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Abstract. This paper presents an optimization framework for finding efficient
deployment mappings of replicated service components (to nodes), while ac-
counting for multiple services simultaneously and adhering to non-functional
requirements. Currently, we consider load-balancing and dependability require-
ments. Our approach is based on a variant of Ant Colony Optimization and is
completely decentralized, where ants communicate indirectly through pheromone
tables in nodes. In this paper, we target scalability; however, existing encoding
schemes for the pheromone tables did not scale. Hence, we propose and evalu-
ate three different pheromone encodings. Using the most scalable encoding, we
evaluate our approach in a significantly larger system than our previous work. We
also evaluate the approach in terms of robustness to network partition failures.

1 Introduction

Data centers are increasingly used to host services over a virtualized infrastructure that
permits on-demand resource scaling. Such systems are often comprised of multiple ge-
ographically dispersed data center sites to accommodate local demand with appropriate
resources, and to ensure availability in case of outages. Major service providers, e.g.
Amazon [1], Google, Yahoo! and others all use such infrastructures to power their world
wide web offerings, popularly called cloud computing infrastructures. These systems
are typically built using large numbers of cheap and less reliable blade servers, racks,
hard disks, routers, etc., thus leading to higher failure rate [2]. To cope with increased
failure rates, replication and repair mechanisms are absolutely crucial.

Another related and important concern in such data center infrastructures is the
problem of finding optimal deployment mappings for a multitude of services, while en-
suring proper balance between load characteristics and service availability in every in-
frastructure site. During execution a plethora of parameters can impact the deployment
mapping, e.g due to the influence of concurrent services. Another set of parameters
in the mix is the dependability requirements of services. Upholding such requirements
not only demands replication protocols to ensure consistency, but also adds additional
complexity to the optimization problem. Ideally, the deployment mappings should min-
imize resource consumption, yet provide enough resources to satisfy the dependability



requirements of services. However, Fernandez-Baca [3] showed that the general module
allocation problem is NP-complete except for certain communication configurations,
thus heuristics are required to obtain solutions efficiently.

This paper extends our previous work to find optimal deployment mappings [4], [5]
based on a heuristic optimization method called the Cross-Entropy Ant System (CEAS).
The strengths of the CEAS method is its capability to account for multiple parameters
during the search for optimal deployment mappings [6]. The approach also enables us
to perform optimizations in a decentralized manner, where replicated services can be
deployed from anywhere within the system, avoiding the need for a centralized control
for maintaining information about services and their deployment.

The main goal of this paper is twofold; to provide additional simulation results (i)
involving scaling up the problem size, both in terms of number of nodes and replicas de-
ployed, and (ii) evaluating its ability to tolerate network partition failures (split/merge).
Scaling up the problem size turned out to be more challenging than first anticipated, and
thus certain enhancements were necessary in the algorithm and the data representation.
To tackle the challenges we met, we have introduced a new cost function, run-time bind-
ing of replicas, a new method for selecting next-hops and new pheromone encodings.
In addition, we have used more simple service models in the current study. There are
generally two branches of works where finding optimal replica deployment mappings
are necessary and useful. On the one hand, virtual machine technology is increasingly
being used in data centers for providing high availability and thus needs to consider the
placement of replicas in the data centers to ensure efficient utilization of the system re-
sources. The advantage of this approach is that (server) applications running on virtual
machines can be repaired simply by regenerating them in another physical machine.
This is the approach taken by the Amazon EC2 system [1] and in VMware, among oth-
ers. The general drawback with virtualization for fault tolerance and high availability is
that the storage system used to maintain application state must be independently repli-
cated as it would otherwise constitute a single point of failure. On the other hand, server
applications written specifically for fault tolerance typically replicate their application
state to all replica processes, avoiding any single points of failure. These systems are
typically built using a middleware based on a group communication system with sup-
port for repair mechanisms, e.g. DARM [7].

The importance and utility of deployment decision making and optimization has
been identified previously, e.g. in [8]. Recently, Joshi et al [9] proposed a centralized
approach in which an optimizer and model solver component is used to find optimal
mappings specifically in the field of virtual machine technology. We however, intend
to pursue a fully distributed solution that is based on optimization techniques and can
support context-awareness and adaptation.

The paper is organized as follows. The next section presents our view on compo-
nent replicas, their deployment, corresponding costs and requirements. In Sec. 3 the
fundamentals of the CEAS are described. Sec. 4 proposes our algorithm for solving the
deployment mapping problem and subsequently we demonstrate its operation in Sec. 5.
Finally, we conclude and touch upon future work.



2 System Model, Assumptions and Notation

We consider a large-scale distributed system consisting of a collection of nodes,N , con-
nected through a network. Nodes are organized into a set of domains, D, as illustrated
by d1 and d2 in Fig. 1. All nodes within a domain are located at the same geographic
site, whereas different domains are in separate sites. The objective of the distributed
system is to provide an environment for hosting a set of services, S = {S1, S2, . . .},
to be provided to external clients. Let Ck

i be the ith component of service k, and let
Sk = {Ck

1 , . . . , Ck
q } denote the set of components for service k, where q = |Sk|. Each

component may be replicated for fault tolerance and/or load-balancing purposes. Thus,
let Rk

ij denote the jth replica of Ck
i . Hence, Ck

i = {Rk
i1, . . . , R

k
ipi
}, where pi ≥ 1 is

the redundancy level of Ck
i . Moreover, Sk = {Rk

11, . . . , R
k
1p1

, . . . , Rk
i1, . . . , R

k
ipi
} is

the expansion of the component sets into replicas for service k.
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Fig. 1. Overview of the deployment environment and service specification.
The objective of the algorithms herein is to discover suitable deployment mappings

between component replicas (replicas for brevity) and nodes in the network, such that
the dependability requirements of all services are preserved with minimal resource con-
sumption. To accomplish this, the CEAS optimization method is used, which works by
evaluating a cost function, F (), for different deployment mappings. The CEAS method
is implemented in the form of ants moving around in the network to identify potential
locations where replicas might be placed. An ant is simply an agent with associated
state; as such it is simply a message on which the ant algorithm is executed at each vis-
ited node. We say that different ant species are responsible for different services, e.g.
the green and blue ants in Fig. 1 represent the green and blue services, respectively.

As Fig. 1 shows, each node contains an execution runtime whose tasks are to install,
run and migrate replicas. A node also has a pheromone table which is manipulated
by ants visiting the node to reflect their knowledge of existing mappings. Moreover,
the pheromone table is used by ants for selecting suitable deployment mappings; it is
not used for ant routing as in the Ant Colony Optimization (ACO) approach [10]. See
Sec. 4.2 for details.



To deploy a service, at least one node must be running a nest for that service. The
tasks of a nest are twofold: (i) to emit ants for its associated service, and (ii) trigger
installation of replicas at nodes, once a predefined convergence criteria is satisfied, e.g.
after a certain number of iterations of the algorithm. An iteration is defined as one
round-trip trajectory of the ant, during which it builds a hop list, Hr, of visited nodes.
A nest may be replicated for fault tolerance, and emit ants independently for the same
service. During execution of the CEAS method, synchronization between nests is not
necessary, but only a primary nest will execute deployment decisions. Fig. 1 shows a
two-way replicated nest for the green service; nests for the blue service are not shown.

Initially, the composition of services to be deployed is specified as UML collab-
orations embellished with non-functional requirements that are used as input to the
cost function of our algorithm to evaluate deployment mappings (cf. [11]). Our aim is
not to find the globally optimal solution. The rationale for this is simple; by the time
the optimal deployment mapping could be applied, it is likely to be suboptimal due to
dynamics of the system. Rather, we aim to find a feasible mapping, meaning that it sat-
isfies the requirements for the deployment of the service, e.g. in terms of redundancy
and load-balancing. These requirements are specified as a set of rules, denoted Φ. Thus,
our objective function becomes min F () subject to Φ. Moreover, our algorithm can
continue to optimize even though an appropriate mapping has been found and deployed
into the network. Once a (significantly) better mapping is found, reconfiguration can
take place.

Next we define the dependability rules, Φ, that constrain the minimization problem,
but first we define two mapping functions. These rules and functions apply to service k.

DEFINITION 1 Let fj,d : Rk
ij → d be the mapping of replica Rk

ij to domain d ∈ D.

DEFINITION 2 Let gj : Rk
ij → n be the mapping of replica Rk

ij to node n ∈ N .

Rule φ1 requires replicas to be dispersed over as many domains as possible, aimed to
improve service availability despite potential network partitions1. Specifically, replicas
of component Ck

i shall be placed in different domains, until all domains are used. If
there are more replicas than domains, i.e. |Ck

i | > |D|, at least one replica shall be
placed in each domain. The second rule, φ2, prohibits two replicas of Ck

i to be placed
on the same node, n.

RULE 1 φ1 : ∀d ∈ D,∀Rk
ij ∈ Ck

i : fj,d 6= fu,d ⇔ (j 6= u) ∧ |Ck
i | < |D|

RULE 2 φ2 : ∀Rk
ij ∈ Ck

i : gj 6= gu ⇔ (j 6= u)

Combining these rules gives us the desired set of dependability rules, Φ = φ1 ∧ φ2. In
order to adhere to φ1, the ant gathers data about domains utilized for mapping repli-
cas; hence, let Dr denote the set of domains used in iteration r. The ant also collects
information about replicas mapped to various nodes. Thus, we introduce mn,r ⊆ Sk

as the set of service k replicas mapped to node n in iteration r. Moreover, let Mr =
{mn,r}∀n∈Hr be the deployment mapping set at iteration r for all visited nodes. Finally,
ants also collect load-level samples, ln,r, from every node n ∈ Hr visited in iteration
r; these samples are added to the load list, Lr, indexed by the node identifier, n.

1 We assume network partitions are more likely to occur between domain boundaries.



The load-levels observed by an ant are a result of many concurrently executing ant
species reserving resources for their respective services. For simplicity, all replicas have
the same node-local execution cost, w, whereas communication costs are ignored. An
ant during its visit to node n reserves processing resources for the replicas, if any, that
it has chosen to map to n. Mappings made at n during iteration r are stored in mn,r,
thus, resources of size |mn,r| ·w are reserved during a visit, assuming identical cost for
all replicas. With this notational framework in place, we are now ready to introduce the
cost function used by the deployment logic.

First, we define a list, NCx, that can carry an element for each node visited by the
ant and which elements account for specific execution costs imposed on those nodes.
Elements of the list are calculated two different ways (x = 1 or 2), using the observa-
tions on the services executed in parallel (Lr), and the mappings of replicas made by
the ant itself (Mr).

NCx[n] = (
ϑx∑
i=0

1
Θx + 1− i

)2 (1)

Parametrization of the list is done by changing the upper bound of the summation, ϑx

and the constant in the denominator, Θx. Accordingly, ϑx and Θx are defined as follows.

ϑx =
{
|mn,r| · w, x = 1
|mn,r| · w + Lr(n), x = 2 (2)

The constant, Θx represents the overall execution load of one service or all services. In
other words, Θ1 is the total processing resource demand of the service deployed by the
ant, whereas Θ2 represents the overall joint load of the service being deployed and the
load of replicas executed in parallel.

Θx =
{∑

∀n∈Hr
|mn,r| · w, x = 1∑

∀n∈Hr
(|mn,r| · w + Lr(n)), x = 2 (3)

Importantly, the equations only have to be applied on the subset of nodes an ant has
actually visited (Hr), which is beneficial for scalability as there is no need for exploring
the total amount of available nodes. Finally, to build a cost function that satisfies our
requirements with regard to Φ, while maintaining load-balancing, we formulate F ()
using a combination of terms, as shown in (4).

F (Dr,Mr, Lr) =
1
|Dr|

·
∑

∀n∈Hr

NC1(n) ·
∑

∀n∈Hr

NC2(n) (4)

Thus, we use (1) for load-balancing, i.e. to distribute replicas to the largest extent
possible. The three terms correspond to our goals in the optimization process. The first
reciprocal term caters for φ1. Applying (1) solely on the replicas of the service the ant
species is responsible for (x = 1) penalizes violation of φ2, i.e. favors a mapping where
replicas are not collocated, but distributed evenly. Lastly, the standard application of
(1), x = 2, balances the load taking into account the presence of other services during
the deployment mapping. A more detailed introduction to the application of the load-
balancing term can be found in [5] and [11]. The next section describes how the cost
function plays a role in driving the optimization using the CEAS.



3 The Cross-Entropy Ant System

We build our algorithm around the CEAS to obtain optimal deployment mappings with
high confidence. CEAS can be considered as a subclass of ACO algorithms [10], which
have been proven to be able to find the optimum at least once with probability close to
one; once the optimum has been found, convergence is assured within a finite number of
iterations. The key idea is to have many ants, search iteratively for a solution according
to a cost function defined according to problem constraints. Each iteration is divided
into two phases. Ants conduct forward search until all the replicas are mapped suc-
cessfully. After that, the solution is evaluated using the cost function, the ants continue
with backtracking leaving pheromone markings at nodes. This resembles real-world
ants foraging for food. The pheromone values are proportional to the solution quality
determined by the cost function. These pheromone markings are distributed to nodes in
the network, and are used during forward search to select replica sets for deployment
mapping, gradually approaching the lowest cost solution. In forward search, a certain
proportion of ants do a random exploration of the state space, ignoring the pheromone
trails. Exploration reduces the occurrence of premature convergence leading to sub-
optimal solutions. The CEAS uses the Cross-Entropy (CE) method introduced by Ru-
binstein [12] to evaluate solutions and update the pheromones. The CE method is ap-
plied to gradually change a probability matrix pr according to the cost of the mappings
with the objective of minimizing the cross entropy between two consecutive probabil-
ity matrices pr and pr−1. The method itself has been successfully applied in different
fields of network and path management, for examples and an intuitive introduction we
refer to [6].

In our algorithm, the CEAS is applied to obtain an appropriate deployment map-
ping, M : Ck

i → N , of the replicas (Ck
i ) of service Sk onto a set of nodes. A deploy-

ment mapping is evaluated by applying the cost function as F (Mr). In the following,
let τmn,r be the pheromone value corresponding to, mn,r, the set of replicas mapped to
node n in iteration r. Various pheromone encoding schemes are discussed in Sec. 4.2.

To select a set of replicas to map to a given node, ants use the so-called random pro-
portional rule matrix, pr = {pmn,r} presented below. Similarly, explorer ants select a
set of replicas with uniform probability 1/|Ck

i |, where |Ck
i | is the number of replicas to

be deployed.
pmn,r =

τmn,r∑
l∈Mn,r

τln,r
(5)

A parameter γr denoted the temperature, controls the update of the pheromone values
and is chosen to minimize the performance function, which has the following form

H(F (Mr), γr) = e−F (Mr)/γr (6)
and is applied to all r samples. The expected overall performance satisfies the equation

h(pmn,r, γr) = Epr−1(H(F (Mr), γr)) ≥ ρ (7)

Epr−1(X) is the expected value of X s.t. the rules in pr−1, and ρ is a parameter (de-
noted search focus) close to 0 (in our examples 0.01). Finally, a new updated set of
rules, pr, is determined by minimizing the cross entropy between pr−1 and pr with
respect to γr and H(F (Mr), γt). Minimized cross entropy is achieved by applying the
random proportional rule in (5) for ∀mn with



τmn,r =
r∑

k=1

I(l ∈ Mn,r)β
∑r

j=k+1 I(j∈Mk)H(F (Mk), γr) (8)

where I(x) = 1 if x is true, 0 otherwise. See [12] for further details and proof.
As we target a distributed algorithm that does not rely on centralized tables or con-

trol, neither on batches of synchronized iterations, the cost values obtained by applying
Eq. (4) are calculated immediately after each sample, i.e. in each iteration r. Then, an
auto-regressive performance function, hr(γr) = βhr−1(γr) + (1 − β)H(F (Mr), γr)
is applied, where β ∈< 0, 1 > is a memory factor that gives weights to the output
of the performance function. The performance function smoothes variations in the cost
function and helps avoiding undesirable rapid changes in the deployment mappings.

The temperature required for the CEAS, e.g. in Eq. 6, is determined by minimizing
it subject to h(γ) ≥ ρ (cf. [13])

γr = {γ | 1− β

1− βr

r∑
i=1

βr−iH(F (Mi), γ) = ρ} (9)

However, (9) is a complicated function that is storage and processing intensive since
all observations up to the current sample, i.e. the entire mapping cost history F (Mr) =
{F (M1), . . . , F (Mr)}must be stored, and weights for all observations have to be recal-
culated. This would be an impractical burden to on-line execution of the logic. Instead,
given that β is close to 1, it is assumed that changes in γr are relatively small in subse-
quent iterations, which enables a first order Taylor expansion of (9), and a second order
Taylor expansion of (8), see [13], thus saving memory and processing power.

4 Ant Species Mapping Replicas

In this section we present our deployment algorithm, how we apply the CEAS method,
and three different ways of encoding replica mappings into pheromone values.

4.1 Swarm-based Component Deployment

Our algorithm has successfully been applied for obtaining component mappings that
satisfy non-functional requirements. In addition, the algorithm’s capability to adapt to
changing network conditions, for example caused by node-failures, has been investi-
gated, cf. [5]. However, from a dependability point of view it is interesting to equip
the logic with the capability to adapt to dynamicity of domains, i.e. splitting/merging
of domains. To also cater for domain splits and merges we propose to initiate an ant-
nest in multiple nodes belonging to separate domains. These ant-nests will emit ants
corresponding to the same set of services, this however, will not result in flooding the
network with ants as the rate of emission in a stable network can be divided equally be-
tween the nests. Besides, ants emitted from different nests but optimizing mappings for
the same service will update the same pheromone tables in the nodes they visit during
their search for a solution. The concept of multiple nests has been introduced in [11].

Algorithm 1 shows the code of a single ant-nest that sends out an ant in every itera-
tion. The idea is that when a coherent network suffers a split, there shall be at least one
nest in each region after the split event that will maintain a pheromone database in each
region. (By a region we denote a set of nodes partitioned into one or more domains.)



To ease convergence of the mappings made by the ants the nests are allowed to bind
one replica at a time if some condition applies. Here we check rules φ1 and φ2 against
the mapping obtained in the current iteration, Mr. Replica bindings are indicated in the
service specification that is derived from the model of the service.

Algorithm 1 Code for Nestk corresponding to service Sl at any node n ∈ N
1: Initialization:
2: r ← 0 {Number of iterations}
3: γr ← 0 {Temperature}

4: while r < R {Stopping criteria}
5: Mr ← antAlgo(r, k) {Emit new ant, obtain Mr}
6: update(availableDomains) {Check the number of available domains}
7: if splitDetected() ∨mergeDetected()
8: release(Sl) {Delete existing bindings for all replicas ci ∈ Cl

i}
9: if φ1(Mr, availableDomains) ∧ φ2(Mr)

10: bind1(Mr) {Bind one of the still unbound replicas in Cl
i}

11: r ← r + 1 {Increment iteration counter}

After a replica has been bound to a specific host ants in subsequent iterations will not
try to find a new mapping for it, instead these bound mappings are maintained and the
search is conducted for the remaining replicas only. Importantly however, bound repli-
cas are also taken into account when the cost of the total mapping is evaluated by the
ant. When a split or a merge event occurs these soft-bindings are flushed by the ant nest
and, for example in case of a merge, two nests being in the same region can start to
cooperate and share bindings and pheromone tables again.

Here it is important to clearly distinguish between the notions of replica mapping,
binding and deployment. We use the term mapping during the optimization process,
where our algorithm is constantly optimizing an ordering of replicas of a service to un-
derlying execution hosts, but only internally to the algorithm itself. When a replica is
bound to a host it means that from that point the algorithm does not change the map-
ping between that replica and a host. By deployment however, we refer to the actual
physical placement of a software component replica to a node, which is triggered after
the mappings obtained by our algorithm have converged to a satisfactory solution. The
latter property ensures that there is no undesirable fluctuation in the migration of repli-
cas using our method. In Algorithm 2 we present the steps executed by the ants emitted
from a nest.

Each species of ants retrieves and updates the temperature used in the CEAS method
from the nest where they are emitted from. First, an ant visits the nodes, if any, that al-
ready have a bound replica mapped to maintain these mappings, which will be taken
into account when the cost of the total mapping is evaluated. The pheromones corre-
sponding to these bound mappings will also be updated during backtracking. Besides,
ants allocate processing power corresponding to the execution costs of the bound repli-
cas, derived from the service specification. After maintenance the ants jump over to
nodes selected in a guided random manner and attempt to map some replicas to the
node they reside in. This selection of the next node to visit, in contrast to e.g. ant-based
routing algorithms, is independent from the pheromone markings laid by the ants. The
selection of replica mappings in each node, however, is influenced by the pheromones.



Here, we distinguish between explorer and normal ants, where the former selects a
set of replicas to map randomly and the latter uses the pheromone table at the current
node. In case of a normal ant the selection process varies depending on the form of the
pheromone tables (cf. Sec. 4.2). After some variables carried along by the ant (Mr, Dr,
Ck

i ) are updated a sample of the sum of execution load on the current node is taken by
the ant. This replica load reservation mechanism is intended to function as an indirect
way of communication between species executed in parallel. At the end of the forward
search phase, when the ant has managed to map all the replicas of the service, the map-
ping is evaluated using the cost function and the temperature is recalculated using the
obtained cost value. The last part in the lifetime of a single ant is the backtracking
phase, during which the ant revisits the nodes that have been used for the mapping of
the service and updates the pheromone database.

Algorithm 2 Ant code for mapping of replicas Cl
i ∈ Sl ⊂ S from Nestk

1: Initialization:
2: Hr ← ∅ {Hop-list; insertion-ordered set}
3: Mr ← ∅ {Deployment mapping set}
4: Dr ← ∅ {Set of utilized domains}
5: Lr ← ∅ {Set of load samples}

6: function antAlgo(r, k)
7: γr ← Nestk.getTemperature() {Read the current temperature}
8: foreach ci ∈ Cl

i {Maintain bound replica mappings}
9: if ci.bound()

10: n← ci.boundTo() {Jump to the node where this comp. is bound}
11: n.reallocProcLoad(Sk, w) {Allocate processing power needed by comp.}
12: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
13: Lr ← Lr ∪ {ln,r} {Add to the list of samples}

14: while Cl
i 6= ∅ {More replicas to map}

15: n← selectNextNode() {Select next node to visit}
16: if explorerAnt
17: mn,r ← random(⊆ Cl

i) {Explorer ant; randomly select a set of replicas}
18: else
19: mn,r ← rndProp(⊆ Cl

i) {Normal ant; select replicas according to Eq. (5)}
20: if {mn,r} 6= ∅, n ∈ dk {At least one replica mapped to this domain}
21: Dr ← Dr ∪ dk {Update the set of domains utilized}
22: Mr ←Mr ∪ {mn,r} {Update the ant’s deployment mapping set}
23: Cl

i ← Cl
i − {mn,r} {Update the set of replicas to be deployed}

24: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
25: Lr ← Lr ∪ {ln,r} {Add to the list of samples}

26: cost← F (Mr, Dr, Lr) {Calculate the cost of this given mapping, using Eq. (4)}
27: γr ← updateTemp(cost) {Given cost, recalculate temperature according to Eq. (9)}
28: foreach n ∈ Hr.reverse() {Backtrack along the hop-list}
29: n.updatePheromone(mn,r, γr) {Update pheromone table in n, Eq. (8)}
30: Nestk.setTemperature(γr) {Update the temperature at Nestk}

The gain in using a guided but random hop-selection instead of a pure random walk
lies in that with the proper guidance the frequency of finding an efficient mapping is
greater. The idea is that at first the next node is selected from a domain that has not yet



been utilized until all visible domains are covered, leading to better satisfaction of φ1.
Then the next hop selection continues with drawing destinations from the set of nodes
not yet used in the mapping by checking with the variable Mr, before reverting to to-
tally random drawing. The guided hopping strategy for the selection of a next node to
visit is summarized in Algorithm 3.

Algorithm 3 Procedure to select the next hop for an ant
1: function selectNextNode() {Guided random hop}
2: if Hr = N {All nodes visited}
3: n← random(N) {Select candidate node at random}
4: else
5: if Dr = D {All available domains utilized}
6: n← random(N \Mr) {Select a node that has not been used yet}
7: else
8: di ← random(D \Dr) {Select a domain not yet used}
9: n← random(di) {Select a node within this domain}

10: Hr ← Hr ∪ {n} {Add node to the hop-list}
11: return n

4.2 Encoding Sets of Replicas into Pheromone Entries

Generally, pheromone entries can be viewed as a distributed database located in the
nodes available in the network considered for deployment. This distributed database
has to be built so that it is able to describe arbitrary combinations of replicas of a given
service component. At the same time the size of this database is crucial for obtaining
better scalability for our approach. The reasons are twofold. The first reason is related to
memory consumption as each participating node has to cater for a pheromone database
for each service being deployed. Thus, memory consumption grows with the database
size (depending on the encoding) and with the number of parallel services, where we
can influence the former. Second, as we can see in the algorithm description in Sec. 4.1,
an individual ant agent has to browse through the pheromone entries during its visit at
a node, so clearly, a more compact encoding helps speeding up execution of the tasks
an ant has to perform. The different encodings we proposed are shown in Table 1.

Table 1. Three pheromone encodings for a service with |Ck
i | replicas

Encoding DB size in a node Encoding example w/ |Ck
i | = 4

bitstring 2|Ck
i | [0000]b . . . [1111]b

per comp. 2 · |Ck
i | [0/1]; [0/1]; [0/1]; [0/1]

# replicas |Ck
i |+ 1 [0] . . . [4]

The bitstring encoding is the largest as it has a single value for all possible combi-
nations of replica mappings in every node, which results in prohibitively large mem-
ory need. For example, in case of 20 replicas per service this encoding leads to 220

pheromone values, which by using 4 byte long floating point numbers would require
4 MB of memory for each of such services at every node. To tackle this problem we
might reduce the pheromone table size by applying more simple bookkeeping taking
into account solely the number of replicas mapped to a given node (# replicas). This
results in the most compact pheromone database, however it comes with a drawback



that it can only be applied if there is no need to distinguish between replicas in the ser-
vice specification (for example considering replication and dependability aspects only).
As a trade-off we developed a third encoding (per comp.) that results in no informa-
tion loss and still linear growth of the pheromone database. per comp. uses one distinct
pheromone entry for every replica instance indicating whether or not to deploy a replica
at a given node. The drawback is that an ant arriving at a node has to decide on the de-
ployment mapping of each replica, one-by-one reading the multiple pheromone entries.
Nevertheless, a reduction in the database structure size is necessary for scaling the algo-
rithm up to larger amounts of nodes and replicas. How the various encodings perform
will be demonstrated with an example in Sec. 5.

5 Simulation Results

To evaluate the deployment mapping logic proposed above we start with an example
where 10 services (S1 . . . S10) are being deployed simultaneously, that means 10 in-
dependent species are released. Besides, we apply 20 ant nests to look at a simple
split/merge scenario where 1 nest for every service remains in each region after the
split. Each service has a redundancy level as shown in Table 2. The simulation of the
logic’s behavior is conducted in a custom built discrete event simulator.

Table 2. Service instances in the example

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

# replicas 2 3 4 5 6 7 8 9 10 11

Mapping of the services is conducted in a network of 11 interconnected hosts, where
we assume full mesh connectivity and do not consider the underlying network layer.
The 11 nodes are partitioned into 5 domains as depicted in Fig. 2.
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Fig. 2. Test network of hosts clustered into 5 domains

In this setting we conducted simulations with all three pheromone encodings. To
test our concept of tackling domain splitting we have used a basic setting where domain
d1 containing 4 nodes has been split from the rest of the domains and later the two
regions merged again. We then compared the resulting deployment mappings with the
mappings obtained by executing our logic with no splitting. To demonstrate how the
cost evaluation works in the optimization process the evolution of the cost output is dis-
played in case of service S10 in Fig. 3 with the three pheromone encodings introduced
in Sec. 4.2. Fig. 3(a) shows how the optimal mappings are found and kept maintained
iteration by iteration. The experiment is repeated with the introduction of the splitting
of d1 after 4000 iterations, the evolution of mapping costs is shown in Fig. 3(b).



An appropriate solution is found almost identically with the three different encod-
ings. However, the bitstring encoding converges to a solution with slightly higher over-
all cost, whereas the lowest cost is obtained first by per comp. and somewhat later by
# replicas too. In Fig. 3 the first 2000 iterations are not shown as the simulations
start with 2000 explorer iterations for the sake of comparability. Initially, a random cost
figure appears corresponding to exploration that is omitted here. The amount of initial
exploration was constrained by the bitstring encoding. The more compact encodings
would require significantly less iterations, e.g. one tenth of that. In Fig. 3(b), where a
domain splits at iteration 4000 we can observe how the swarm adapts the mappings to
a more expensive configuration after the event has happened. Similarly, as the domains
merge the deployment mappings are adapted to utilize a more optimal configuration.
The bitstring encoding in this test case is unable to find exactly the same mapping and
converges to a somewhat more costly solution. per comp. is the fastest to obtain the
lowest cost mapping followed by the third encoding about 1000 iterations later.

(a) Without split (b) With split
Fig. 3. Mapping costs of S10

Considering the rules that we formulated regarding the dependability of the deploy-
ment mapping (cf. Sec. 2) Table 3 shows the three different pheromone encodings and
the percentage of test cases, which succeeded in satisfying the two rules. The results are
obtained by executing the algorithm 100 times with different input seeds.

Table 3. Success rate of the three encodings
wo/ split φ1 φ2 w/ split φ1 φ2

bitstring 100% 88% bitstring 100% 87%
per comp. 100% 100% per comp. 100% 100%
# replicas 100% 100% # replicas 100% 99%

Our first objective was load-balancing among the nodes participating in the execution of
the services, while basic dependability rules are satisfied too. To investigate that aspect
we can look at the average number of replicas placed onto the nodes after convergence.
Here, we chose the best encoding (cf. Table 3), i.e. per comp.. In Fig. 4(a) the average
load placed on the 11 nodes (n1 . . . n11) partitioned into the 5 domains is depicted. A
total of 65 replicas constituted the ten service instances giving an average of 5.91 repli-
cas per node; shown as a dotted horizontal line. We observed that the smaller domains,
e.g. d3, d4, were overloaded compared to the rest due to φ1, but generally replicas were
placed quite evenly, showing that cooperation between the species worked.

As a next step towards developing our logic further for larger scales we repeated our



experiment with a setting consisting of 50 nodes in 5 domains (containing 20-10-5-5-
10 nodes respectively). Naturally, an increased amount of available resources for place-
ment would make the deployment mapping problem actually easier, so we have used
larger service specifications too to scale up the problem. Accordingly, the 10 services
assigned to ant species were sized as |Ck

i | = i · 5 replicas for Si, where i = 1 . . . 10,
thus giving a total amount of 275 replicas.

(a) Over 11 nodes (b) Over 5 domains (50 nodes)
Fig. 4. Load-balancing (average number of replicas and deviation per node)

We repeated the experiment 50 times using the selected encoding, per comp., and
allowing a maximum amount of 10000 iterations in each run. The resulting average
execution load in the 5 available domains is depicted in Fig. 4(b), where the average
number of replicas per node, using identical domains, would be 5.5 that is shown with
a dotted horizontal line. Regarding load-balancing similar effects are observed as in the
previous example. We can look at the dependability aspects of the solutions obtained in
the 50 runs of the simulation too. As the problem size was significantly larger and the
number of allowed iterations was constrained too, collocation is observed in some cases
(in Table 4), while rule φ1 is never violated. Violations of φ2 are more frequent in case
the number of replicas was close to the number of available nodes (e.g. S10), which
makes satisfying φ2 harder when load-balancing has to be performed simultaneously.

Table 4. Collocation within the 10 large services

service S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

collocation (φ2) 0 1 0 3 1 1 0 3 1 13

6 Closing Remarks

Our focus has been on applying swarm intelligence, in particular the CEAS method to
manage the deployment of collaborating software components. While developing our
distributed approach we targeted a logic that shall not be over-engineered and uses only
a few parameters that do not depend on the problem at hand (e.g. to avoid having to
adjust parameters and cost functions manually). It is also required to be able to handle
certain degrees of dynamics and adaptation to changes in the execution context. These
are the reasons that lead us to nature inspired methods and systems that do not have to
be altered significantly for every new target system. We have tested the ability of the
logic to handle domain splitting and dealing with dependability requirements as well



as load-balancing using two example settings and a custom built simulator. We believe
that applying CEAS will not only result in a tailored optimization method but, at least
on the long run, it will allow the implementation of a prototype of a truly distributed
system that will support run-time deployment within software architectures.

Our results are promising and are inline with our efforts to further develop the de-
ployment logic and increase its scalability and adaptability. Furthermore, we plan to
experiment with another dimension of dynamicity by introducing run-time component
replication that means that the amount of replicas in a service might change at run-time.
Moreover, extensive simulations will be conducted to test scalability and convergence
of the algorithm and also to evaluate its behavior compared to other relevant optimiza-
tion methods that support distributed execution. This is a possible direction for future
work, however, we advocate that a thorough comparison could in fact be a separate
paper in itself as it would require fine tuning of multiple parameters in case of many
available methods to be able to look into the scenario at hand with confidence.
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