
providing links between networks and applications that buffers
data and retransmits these at a later point in cases of link
loss. Neither Hourglass or Global Sensor Network (GSN) [1]
focus on service discovery. Like our own middleware, GSN
aims to solve the problem of hardware heterogeneity in sensor
networks. GSN also use adapters to abstract physical devices
into virtual sensors. With SenseWrap, we take the abstraction
one step further by virtualizing the services as well. With GSN
the emphasis is to provide the ability to query all supported
sensors using SQL, and to provide a homogeneous view of
sensor data.

Open Services Gateway initiative (OSGi) provides a gate-
way for connecting different devices and services together
through a central point, allowing applications to be composed
from different, reusable service modules [4]. The framework is
module based and only specifies the application programming



interface, not the underlying implementation, leaving it up to
the developers to handle the actual communication with the
sensors or actuators.

Using OSGi as a foundation, Gürgen et al take a “database
approach” in their SStreaMWare middleware [9], offering
a schema to represent sensor data in a generic manner.
Interaction with the sensors is performed with declarative
queries in a SQL-like relational language. Like SenseWrap,
SStreaMWare uses adapters to transform generic commands
into the necessary device-specific format, and it also provide
both publish/subscribe and request/reply communication mod-
els. However, the scope of SStreaMware is quite different from
SenseWrap, as SStreaMWare comes as a complete package,
where sensor interaction is performed via a provided graphical
user interface and not at application level. This makes the
system difficult to adapt to third party applications, which
it is clearly not intended for. The scope of our middleware
is to facilitate integration between sensors and applications
with minimal effort. Our approach to virtualizing sensors
based on Zeroconf, using protocol adapters to interface with
applications is more lightweight and allows better application
level adaptation.

Tenet [8] is more of a network architecture than middleware,
dividing sensor networks into tiers, consisting of masters and
motes. The argument for this architecture is that sensor motes
are unreliable and underpowered, hence all but the simplest
computing tasks are better left to more powerful master nodes.
Furthermore, the authors claims that software re-usability is
enhanced by having most of the application logic on master
nodes, as device specific customization of the code is less
likely to be needed. This is not unlike our approach, but
instead of several masters, we use a single gateway to perform
the heavy lifting in terms of computational tasks. The reason
for not using several masters is simply that we don’t see the
need for more in a private smart home, although it would
be relatively easy to include additional gateways if required
(one way of achieving that would be to set up an additional
gateways to listen for different types of services).

III. ARCHITECTURE OVERVIEW

The middleware architecture is organized into multiple layers
of abstraction to provide sensor-based services to clients. That
is, physical sensors appears to behave as if they provide
Zeroconf-like services. Hence, the services provided to ap-
plications become independent of the sensor hardware. The
middleware takes advantage of standardized Zeroconf proto-
cols to provide automatic network configuration of sensors and
service discovery to clients. This makes the sensor services
available to any Zeroconf-enabled application on the same
network.

Our middleware define two core entities: The Sensor Unit
is a virtual representation of the physical device hosting
the actual sensors and actuators. Attributes include identity
(typically a MAC address) and location. Sensor units are
subclassed into sensor types such as Sun Spots, SquidBee,

etc. It is the implementation of a Sensor unit that handles the
communication between the middleware and the actual sensor.

A Service is hosted on the sensor unit, and can either
be a detector or an actuator. Examples of detectors include
sensors for temperature, humidity and luminosity. Examples of
actuators are power and light switches, thermostats and locking
mechanisms.

A. Application Protocol

SenseWrap supports both the request/reply and publish/sub-
scribe communication model. The default is request/reply with
the subscribe model available through additional parameters.

After a service has been looked up through Zeroconf, and
connection has been established, the client applications use
generic commands to communicate with the services.

For instance, the way to do a simple temperature reading
would be issuing the command GET to the service. This
would return a single reading. If the client wants to subscribe
to the temperature service, it can ask the middleware to
feed it with periodic readings by appending the keyword
SUB followed by the desired interval in milliseconds. The
middleware will keep sending readings at the specified
interval until it receives a STOP message, or until the
connection is closed.

The main components of the middleware are:
• DiscoverSensors listens on the network for new sensor

devices, and creates virtual representations of these.
• The Sensor class communicates directly with the sensor

nodes, and keeps track of connectivity. It translates appli-
cation commands received through the protocol adapter
and forwards these to the physical sensor, using the native
communication protocol of the sensor.

• A virtual Service represent a service provided by a sensor.
It registers the communication endpoint (host name and
port number) of the service with Zeroconf and listens
for connection requests from clients. Upon receiving a
connection request, the service creates a protocol adapter
to handle the communication with the client.

• Clients communicate with sensors through Protocol
Adapters. They provide a standardized communications
interface independent of the kind of sensor involved in
the communication, and are generic for all services. Once
the application has established a connection with the
protocol adapter, the adapter communicates directly with
the virtual sensor.

The DiscoverSensors and Sensor implementation are the only
components in our architecture that needs customization. That
is, they are both comprised of a generic part, and a custom part
that needs to be tailored specifically for each supported sensor
type. Keeping in line with the service-oriented philosophy of
Zeroconf, our middleware separates the services from the sen-
sors. This is the most flexible solution as it allows the system to
support more than one service per sensor, e.g. a single sensor
unit may contain both temperature and humidity sensors. The
separation of services from sensors adheres to established



Fig. 1. Detailed middleware architecture

object-oriented principles, as it promotes high cohesion and
low coupling between components. The details of a sensor’s
physical connection and battery status does not logically relate
to the attributes of, for instance, a temperature service. For
the same reasons, the protocol adapters are separated from the
virtual sensors and virtual services, as the connection details
between applications and virtual services are neither related to
the logic of the sensor nor the service.

Having the services separated from the sensors allows the
service component to be generic for all supported sensor types.
In addition, this approach is a good match with the Zeroconf
APIs, as the methods provided by these are geared towards
services instead of devices.

Figure 1 show a conceptual view of the system. Each phys-
ical sensor is represented by a corresponding virtual sensor.
Furthermore, each service offered by the sensor is represented
with a virtual service. A virtual sensor can have many services,
e.g. if the same physical sensor device is a multi-sensor device,
the different sensor readings can be offered to applications
through distinct virtual services. A virtual service can also
have many connections through different protocol adapters.
For example, multiple services for the same sensor can be
registered with Zeroconf at the same time, one accessible over
TCP and another over SOAP.

Client applications use Zeroconf to identify and locate
services provided by sensors, and communicates with them
through the protocol adapter. An application can be composed
of one or more services, but only needs one socket per service.

IV. MIDDLEWARE IMPLEMENTATION

SenseWrap is written in Java, with the core components
represented in the classes DiscoverSensors, Sensor, Service,

ClientHandler and BonjourRegistration.
DiscoverSensors maintains a list of sensors that the mid-

dleware is capable of communicating with. As the sequence
diagram in Figure 2 illustrates, the DiscoverSensors listens for
service advertisements broadcast by sensors in the network.

After the service has been registered with Zeroconf, it listens
for socket requests on the corresponding TCP port, and spawns
a ClientHandler thread for each connection request.

Clients can multicast a DNSSD request for available ser-
vices that resides on the same network and the Zeroconf
framework will reply with the name of the host on which
the virtual service is running, and the port number which
to connect to. An application can then send a connection
request and get a TCP socket in return. Commands received
by the client handler is forwarded to the virtual sensor, which
translates these into the appropriate sensor-specific command,
which, in turn, is transmitted to the physical sensor, using the
device’s native communication protocol.

Each virtual sensor keeps track of the state of its associated
physical sensor. A sensor is considered to have failed if an
IOException is caught, e.g. due to a communications failure. If
a sensor fails, the virtual sensor is responsible for unregistering
the service from Zeroconf, removing itself from the list of
sensors maintained by the DiscoverSensors, and terminate.
Similarly, if an IOException is caught when clients are trying
to access the service, the virtual service will be unregistered
from Zeroconf itself.

A. Adding New Sensor Types

Adding support for new types of sensors involves developing
device-specific versions of the DiscoverSensors and Sensor.
In order to simplify development, the middleware comes with
abstract versions as well as interfaces for these components,
allowing implementations to reuse common functionality, ef-
fectively giving developers a blueprint of the required classes.

Essentially, the custom part of the service factory needs code
for detecting connection requests from the physical sensors
and for creating the appropriate virtual sensor. Obviously, the
virtual sensor must also be able to communicate natively with
the physical sensors.

B. Adding New Communication Protocols

The protocol adapter is a generic communication interface
through which clients connect. Different applications might
require different communication protocols, and the middleware
supports adding new protocol adapters. Currently, a TCP-based
protocol adapter is supported, while support for UDP, HTTP,
SOAP and RMI can easily be added, as shown in Figure 3.
Once an adapter has been developed, it can be reused without
modification for all sensor types supported by the middleware.
In addition to making the middleware flexible, this ensures
future compatibility with new protocols as they emerge.

V. PERFORMANCE

Because the middleware is intended to run on a dedicated
machine within the home, we do not see scalability as a big
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concern. Typically, the number of sensors to be handled in
such an environment are limited to less than 100, and as such,
the demands for scalability is not critical. However, we have
performed tests on this matter to reveal potential flaws of the
architecture. Response time (the time it takes for clients to
receive an answer to a request) under realistic client load was
measured with clients

Regardless of the scalability of the middleware itself, the
number of services running on the middleware is limited by the
underlying Zeroconf framework, which becomes ineffective
when the number of nodes approaches 1000 [3].

Tests were performed by running the middleware on a
dedicated machine, while polling it for sensor readouts from
other machines on the same local network. At the most, 19
computers, hosting eight clients each was continuously polling
the middleware. The “server” had 2GB of RAM, an Intel Core
Duo 2 E8300 processor and was running Fedora Core 11 with
Sun’s Java version 1.6 14. Measurements was made for the
request/reply model.

Execution time elapsed between query and response from
a temperature sensor on a Sun SPOT through the SenseWrap
middleware was measured at the client. A caching mechanism
implemented in the middleware was set to reread values from
the sensor only if the existing value was older than four
seconds.

A. Results

Performance were measured to an average of 6.8 milliseconds
with a test run of ten simultaneous clients, each issuing 1000
requests (figure 4), immediately sending a new query as soon
as a reply is received. This amounts to an average capacity of
handling about 147 queries per second under load. Predictably,
the average response times rise as more clients are jamming
the middleware with queries, and drops to a capacity of around
5.5 queries per second with 152 simultaneous clients.

The scatter plot (figure 5) shows an excerpt of 14000
operations from a run of 95 clients simultaneously querying
the middleware a total number of 190000 times while caching
of sensor readings is set to four seconds. The plot starts ten
seconds into the experiment, to be sure that all clients has
started. The y-axis shows the round-trip time for each query,
measured in seconds. The x-axis shows time elapsed, also
measured in seconds.

An observation that can be made from figure 5 is that it
takes only 6.38 seconds to finish 14000 operations, giving an
average of 4.6 milliseconds per operation as opposed to the
lowest average of 6.8 milliseconds measured for each single
operation. This indicates that having the clients waiting for
a response before issuing a new command does not load the
middleware sufficiently to make it the performance bottleneck.

B. Evaluation

In a smart home scenario, the middleware is likely to run on
less powerful hardware than what was used in our tests, but
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our rationale is that even if one divide the performance by ten,
it is still more than sufficient to handle the requirements of a
typical smart home. We also measured the execution time for
each renewal of the cache at the server. A total of 56 sensor
readings had an average value of 951.57 ms, which would give
the middleware a capacity of just over one reading per second
per sensor, thus illustrates the performance gain of caching.

VI. CONCLUSIONS AND FUTURE WORK

By virtualizing the physical sensors in smart homes, we can
provide client applications with a uniform communication
interface. We have demonstrated how the important task of
automating the discovery of services and devices as well
as the networking between applications can be solved using

Zeroconf.
The need to implement routing in the middleware became

apparent under testing, as values was not always returned to
the correct client. This could be solved by tagging incoming
requests with thread ID and looking up the correct thread
before returning a value.

While the middleware presented here makes the commu-
nication protocol between sensors and application generic,
the application protocol is not. By implementing an ontology
built with OWL, the application protocol could be made
generic and platform independent as well. We also intend
to expand our application to include support for other types
of sensors beyond the Sun SPOTs supported in the current
implementation.

Enabling remote access to the services in the home over
wide area networks such as the Internet or GPRS can be
useful for tasks like adjusting the heat before coming home, or
turning off the alarm to let someone in. Remote accessibility
brings up some security and privacy concerns that needs to be
addressed at some point.

Having multiple higher-level applications competing for re-
sources (actuators) introduces the issue of resource ownership
and dependency management. For instance, two applications
accessing the same actuators could potentially result in con-
flicts where one of them is constantly turning a switch off,
while the other turns it back on. A priority concept, like the one
outlined by Retkowitz and Kulle [11] could be worth looking
into in future versions.
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