
Towards Upgrading Actively Replicated Servers on-the-fly

Marcin Solarski
Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31
10551 Berlin, Germany

Email: solarski@fokus.fhg.de

Hein Meling
Department of Telematics

Norwegian University of Science and Technology
N-7491 Trondheim, Norway

Email: meling@item.ntnu.no

Abstract

Change management is indispensable in most distributed
software systems, which are continuously being modified
throughout their life cycle. Managing the changes at run-
time in highly available distributed systems is especially
challenging as upgrade of a running system should not de-
teriorate its availability characteristics.

We present a distributed algorithm that allows to dy-
namically upgrade an actively replicated server so that the
server is operational, even during the upgrade process. The
algorithm makes use of the core functionality of an un-
derlying Group Communication System that has been ex-
tended with a recovery mechanism. Its design enables de-
pendable upgrades of replicated software in the presence of
replica crashes. The presented mechanisms are part of the
Dynamic Upgrade Management Framework aiming at sup-
porting and managing dependable upgrades of distributed
systems on the fly.

1 Introduction

Most distributed software systems evolve during their
lifetime. The spectrum of software change is wide, and
ranges from program corrections and performance improve-
ments to complex changes of the overall functionality and
structure of the system. Such changes may be necessary to
adapt the system to new user requirements. In a conven-
tional approach to system maintenance, the system runtime
has to be interleaved with maintenance breaks in which the
necessary changes are manually applied to the system. This
approach, however, is not suitable in large distributed sys-
tems that have to be highly available.

Dynamic upgrade is a technique that allows the introduc-
tion of necessary changes into the system, so that the sys-
tem remains operational even while being upgraded. Thus,
system availability does not decline as a result of the sys-
tem upgrade. Traditional techniques for increasing sys-
tem availability have been based on masking hardware fail-
ures [8]. The idea is to introduce redundancy into the sys-

tem by replicating certain system components. A com-
mon approach to provide object and process replication is
based on the concept of a Group Communication System
(GCS) [2]. Replicating system components eliminates the
effects of transient hardware and software failures. How-
ever, replication cannot prevent system failures due to soft-
ware design faults whose contribution to system unavail-
ability grows sharply with the increasing complexity of soft-
ware systems.

Dynamic upgrade, as presented in this paper, aims at
shortening the recovery time for design faults. The formula
characterizing system availability is often expressed as fol-
lows:

MTTF

MTTF + MTTR

In general, availability can be improved by increasing
the Mean Time To Failure (MTTF) or decreasing the Mean
Time To Repair (MTTR). Dynamic upgrade can improve
system availability in two ways:
• The system’s time to repair becomes shorter. There

is no need to take the system down during its mainte-
nance (upgrade).

• The system’s time to failure is increased. A new ver-
sion is typically less faulty. Thus, the system failure
rate decrease after the upgrade.

In this paper we present an algorithm for upgrading an
actively replicated server, i.e., a number of server instances
(replicas) processing client requests in parallel [8]. The al-
gorithm is self-stabilizing and it introduces only minimal
additional load on the system, while maintaining continu-
ous availability during the upgrade.

The rest of the paper is structured as follows. In Sec-
tion 2, we describe the underlying system model and state
the assumptions we have made for designing the upgrade al-
gorithm. Section 3 gives an overview of the algorithm, fol-
lowed by a detailed description and concludes with a brief
analysis. In Section 4 we describe the implementation of
the upgrade algorithm based on Jgroup/ARM [6]. Section 5
discusses other work that relates to our upgrade algorithm.
Finally, Section 6 concludes the paper and presents our on-
going work to validate the algorithm.

1



2 System Model

We consider a client-server architecture in an asyn-
chronous distributed system augmented with unreliable fail-
ure detectors [1], in which the basic unit of replication is the
server. We assume server replicas fail only by crashing, and
once crashed it does not recover. However, a replica that is
considered to have crashed may be replaced by a new in-
stance of the replica.

In this paper, we assume an actively replicated server,
in which each server processes client requests deterministi-
cally. It is implemented using a view-oriented GCS [2, 7]
extended with a recovery mechanism [5]. The recovery
mechanism works by creating replacement replicas for the
replicas that the GCS considers to have crashed. Clients
issue requests through the GCS, using totally ordered mul-
ticast, to the server replicas (group) and receive replies from
the servers.

2.1 Upgrade Assumptions

In this paper, we consider only upgrading the software of
server replicas and not the clients. This puts certain restric-
tions on what can be achieved with respect to compatibility
between client and server objects. Thus, in order to substi-
tute a versionv of a replica, we have made the following
assumptions under which our algorithm will work:
• Upgrade atomicity with respect to other upgrades of

the server. Server upgrades are atomic with respect
to each other, i.e., two upgrade processes cannot inter-
leave. Furthermore, the replica cannot process client
requests while being upgraded.

• Input conformance.Replica versionv + 1 is replace-
able with versionv. In terms of input, the input ac-
cepted by versionv + 1, is a subset of the acceptable
input to versionv of the replica. In terms of interfaces,
we assume that versionv+1 offers a compatible inter-
face to that of versionv, possibly augmented with new
functionality.

• State mapping and output conformance.There exist
a mapping from the state of versionv to the state of
versionv + 1 of the replica, such that versionv + 1
produces the same output as versionv, given some in-
put acceptable to versionv.

• Upgrade atomicity with respect to client upgrades.
Clients provide input acceptable to versionv + 1, but
not acceptable to versionv, only after the upgrade al-
gorithm terminates.

Furthermore, we assume that code for the new software
version has been deployed to all the system nodes. The code
can be started and its runtime instance can become a replica
of the server after joining the server group.

3 The Upgrade Algorithm

In this section, we present a software upgrade algorithm
whose purpose is to exchange the code of a running actively
replicated server with a new version of the software. The
algorithm is designed to avoid single points of failure and it
is implementable given the assumptions in Section 2. First
we state the requirements for the algorithm, followed by a
brief overview and detailed description. We conclude this
section with a brief analysis of the algorithm.

3.1 Algorithm Requirements

Given the assumptions in Section 2, we state the require-
ments that our algorithm should satisfy:
• Continuous availability.The replicated server should

be capable of processing client requests during the up-
grade process. In an active replication scheme, this re-
quirement determines the minimum redundancy level,
l, that is needed to provide service to clients. Typically,
this would bel ≥ 1.

• Fault tolerance. The algorithm should terminate in
bounded time, after successful upgrade of all server
replicas in spite of replica crashes during the upgrade.

• Low resource usage.The algorithm should exploit the
least possible resources. In particular, it is not feasible
to substantially increase the original redundancy level
while upgrading the system.

3.2 Algorithm Overview

The algorithm is based on the following idea: to upgrade
an actively replicated object it is enough to upgrade each of
its replicas in a sequence of individual upgrades. However,
the same algorithm may also be used to upgrade multiple
replicas simultaneously. The number of replicas that can
be upgraded in parallel depends on the availability require-
ments, i.e., the minimum redundancy level allowed.

Let theR denote the set of server replicas that is to be
upgraded. Below we sketch the steps of the algorithm in-
formally:

1. Reliably multicast an upgrade request to replicas inR.

2. Select a candidate replica,r ∈ R, to be upgraded next.

3. Check whether replicar can be upgraded.

(a) If so, replicar is then stopped and replaced with
its new software version. Otherwise, the replica
may process client requests and its upgrade is
postponed until it is possible. At the same time,
the rest of the replicas are available to process
client requests.

2



(b) After upgrading a replica, the state of the new
replica, replacingr, must be initialized with the
state of the running replicas.

4. The upgraded replica,r, is removed fromR.

5. Repeat steps 2-4 until all replicas have been upgraded.

3.3 Algorithm Description

The algorithm is designed to have distributed control,
that is there is no global coordinator. All the server replicas
perform the same algorithm and are symmetric in this sense.
Figure 1 illustrates a state-oriented representation of the al-
gorithm, using SDL notation. The algorithm is described
from the view point of a single replica, and it is referred to
asthis replica.

After the replica is initialized (triggered flag is false) and
joins the server group (join group), it enters itsidle state,
in which it is neither processing a client request nor being
upgraded. Upon receiving a client request (clientReq), it en-
ters theprocessing state and once processing the request is
completed, i.e., thedone condition is satisfied, it returns to
theidle state. Upon receiving an upgrade request (upgrReq),
the upgrade process is initiated by setting thetriggered flag
to true and entering theidle upgrade state. While in this
state, the replica awaits its turn to be upgraded, however it
may also enter theprocessing state whenever aclientReq is
received. Once theupgrade enabled condition is satisfied, a
new replica starts and this replica enters theupgrading state.

The upgrade enabled condition is a conjunction of two
basic tests:

1. Is it this replica’s turn to start the actual upgrade?

2. Can this replica be upgraded at this moment?

The former test can be realized by ordering all the repli-
cas in the server group and checking whether the replica
is the smallest/greatest in this group. An example of such
an order is an order relation defined on replica identities
within the group. The second test is realized through check-
ing whether the current redundancy level is greater thanl,
were l > 1 must be satisfied to perform an upgrade. The
enabling condition is evaluated periodically and once satis-
fied, the replica continues with the upgrade procedure.

The replica creates another process, whose task is to start
a new replica to replace this one, and then enters theup-
grading state, awaiting the success of the operation. The
start replica operation is designed so that it always success-
fully starts a replica in bounded time, even in the presence
of transient failures. To achieve this property, the opera-
tion uses the recovery mechanism which is responsible for
maintaining a given redundancy level. The upgrade process
finally terminates and a new replica is successfully started

process Upgrade_Process 1(1)

idle upgrading processing

triggered 
:= false

upgrReq repl_started done

join_group triggered 
:= true

leave_group

idle idle_upgrade

upgrade_enabled triggered

clientReq start_replica idle_upgrade idle

processing upgrading

true false

Figure 1. The upgrade algorithm from the
viewpoint of a replica.

and joins the group. The GCS takes care of transferring the
current state of the server group to the new replica, while
this replica leaves the group and terminates. Considering
the assumptions on input conformance and state transfer
from Section 2.1, the new replica (versionv + 1) enters
a state in which it can produce output identical to that of
replica versionv, given the same input.

3.4 Brief Analysis

Below we reason informally, that the upgrade algorithm
satisfies the requirements sketched in Section 3.1.

• The algorithm requires that there be a minimum al-
lowed replication levell > 1, before a replica is re-
placed. Furthermore, if a replica cannot be upgraded it
will continue to provide service using the old version.
Thus, continuous availability is provided as there are
replicas capable of processing client requests at any
moment during the upgrade process.

• System consistency is maintained by the state transfer
mechanism provided with the GCS. This is invoked for
each upgraded replica. Note that we assume that state
transfer can be achieved across different versions of
the replica, as stated in Section 2.

• The algorithm is fault-tolerant in that the algorithm
coordination is decentralized and it tolerates replica
crashes. As there is no single entity that controls the
progress of the algorithm, the upgrade continues even
in presence of crashes of the replicas being upgraded.
The recovery mechanism provided by the GCS allows

3



Legend: Application object Java Virtual Machine

Jgroup/ARM runtime

ED JD

GM

R2

GM

RM2

GM

DR2

GM

2UM

Server host 2

GM

RM1

GM

DR1

GM

1UM

GM

R1

ED JD

Server host 1

Figure 2. The architecture of Jgroup/ARM.

recovery from replica crashes by instantiating a new
copy of the replica.

• At any time during the upgrade only one additional
replica is added to the group, thus we keep the num-
ber of replicas in the system to a minimum.

Note that our algorithm by itself does not guarantee
maintaining the redundancy level. To maintain a given
redundancy level for the group, also outside the upgrade
phase, we apply additional supervising mechanisms such as
those provided by the ARM framework, discussed further
in the following.

4 Implementation

The dynamic upgrade algorithm described in this paper
has been implemented using Jgroup/ARM [6, 5], and aims
at demonstrating its usefulness in terms of system avail-
ability. The implementation extends the ARM framework,
that supports autonomous replication management, with a
framework for dynamic upgrade. Figure 2 shows the core
components of the Jgroup/ARM framework and its exten-
sions to support dynamic upgrade. A brief description of
the core components are given below.

• An Execution Daemon(ED) must be running on all
hosts in the system that should be able to host appli-
cation replicas. The execution daemon is used by the
replication manager to create and remove replicas on
remote hosts.

• Replication Manager(RM) is the main component of
the ARM framework and its tasks include, replica dis-
tribution, failure recovery and interaction with client
management applications through the replication man-
ager interface. This component is, as shown in Fig-
ure 2, replicated for fault tolerance.

• Upgrade Manager(UM) effectuates upgrade group re-
quests, communicated to it by an upgrade management

<Application name=”UpgradableServer” group=”103”>

<Class name=”test.upgrade.UpgradableServer” args=””/>

<LayerStack order=”PGMS:EGMI:Recovery:Upgrade”/>

<RecoveryStrategy name=”KeepMinimalInPartition”>

<Redundancy initial=”3” minimal=”1”/>

</RecoveryStrategy>

</Application>

Figure 3. Example application specification
for Jgroup/ARM.

client. It is naturally co-located with the RM to exploit
its database of available groups.

• Dependable Registry(DR) is a replicated naming ser-
vice. It enables a dynamic set of replicated remote
objects to register themselves under the same name,
forming an object group, which can later be retrieved
by clients. This enables clients to communicate with
the whole group as a single entity. Also the DR is co-
located with the RM, since the RM depends on DR for
bootstrapping.

• Application Replica(R) provides the actual service
functionality that may be upgraded. The application
replica may make use of various services provided by
Jgroup by specifying a layer stack, as we discuss next.

4.1 The Jgroup Group Manager

The JgroupGroup Manager(GM) supports dynamic cre-
ation of group communication layer stacks, based on a layer
stack ordering string associated with each application. The
configuration of the layer stack can be expressed in XML, as
shown in Figure 3, allowing each application to be config-
ured according to its needs for various Jgroup services, such
as recovery, upgrade, group membership and group method
invocation services. Each GM layer may interact with any
other GM layer, through an interface that each layer exports
within the stack.

The Jgroup Daemon(JD) implements the basic group
communication facilities such as failure detection, group
membership and multicast, and each application specific
GM layer may also communicate with the JD component
to perform its tasks.

As shown in Figure 3, theUpgradableServer applica-
tion use the PGMS, EGMI, Recovery and Upgrade lay-
ers. The PGMS is the group membership service provided
with Jgroup; it supplies application replicas with informa-
tion about the current view of the object group. The EGMI
layer is an external group method invocation service, en-
abling clients to communicate with the entire object group
as if it was a single entity. This means that theUpgradable-
Server will export an interface to its clients, enabling them

4



MembershipListener

UpgradeService

UpgradeListener

RecoveryLayer

MembershipListener

RecoveryService

PGMS

MembershipService

Replica

EGMI

ExtGMIService

UpgradeLayer

releaseReplicainitReplica

RM

UM

leave unbindjoin bind

upgraded

upgradeRequest

viewChange

notifyEvent

stopRequests

Figure 4. Upgrade layer stack.

to invoke the server group with what the client sees as a sin-
gle method invocation. TheRecoveryLayer also used in the
example is a group manager layer that is part of the ARM
framework. It is used in conjunction with the RM to ensure
that all applications maintain a minimal redundancy level,
as specified in Figure 3.

4.2 The Upgrade Layer and Interactions

TheUpgradeLayer, the last component of the layer stack
in the example above, implements the actual upgrade algo-
rithm as described in Section 3.3. Figure 4 illustrates the
layer composition and interfaces supported by the upgrade
layer. For an application replica to be upgraded, it must
implement theUpgradeListener interface (theupgraded()
method.) Theupgraded() method is used by the upgrade
layer to notify the replica that a new versionhas beenin-
stalled, and that the replica may now gracefully shutdown.

Prior to upgrading a particular application, it must first
have been installed through the replication manager (RM).
Figure 5 illustrate the main interactions of an upgrade.
The actual upgrade is initiated by theUpgrade Manage-
ment Client(UMC), by performing anupgradeGroup() in-
vocation on the UM (➀), which in turn leads to aup-
gradeRequest() (➁) multicast invocation on the respective
upgrade layers of the group to be upgraded. Next, the up-
grade layers of the replicas decide if its their turn to be up-
graded; in this case,R1 is selected for upgrade and the UL
performs acreateReplica() (➂,➃) invocation on the local
execution daemon. This in turn causes the newly created
replica (new software version) to join the group, and thus
all replicas (both new and old) install a new view (➄). Once

UMC DR RM
UM 2UL1UL

upgradeGroup

upgradeRequest

1UL

1

2

3

45

5

5

1R

2R

ED

1R

createReplica

u

viewChange

viewChange

viewChange

Figure 5. Interactions involved in an upgrade.

the UL representing the upgraded replica detect the new ver-
sion (Ru

1 ), it will make the old replica leave the group; once
it has left, theupgraded() method is invoked onR1.

One of the main tasks of the upgrade layer is to de-
termine which of the application replicas needs to be up-
graded next, following the generic algorithm in Section 3.3.
As shown in Figure 4, the upgrade layer will listen for
viewChange() events from the PGMS (see also➄ in Fig-
ure 5). The replica to be upgraded next is determined on
the basis of the replica positions in the view, e.g., the first
member of the group will be upgraded first and so on. The
view originated from the PGMS provides a list of the cur-
rent group member identifiers. In order to implement the
upgrade layer, we have extended the member identifier with
a software version number. This is used by the upgrade
layer to distinguish between replicas running the old soft-
ware from replicas running the new software, within the
same view.

To prevent client requests from being processed by the
replica during an upgrade, the upgrade layer interacts with
the EGMI layer, as indicated by thestopRequests() method.
This is required to prevent returning results to clients while
being upgraded.

5 Related Work

The topic of upgrading software entities at runtime
has been appearing in the literature from many perspec-
tives [3, 4, 9]. The unit of upgrade considered in this re-
search ranges from a single operation to functions, pro-
grams and even distributed subsystems. The previous work
differs from our algorithm, mainly in that they focus on up-
grading non-replicated software entities. In our approach,
the unit of upgrade is a replicated object and we focus on
the availability characteristics and dependability aspects of
the upgrade process. Eternal Evolution manager [10] sup-
ports live upgrades of actively replicated objects using an
approach similar to ours. The target of an upgrade may
comprise a set of CORBA objects, both clients and servers.

5



The upgrade proceeds by replacing single replicas in two
phases, while the object group as a whole remains oper-
ational for the duration of the upgrade. The first phase
involves an intermediate version, used to allow additional
flexibility in the permitted changes. This, in contrast to
our one-phase upgrade algorithm, is achieved through ad-
ditional complexity.

6 Conclusions

We have presented an algorithm that supports upgrading
an actively replicated server so that it is operational during
the upgrade process. The upgrade process is transparent to
the rest of the system and does not need human interaction
as it is dependable. The algorithm makes use of an underly-
ing GCS, in particular the group membership service and
a reliable total-order multicast, to ensure dependable up-
grade. Furthermore, our algorithm allow clients to seam-
lessly communicate with the replicated server group, even
during the upgrade phase.

The upgrade algorithm has been implemented using
the Jgroup [7] Group Communication System in conjunc-
tion with the Autonomous Replication Management frame-
work [6]. The current implementation covers the actual
algorithm, while it remains to implement a state transfer
mechanism for our upgrade algorithm. This is required
for stateful applications, to ensure that the newly upgraded
replicas maintain the state of the old replicas, so that clients
perceive a consistent state.

The presented mechanisms are part of theDynamic Up-
grade Management Frameworkaiming at supporting and
managing dependable upgrades of distributed systems on
the fly. Currently, we are working on the design of the man-
agement facility that will be responsible for managing mul-
tiple upgrades in the target system. Its task is to coordinate
the upgrades in all the dimensions of the upgrade manage-
ment space (time, range, multiplicity, atomicity and source
of upgrade initiation) and validate that the upgrades were
successful; and if not effectuate countermeasures to ensure
continuous availability.

7 Acknowledgements

The authors would like to thank Prof. Oddvar Risnes
(Telenor R&D Trondheim) for partial financial support to
undertake this work. We would also like to thank Sune
Jakobsson, Erik Berg and Prof. Bjarne Helvik for comments
on our work.

References

[1] T. D. Chandra and S. Toueg. Unreliable Failure Detec-
tors for Reliable Distributed Systems.Journal of the
ACM, 43(2):225–267, Mar. 1996.

[2] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
Communication Specifications: A Comprehensive
Study. ACM Computing Surveys, 33(4):1–43, Dec.
2001.

[3] D. Gupta, P. Jalote, and G. Barua. A Formal Frame-
work for On-line Software Version Change.IEEE
Transactions on Software Engineering, 22(2):120–
131, Feb. 1996.

[4] J. Kramer and J. Magee. The Evolving Philoso-
phers Problem: Dynamic Change Management.IEEE
Transactions on Software Engineering, 16(11):1293–
1306, Nov. 1990.

[5] H. Meling and B. E. Helvik. ARM: Autonomous
Replication Management in Jgroup. InProc. of the
4th European Research Seminar on Advances in Dis-
tributed Systems, Bertinoro, Italy, May 2001.

[6] H. Meling, A. Montresor, Ö. Babaŏglu, and B. E.
Helvik. Jgroup/ARM: A Distributed Object Group
Platform with Autonomous Replication Management
for Dependable Computing. Submitted for publication
to IEEE Transactions on Computers, special issue on
Reliable Distributed Systems, Feb. 2002.

[7] A. Montresor. System Support for Programming
Object-Oriented Dependable Applications in Parti-
tionable Systems. PhD thesis, Dept. of Computer Sci-
ence, University of Bologna, Feb. 2000.

[8] F. B. Schneider. Replicated Management using the
State-Machine Approach. In S. Mullender, editor,Dis-
tributed Systems, chapter 7, pages 169–198. Addison-
Wesley, second edition, 1994.

[9] M. Segal and O. Frieder. On-the-fly Program Modi-
fication: Systems for Dynamic Updating.IEEE Soft-
ware, pages 53–65, Mar. 1993.

[10] L. A. Tewksbury, L. E. Moser, and P. M. Melliar-
Smith. Live Upgrade Techniques for CORBA Ap-
plications. InProc. of the 3rd Int’l Working Con-
ference on Distributed Applications and Interoperable
Systems, Krakow, Poland, Sept. 2001.

6


