
A Framework for Experimental Validation and Performance Evaluation
in Fault Tolerant Distributed System

Hein Meling

Department of Electrical Engineering and Computer Science
University of Stavanger, 4036 Stavanger, Norway.

hein.meling@uis.no

Abstract

Performing experimental evaluation of fault tolerant dis-
tributed systems is a complex and tedious task, and au-
tomating as much as possible of the execution and evalu-
ation of experiments is often necessary to test a broad spec-
trum of possible executions of the system to obtain good
coverage. The confidence of the results obtained from an
experimental evaluation depends on the degree of control
over the environment in which experiments are being exe-
cuted. Typically, an uncontrolled environment is exposed to
numerous sources of external influence that can affect the
obtained results. Automated and repeated executions can
be used to reduce the impact of such influences.

In this paper, a framework for experimental validation
and performance evaluation of fault management in a fault
tolerant distributed system is presented. The framework
provides a facility to execute experiments in a configured
target system. It is based on injecting faults or other
events needed to test the fault handling capability of the
system. Relevant events are logged and collected for post-
processing and analysis, e.g. to construct a single global
timeline of events occurring at different nodes in the target
system. This timeline of events can then be used to validate
the behavior a system, and to evaluate its performance.

1. Introduction

Testing the validity of fault tolerant distributed systems
and measuring the performance impact of faults is a chal-
lenging task. A common technique is to apply fault injec-
tion (see for instance [1, 2, 10]) as a means to accelerate the
occurrences of faults in the system. The main purpose of

1-4244-0910-1/07/$20.00 c©2007 IEEE.

fault injection is to evaluate and debug the error detection
and recovery mechanisms of the distributed systems.

This paper presents a framework for experimental vali-
dation and performance evaluation of fault management in
a fault tolerant distributed system. The framework enables
us to execute experiments in a configured target system,
where faults may be injected for the purpose of testing the
fault handling capabilities of the system undergoing testing.
Relevant fault and system events are logged and collected
for post-processing and analysis, e.g. to construct a single
global timeline of events occurring at different nodes in the
target system. This timeline can then be used to validate the
behavior a system, and to evaluate its performance.

Numerous systems [1, 4, 7, 20] have been developed to
provide generic fault injection tools aimed at testing the
fault handling capability of systems. The most relevant
ones are discussed briefly below. Loki [4] is a global state-
driven fault injector for distributed systems. Faults are in-
jected based on a partial view of the global state of a sys-
tem, i.e. faults injected on one node of the system can de-
pend on the state of other nodes. Loki has been used to
inject correlated network partitions to evaluate the robust-
ness of the Coda distributed filesystem [12]. Orchestra [7]
is a script-driven probing and fault injection tool designed
to test distributed protocols. It is based on inserting a fault
injection protocol layer below the target protocol that will
filter and manipulate messages exchanged between proto-
col participants. Since a separate layer is used, the source
code of the tested application does not need to be modified.
NFTAPE [20] is a software infrastructure for assessing the
dependability attributes of networked configurations. The
main feature of NFTAPE is extensibility, and is so in two
ways: (i) a suite of tools to support specifying injection sce-
narios, and (ii) a library of injection strategies and a light-
weight API to customize injection strategies or develop new
ones. Each machine in the target system is associated with
a process manager which communicates with a centralized

controller. The centralized controller injects faults accord-
ing to a specified fault scenario by sending commands to the
process managers. Neko [21] is a framework for designing,
tuning, and analyzing the performance of distributed algo-
rithms. Algorithms can be either simulated or executed on
a real network.

The experiment framework presented in this paper dis-
tinguishes itself from these other frameworks in its support
for testing fault treatment mechanisms of systems. It offers
a facility for execution of experiments in a configured target
system, and supports the injection faults to emulate realis-
tic failure scenarios. Both crash and network failures are
supported; fault injections are generally based on random
selection, rather than being triggered by the global state
of the system as in Loki [4]. A particular focus has been
to test system behavior when exposed to a series of near-
coincident failures [11, 16]. The framework is intentionally
simple, modular and lightweight to avoid any overhead. The
framework has been used for testing Jgroup/ARM (see Sec-
tion 2). A significant portion of the Jgroup/ARM API is
reused by the framework to ensure consistency between the
various tunable parameters of the target system.

Terminology (partially borrowed from [4]): To exper-
imentally evaluate a system, one or more studies may be
defined, e.g. a crash failure study or a network instability
tolerance study. For each study, one or more configura-
tions are defined; a configuration typically specify the target
system and deployment parameters such as the number of
replicas for each service. However, in the following only a
single configuration per study is considered. To obtain sta-
tistically significant measures, several runs of each study are
performed. Each of these runs is called an experiment. Each
study (and configuration) is evaluated separately. After each
experiment, the system is reset to its original configuration
before beginning the next experiment.

During an experiment, events are logged. The set of
events to be logged are defined a priori, and the code is
instrumented with logging code. After the completion of an
experiment the log files are collected for analysis. Experi-
ment analysis is specific to each study and typically involves
the construction of a single global timeline of events occur-
ring at the different nodes in the target system. This global
timeline of events can then be used to validate the behavior
of the system, and to evaluate its performance. For instance,
a predefined state machine for the system behavior may be
used to validate the behavior of the system by projecting the
event trace onto the state machine.

Paper organization: Section 2 gives an overview of the
Jgroup/ARM middleware platform for which the experi-
ment framework is designed. Section 3 gives an architec-
tural overview of the experiment framework, while Sec-
tion 4 describes the organization of experiment scripts. Sec-
tion 5 discuss two fault injectors used in previous experi-

ments. Section 6 presents the organization of the analysis
modules, and finally in Section 7 the impact on the tested
system and the accuracy of the instrumentation is discussed.

2. Jgroup/ARM Overview

Jgroup/ARM is a novel middleware platform based on
object groups for developing, deploying and operating dis-
tributed applications with strict dependability requirements.
Jgroup [18] is a group communication service that inte-
grates the Java RMI distributed object model with object
groups. Apart from “standard” group communication fa-
cilities, Jgroup includes several features that make it suit-
able for developing modern networked applications. Firstly,
Jgroup supports partition-awareness: replicas in disjoint
network partitions are informed about the current state of
the system, and may take appropriate actions to ensure the
availability of the provided service in spite of the partition-
ing. A network partition occur when failures render com-
munication between subsets of nodes impossible. By sup-
porting partitioned operation, Jgroup trades consistency for
availability, whereas other systems takes a primary parti-
tion approach [5], ensuring consistency by allowing only
a single partition to make progress. A state merging ser-
vice is provided to simplify the re-establishment of a con-
sistent global state when partitions merge. Jgroup is unique
in providing a uniform object-oriented programming inter-
face (based on RMI) to govern all object interactions both
within an object group as well as interactions with clients.

The Autonomous Replication Management (ARM)
framework [14, 16, 13] extends Jgroup with automated
mechanisms for performing management activities such
as distributing replicas among nodes and recovering from
replica failures, thus reducing the need for human interac-
tions. These mechanisms are essential to operate a system
with strict dependability requirements, and are largely miss-
ing from existing group communication systems [8, 3]. The
ARM framework supports seamless deployment and opera-
tion of dependable services. The set of nodes that may host
applications and ARM-specific services is called the tar-
get environment; within it, issues related to service deploy-
ment, replica distribution and recovery from failures are au-
tonomically managed by ARM, following the rules of user-
specified distribution and replication policies. Maintaining
a fixed redundancy level is a typical requirement specified in
the replication policy. Failure scenarios are discovered and
handled through recovery actions with the objective to min-
imize the period of reduced failure resilience, and objects
may be relocated/removed to adapt to uncontrolled changes
such as failure/merge scenarios, or controlled changes such
as scheduled maintenance (e.g. OS upgrades), as well as
software upgrade management [19]. These features enable
self-healing and self-configuring services.

3. Architectural Overview

The experiment framework is designed to perform re-
peated experiments of a study to obtain statistically signifi-
cant measures. Fig. 1 shows the components of the frame-
work, where the experiment executor is the main compo-
nent. Its purpose is to execute scripts defining a study. In
each experiment numerous tasks are executed, e.g.:

1. Reset and initialize the nodes in the target system

2. Bootstrap the factories onto nodes in the target system

3. Bootstrap the ARM infrastructure

4. Deploy the replicas

5. Inject faults

6. Shutdown the experiment

7. Collect log files from the target system nodes

Each component in the architecture is defined by a set
of tasks that it performs. Tasks are building blocks for con-
structing study scripts, and each script is comprised of a
set of common/specialized tasks. For example, the special-
ized fault injector and analysis tasks used for the two exper-
iments reported in [11] and [16] are completely different.
The experiment executor interacts with the other compo-
nents to activate tasks according to the study script.

Nodes in the target system must host a fault injector
through which faults can be injected. Depending on the type
of faults being injected the fault injector code may have to
be instrumented into the system code on the target node.

The events of interest must be logged for use in the anal-
ysis phase, and typically requires additions to the code. The
log files are collected from each node in the target system
and stored in a repository for post-processing.

During a study, the CPU/IO activity of the nodes in the
target system is checked before and after each experiment.
Experiments whose load exceeds some configurable thresh-
old may then be marked for further analysis. This is particu-
larly useful to detect artifacts due to external influence when
the study is performed in an uncontrolled environment.

The analysis component is organized in two separate
modules; one module to process each experiment individ-
ually and another module to process all experiments in the
study collectively and produce statistics. Typically, the lat-
ter module will use the former to obtain measurements from
each individual experiment. Note that each experiment may
be analyzed after its completion, and the results of the anal-
ysis can be used by the experiment executor to make deci-
sions; hence the dashed arrow between the experiment ex-
ecutor and the analysis component in Fig. 1. The analysis
component is discussed further in Section 6.

Log
Collector

Fault
Injector

Management
Client

Analysis

FI

Log
Node

Experiment
Executor

Log
Repository

inject fault reset target node
synchronize codebase
check clock/load
deploy factory

get logs
delete logs deploy replicas

target nodetarget node
fault injectorfault injector

Results

Figure 1. Experiment framework architecture.

4. Experiment Scripting

The initial version of the experiment framework used
XML based scripts to specify the experiment tasks to be ex-
ecuted; the experiment tasks themselves were implemented
in Java. The crash failure study presented in [11] was
performed using the XML based framework. However,
lack of support for control flow mechanisms in XML made
it difficult and unnatural to write advanced study scripts.
Therefore the experiment framework was ported [22] to the
Groovy [9] scripting language, making it much easier to
prepare complex study scripts. Groovy allows close inte-
gration with the Java language, thus enabling reuse of sev-
eral Jgroup/ARM APIs. Study scripts are organized in four
phases, each executing various tasks:

1. Initialization: The static configuration of the study is
initialized. Dynamically adjustable parameters of the
study are embedded within the experiment tasks below.

2. Pre-study tasks: Tasks performed only one time be-
fore the actual study begins. This typically involves
the creation of a log repository on the experiment ma-
chine and synchronizing the codebase of all the nodes
in the target system.

3. Experiment tasks: The main tasks needed to per-
form the study; these are repeated for each experiment.
These tasks typically include: deploying the factories
and replicas on the target system nodes, and injecting
faults into the nodes in the target system. After the ex-
ecution of an experiment, the logs are collected from
the nodes in the target system and the nodes are reset,
e.g. by killing any remaining experiment processes and
deleting log files.

4. Post-study tasks: Tasks performed only one time af-
ter the completion of the study. For example, to re-
move log files from the target system nodes.

5. Code Instrumentation

Instrumenting code for our experiments is done by in-
serting logging statements and other code directly inside the
actual source code of the system under study.

5.1. The Logging Facility

To simplify the logging of various system and failure
events a logging facility is provided. A particular event is
recorded by logging calls inserted at appropriate locations
in the source code. Each recorded event includes:

• Time of event; obtained from the local processor clock.

• Machine name on which the event was recorded.

• Event type and a brief description.
The recorded events are Java objects and support is pro-

vided for ordering the events into a single global timeline
independent of the node on which the events occurred. Such
ordering requires that the processor clocks of all the nodes
in the target system are synchronized using NTP [17]. The
granularity of the clock is one millisecond. Nanosecond
granularity is also possible for relative time between events
occurring on the same node. The precision obtained using
NTP is in the range 1-5 ms, according to the offset values
obtained from the ntpdate command. This level of accu-
racy makes it very unlikely that events recorded on differ-
ent nodes are ordered incorrectly in the global trace. Note
that the clock offset values of each node are checked before
and after each experiment to detect deviations above some
threshold. Experiments with too large a clock deviation may
be marked and excluded from further consideration.

The event class used by the logging facility may be sub-
classed to include event-specific details. For instance the
view event subclass includes the view object generated by
the Jgroup membership service [18]. Event classes may
also provide methods that can be used in the analysis phase
to extract various properties from the event, for instance to
check if a view event represents a fully replicated view.

To reduce the processing overhead of event logging,
events are first stored in memory and periodically flushed
to disk. However, to avoid loss of events in response to
fault injections, the flush mechanism can also be triggered
immediately before a fault injection.

5.2. Fault Injectors

The experiment framework currently supports two dis-
tinct randomized fault injectors; both implemented by
means of code instrumentation:

• Crash failure injection

• Reachability change injections

The former kind of fault injector was used to perform an
evaluation of dependability attributes by prediction through
a stratified sampling approach as reported in [11, 13]. A
series of experiments were performed; in each experiment,
one or more faults were injected according to an accelerated
homogeneous Poisson process. The approach defines strata
in terms of the number of near-coincident failure events that
occur in a fault injection experiment. By near-coincident is
meant failures occurring before the previous is completely
handled. Three strata were considered, i.e. single failures,
and double and triple near-coincident failures. The nodes of
the system under study is assumed to follow the crash fail-
ure semantics. For the duration of an experiment, the events
of interest are monitored, and post-experiment analysis con-
structs a single global timeline of fault injections and other
relevant events. The timeline is used to compute trajecto-
ries on a predefined state machine. Given data from the
experiments, we were able to predict several dependability
attributes of the system under study, e.g. its availability.

The second fault injector was used to test the ability of
Jgroup/ARM to tolerate network instability and partition-
ing due to network failures [16, 13]. Network instability
and partition failures may arise for a number of reasons,
e.g. router crashes or power outages, physical link damage,
buffer overflows in routers, router configuration errors and
so on. In the experiments, four reachability patterns were
injected at random times, the last one returning to the fully
connected reachability pattern. Multiple near-coincident
reachability changes may occur before the system stabi-
lizes, i.e. a new reachability pattern may be injected be-
fore the previous has been completely handled. In the study
analysis density estimates for the various delays involved in
fault detection and recovery were computed.

The Crash Failure Emulator. A crash failure occurs
when a unit (e.g. object) halts, losing its volatile data. To
support crash failure emulation, the factory has been instru-
mented with a shutdown() method. The shutdown() method
simply sends a terminate signal to the replicas associated
with the factory, forcing each replica to halt its execution.
Fig. 2 illustrates the crash failure injector. When injecting
multiple crash failures in a single experiment, all injections
are sent to their respective nodes at the start of the experi-
ment. A timer is then used to trigger the injections at the
specified activation times. This way the communication
step has a very low impact on the injection time accuracy.

Inaccuracy discussion: Injections are performed using
the fastest possible way to stop a Java virtual machine from
within itself, namely using the Runtime.halt() method. This
means that no shutdown hooks or finalizers are executed
during the shutdown sequence, as would be the case if we
used the System.exit() method. However, measuring the ac-
curacy of crash injections is difficult since it is not easy to

Fault
Injector

Factory

Node

S 2
S1

Runtime.halt()

Terminate
shutdown() target nodetarget node

fault injectorfault injector

Figure 2. The crash failure injector.

Table 1. Statistics for crash injection (ms)
Mean StdDev Max Min

13.833 4.772 32 8

accurately detect the time when the process ceases to ex-
ist. Hence the statistics on the injection time presented in
Table 1 only accounts for the time taken from activating a
crash failure at the specified time in the factory until im-
mediately before the halt method is invoked in the replica
JVMs. The results were obtained from 100 crash failure
experiments. The results indicate that crash fault injections
are quite fast, and hence do not contribute to any significant
inaccuracy in the measurements reported in [11].

The Network Partition Emulator. At any given time, the
connectivity state of the target environment is called the cur-
rent reachability pattern. The reachability pattern may be
connected (all nodes are in the same partition), or parti-
tioned (failures render communication between subsets of
nodes impossible). The reachability pattern may change
over time, with partitions forming and merging as illustrated
in Fig. 3. The letters x, y and z each denote a different site in
the target environment. Injections causing a transition from
one reachability pattern to another is called a reachability
change. A reachability change is due to either a partition
or a merge event. In the network instability tolerance study
reported in [16, 13], the injected reachability patterns are
symmetric. However, asymmetric reachability patterns are
easily supported by the partition emulator.

Injecting and measuring real network partitions in a wide
area network is difficult for a number of reasons: (i) lack of
physical access and permissions to disconnect cables from
switches/routers, (ii) it is difficult to measure the exact time
of disconnection, and (iii) performing a large number of dis-
connections would be very time consuming. For these prac-
tical reasons, network partition scenarios are instead em-
ulated. To accomplish this, Jgroup/ARM has been instru-
mented with code to emulate network partition scenarios.

The partition emulator allows us to remotely configure
and inject the reachability changes to be seen by the vari-
ous nodes in the target system. Each node in the target sys-

x y

z

x y

z

x y

z

x y

z

ConnectedConnected PartitionedPartitioned PartitionedPartitioned PartitionedPartitioned

ReachabilityReachability
changechange

ReachabilityReachability
changechange

ReachabilityReachability
changechange

ReachabilityReachability
changechange

mergemerge

mergemerge

partitionpartitionpartitionpartition

Figure 3. A sequence of reachability patterns.

tem has a local partition emulator module through which in-
jections are managed by the experiment executor (see Fig.
1). The node local partition emulator is implemented by
intercepting and discarding packets according to the config-
ured reachability pattern. However, to avoid complicated
changes to Jgroup/ARM, packet discarding must be done
at the receiver, rather than the sender side. Hence, packets
from ”disconnected“ nodes are also received and do require
some minor processing. However, in our experiments on
network instability tolerance [16] this processing overhead
is negligible, since there are no clients generating traffic.

The injection of a new reachability pattern is organized
in a setup phase and a commit phase. The former config-
ures the reachability change to be injected, while the latter
activates it. The setup phase also serves to establish TCP
connections to be reused in the commit phase. The setup
phase must be performed before the injection time. Fig. 4
shows the interactions needed to inject a new reachability
pattern. The inaccuracy of the measured injection time is
very small (65 ms on average) and does not contribute to
any detectable effects in our measurements. Details of the
inaccuracy and other limitations of our emulated reachabil-
ity patterns are discussed below.

Inaccuracy discussion: Let Ii denote the injection time
of the ith injection event. Let δs denote the setup latency,
which is the time from beginning a setup phase and until all
nodes have been configured. Let δc be the commit latency,
which is the time from the injection time Ii until all nodes
have activated the new reachability pattern. These latencies
limits the accuracy that can be obtained, as illustrated in
Fig. 5. Two consecutive injections are shown, I1 followed
by I2, which serves to illustrates the smallest possible delay
between a pair of injections. That is, δs+δc is the minimum
time between two consecutive injections. Furthermore, δc

limits the accuracy in detection of a newly injected reacha-
bility pattern. This is since each node may perceive the new
reachability at different times, at most separated by δc.

Table 2 provides statistics for these two limiting factors.
Note that these statistics do not show the complete picture,
since there is an apparent bimodality in the setup latency, as
illustrated in Fig. 6. The peak around 900 ms stems from
the first setup phase shown before I1 in Fig. 5 and is due to
connection establishment between the experiment executor

Setup time Commit time
ExperimentExperiment
ExecutorExecutor

Node 1Node 1

Node 2Node 2

Node jNode j

......

I i
Concurrent setup activityConcurrent setup activity

for new reachability patternfor new reachability pattern
Concurrent activationConcurrent activation
of reachability patternof reachability pattern

Figure 4. The setup and commit phases.

I 1

I 2 I 3 I 4

s

c

s s s

c c c

s

c

LegendLegend
Setup latency: the time to configure a new reachability pattern on all nodes
Commit latency: the time to activate a new reachability pattern on all nodes

Figure 5. Example injection timeline

and the node-local fault injector modules. The peak around
450 ms is the latency typically seen between injections I2,
I3 and I4. Thus, taking also the commit latency (65 ms on
average) into account, these observations seem to indicate
that a pair of consecutive injections that arrive within an
interval shorter than 500-600 ms cannot be reliably tested
using our fault injector. However, such near injections are
very rare, and in most cases would not be detected by the
failure detector as a network partition in the first place. The
density of the commit latency (δc) is shown in Fig. 7. The
variations in the commit latency are rather small, and are
most likely due to correlation between the commit invoca-
tions and the garbage collection mechanism of the various
JVMs in the target system. It is the commit latency that
limits the accuracy of partition detection. Hence, the results
of our network instability tolerance study presented in [16]
may have an inaccuracy of approximately 65 ms on average.

5.3. Avoiding Code Modification

Modifying the original source code to insert instrumen-
tation logic is a common approach to evaluate systems, and
is also used in the framework presented herein. The draw-
back is that it makes the code harder to understand – it is
difficult to determine what is evaluation logic (fault injec-
tor) and what is actual system algorithms. Moreover, the
evaluation logic must be removed or disabled when a real
system is deployed.

In recent years a programming technique called aspect-
oriented programming (AOP) [6] has become popular. AOP

Table 2. Statistics for setup and commit laten-
cies for injections (ms).

Mean StdDev Max Min
δs 661.45 217.98 1040 425
δc 64.88 27.92 144 35

Histogram of setup latencies (N=400)

Latency (ms)

D
en

si
ty

400 500 600 700 800 900 1000 1100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Figure 6. Histogram of setup latencies

Histogram of commit latencies (N=400)

Latency (ms)

D
en

si
ty

20 40 60 80 100 120 140 160

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Figure 7. Histogram of commit latencies

extends object-oriented programming by introducing a new
unit of modularity, called an aspect. Aspects are special
modules that focus on crosscutting concerns in a system
that are difficult to address in traditional object-oriented lan-
guages. In the future, code instrumentation could instead
be handled using AOP techniques. That is, it is possible to
define aspects that can ”insert“ logging statements or other
interception logic at certain points in the code without hav-
ing to modify the actual source code of the system. Such
aspects are typically used only during testing, and can be
easily be removed when deploying the system since they
are provided by separate modules. An example could be an
aspect to emulate network partition scenarios implemented
through packet discarding. Such code is hardly useful in a
deployed system, and if implemented as an aspect (a sepa-
rate module), it is much easier to remove from the system
than modifying the original source code. Note that using
AOP techniques for inserting code and intercepting method
calls may result in a slightly higher overhead compared to
inline code instrumention as currently used.

6. Experiment Analysis

Experiment analysis is specific to the kind of study being
performed, and is organized in two separate modules:

• Experiment analysis module (EAM)

• Study analysis module (SAM)
With EAM each experiment is processed individually; it

can be used to extract measurement information from the
log files (event traces) obtained after the completion of the
experiment. Event traces from all nodes in the target system
are collected and may be used to construct a single global
event trace (timeline). This is done for the studies reported
in [11] and [16].

The purpose of SAM is to aggregate the results obtained
from the individual experiments to compute various statisti-
cal properties for the evaluation. Hence, SAM is used after
the completion of all the experiments in the study. Typi-
cally, EAM is reused for data collection, by extracting rele-
vant measures for which statistics should be computed. For
example to extract detection and recovery delays, or to de-
termine the system down time. SAM may also be used to
construct a partial state machine given a collection of ex-
periment traces. Given a sufficient number of traces, the
constructed state machine may then be used to verify the
correctness of future experiments.

In general, two kinds of studies are considered:
• Studies for system validation and error correction.

• Studies for performance and dependability evaluation.
The former aims to test the system functionality and al-

low the developer to obtain debug logs that can be used for
debugging and error correction. In this case, EAM can be

used online during a study execution to analyze each exper-
iment individually after their completion. The results of the
analysis can be used by the experiment executor to make de-
cisions about the continued execution of the study. This is
useful to determine whether a particular experiment should
be repeated or if the study should be terminated. An experi-
ment may be repeated by using the same fault injection data
as in the original execution of the experiment; recall that
fault injections may occur at randomized times. Repeating
an experiment in this manner is useful to obtain additional
debug logs from similar experiments, to better understand
the incorrect system behavior and to be able to debug the
problem. Furthermore, after a fix has been applied, the same
fault injection scenario can be repeated to determine if the
problem has been solved.

Note that repeating the same fault injection scenario does
not offer any guarantee that the same bug is revealed again.
However, if a particular bug is revealed in repeated experi-
ments prior to applying a fix, and not after the fix, increased
confidence is gained that the bug has in fact been fixed.
After fixing the bug, a full randomized fault injection test
should be performed again to determine if the fix has in-
troduced new bugs. The EAM may also be use when de-
bugging a particular experiment, e.g. by printing the global
event trace for visual inspection.

In the past we have performed three studies focusing on
performance and dependability evaluation of Jgroup/ARM
as reported in [11, 16, 15].

7. Summary and Conclusions

The experiment framework presented in this paper has
proved exceptionally useful in uncovering at least a dozen
subtle bugs in the Jgroup/ARM platform, allowing system-
atic stress and regression testing. Below the impact of in-
strumentation and injection accuracy is discussed.

Impact of the instrumentation code. The experiment
framework relies on logging system events to memory dur-
ing experiment execution. Generally, these events are in-
frequent and thus will not influence the overall system sig-
nificantly. Periodically, events are flushed to disk and this
may result in minor disturbances if disk access is congested.
Crash failure injections are passive in that they are only ac-
tivated at the injection time, thus there is no other impact on
the system during an experiment. On the other hand, parti-
tion failure injections are implemented by discarding pack-
ets according to the configured reachability pattern. With
this approach some minor processing at each node is re-
quired, even for packets from ”disconnected“ nodes. This
processing is done for all packets, independent of the reach-
ability pattern. The processing overhead for each packet is
very low. However, given a high system load, this packet
processing overhead may have an impact on system per-

formance. The Loki fault injector used to evaluate corre-
lated network partitions in the Coda filesystem [12] is dif-
ferent from our approach. Instead of inline packet discard-
ing, a firewall mechanism was used to configure blocking
on specific ports. This approach is likely to give slightly
less overhead as packets are discarded by the operating sys-
tem. However, the drawback with this approach is that con-
figuring the firewall often requires administrator (root) ac-
cess. Unexpected system behaviors due to the instrumen-
tation code have not been observed in our measurements
reported in [13, 11, 16, 15].

Injection accuracy. The accuracy obtained from par-
tition failure injections is very good. In the worst case a
delay of 144 ms (the max commit latency) may separate the
activation of a particular reachability pattern at two nodes.
Hence, nodes may perceive a different reachability pattern
at the same time instance. The impact of such a small de-
lay is insignificant, since the view agreement protocol takes
much longer to complete in most cases. In the worst case, it
could cause additional protocol runs. The fact that different
nodes perceive a different reachability pattern at the same
time instance may also occur in real disconnection scenar-
ios, e.g. if routing tables have been incorrectly altered. Such
errors should be tolerated by the middleware.

Future work. The goal for future work is to build
a generic scripting based evaluation framework for dis-
tributed Java applications, and prepare evaluation scripts
to test it on at least three different systems. This generic
framework will take advantage of code instrumentation by
means of aspect-oriented programming, but will also reuse
large portions of the current codebase.

References

[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-
C. Laprie, E. Martins, and D. Powell. Fault Injection for
Dependability Validation: A Methodology and Some Appli-
cations. IEEE Trans. Software Eng., 16(2):166–182, Feb.
1990.

[2] J. Arlat, M. Aguera, Y. Crouzet, J.-C. Fabre, E. Martins,
and D. Powell. Experimental Evaluation of the Fault Tol-
erance of an Atomic Multicast System. IEEE Trans. Rel.,
39(4):455–467, Oct. 1990.

[3] B. Ban. JavaGroups – Group Communication Patterns in
Java. Technical report, Dept. of Computer Science, Cornell
University, July 1998.

[4] R. Chandra, R. M. Lefever, K. R. Joshi, M. Cukier, and
W. H. Sanders. A Global-State-Triggered Fault Injector for
Distributed System Evaluation. IEEE Trans. Parallel Dis-
trib. Syst., 15(7):593–605, July 2004.

[5] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Com-
munication Specifications: A Comprehensive Study. ACM
Computing Surveys, 33(4):1–43, Dec. 2001.

[6] A. Colyer, A. Clement, G. Harley, and M. Webster. eclipse
AspectJ. Addison-Wesley, 2004.

[7] S. Dawson, F. Jahanian, and T. Mitton. ORCHESTRA:
A Fault Injection Environment for Distributed Systems.
Technical Report CSE-TR-318-96, University of Michigan,
EECS Department, 1996.

[8] P. Felber, R. Guerraoui, and A. Schiper. The Implementation
of a CORBA Object Group Service. Theory and Practice of
Object Systems, 4(2):93–105, Jan. 1998.

[9] Groovy. http://groovy.codehaus.org/. Last visited May 2006.
[10] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error

detection schemes using fault injection by heavy-ion radia-
tion. In Proc. 19th Int. Symp. on Fault-Tolerant Computing,
pages 340–347, Chicago, IL, USA, June 1989.

[11] B. E. Helvik, H. Meling, and A. Montresor. An Approach
to Experimentally Obtain Service Dependability Character-
istics of the Jgroup/ARM System. In Proc. Fifth European
Dependable Computing Conference, LNCS, pages 179–198.
Springer-Verlag, Apr. 2005.

[12] R. M. Lefever, M. Cukier, and W. H. Sanders. An Exper-
imental Evaluation of Correlated Network Partitions in the
Coda Distributed File System. In Proc. 22nd Symp. on Re-
liable Distributed Systems, pages 273–282, Florence, Italy,
Oct. 2003. IEEE Computer Society.

[13] H. Meling. Adaptive Middleware Support and Autonomous
Fault Treatment: Architectural Design, Prototyping and Ex-
perimental Evaluation. PhD thesis, Norwegian University
of Science and Technology, Dept. of Telematics, May 2006.

[14] H. Meling and B. E. Helvik. ARM: Autonomous Repli-
cation Management in Jgroup. In Proc. 4th European Re-
search Seminar on Advances in Distributed Systems, Berti-
noro, Italy, May 2001.

[15] H. Meling and B. E. Helvik. Performance Consequences
of Inconsistent Client-side Membership Information in the
Open Group Model. In Proc. 23rd Int. Performance, Com-
puting, and Comm. Conf., Phoenix, Arizona, Apr. 2004.

[16] H. Meling, A. Montresor, B. E. Helvik, and Ö. Babaoğlu.
Jgroup/ARM: A Distributed Object Group Platform with
Autonomous Replication Management. Technical Report
No. 11, University of Stavanger, Jan. 2006.

[17] D. L. Mills. Network Time Protocol (Version 3); Specifica-
tion, Implementation and Analysis, Mar. 1992. RFC 1305.

[18] A. Montresor. System Support for Programming Object-
Oriented Dependable Applications in Partitionable Sys-
tems. PhD thesis, Dept. of Computer Science, University
of Bologna, Feb. 2000.

[19] M. Solarski and H. Meling. Towards Upgrading Actively
Replicated Servers on-the-fly. In Proc. Workshop on De-
pendable On-line Upgrading of Distributed Systems in con-
junction with COMPSAC, Oxford, England, Aug. 2002.

[20] D. T. Stott, B. Floering, Z. Kalbarczyk, and R. K. Iyer. A
Framework for Assessing Dependability in Distributed Sys-
tems with Lightweight Fault Injectors. In Proc. 4th Int. Com-
puter Performance and Dependability Symp., 2000.

[21] P. Urbán, X. Défago, and A. Schiper. Neko: A single envi-
ronment to simulate and prototype distributed algorithms. In
Proc. 15th Int’l Conf. on Information Networking (ICOIN),
pages 503–511, Beppu City, Japan, Feb. 2001.

[22] R. Vestvik. Paalitelighetsvurdering og integrasjonstesting
av distribuerte applikasjoner. Master’s thesis, Dept. of Elec-
trical and Computer Engineering, University of Stavanger,
June 2005. In Norwegian.

