
TOWARDS A PLUG AND PLAY ARCHITECTURE
FOR TELECOMMUNICATIONS

Finn Arve Aagesen, Bjarne E. Helvik, Vilas Wuwongse, Hein Meling,
Rolv Bræk and Ulrik Johansen
Department of Telematics, The Norwegian University of Science and Technology

N-7491 Trondheim, Norway

finn.arve.aagesen@item.ntnu.no

Abstract This paper presents an architecture specified within the project “Plug-and-play for
Network and Teleservice Components” supported by The Norwegian Research
Council. The hardware and software parts, as well as complete network ele-
ments that constitute a communication system, shall have the ability to configure
themselves when installed into a network and then to provide services according
to their own capabilities, the service repertoire and the operating policies of the
system.

Plug-and-play components and functional objects are defined. A theatre anal-
ogy is chosen for the specification of the needed PaP support functionality. Plays
define the functionality of the system. PaP components are realised by actors
playing roles defined by manuscripts. An actor’s capabilities define his possibil-
ities for playing various roles.

Keywords: Plug-and-play, Architecture, Telecommunication, Teleservices, Network Man-
agement, Smart Networks, Intelligent Networks, Active Networks.

1 INTRODUCTION

Plug-and-play (PaP) for telecommunications means that the hardware and
software "parts", as well as complete network elements that constitute a com-
munication system have the ability to configure themselves when installed into
a network (to plug) and then to provide services (to play) according to their own
capabilities, the service repertoire and the operating policies of the system.

The concept PaP stems from the personal computing area. The objective of
PaP in these systems is the handling of the plug-in of new devices and software
into the desktop system. PaP simply means that you plug-in and then the system
works. In these systems, the plugged in component as well as the framework
haspredefinedfunctionality. We denote this kind of PaP asstaticPaP. As an
example, static PaP in telecommunications occurs when a mobile plugs into the

321



322 Finn Arve Aagesen, Et Al.

network when switched on. The system provides static PaP with respect to the
telephone service.

A more general kind of PaP is when the plugged-in unit has a set of basic
capabilities, but its functionality is defined as a part of the plug-in procedure
and it can be changed dynamically. We denote this kind of PaP asdynamicPaP.
An example is a cellular phone which obtains the services it provides depending
on its inherent capabilities, which user that logs on, and which network it is
attached to.

With dynamic PaP, the definition of individual components and possibly,
the overall structure of components can be changed on-line. One aspect of
dynamic PaP is to change the services that a component provides. Another is
to propagate the ability to use the service to all the service users.

The focus of this paper is on dynamic PaP.From now on the concept Plug-
and-play meansdynamicPlug-and-play. We foresee that dynamic PaP is needed
to cope with the highly dynamic, heterogeneous and rapidly evolving networks
and service provision of the future, and at the same time keep the networks
manageable. The extra complexity introduced by PaP will make development
more costly. However, it is expected that this cost is small compared to the ben-
efits related to deployment, installation, operation, management, maintenance
and evolution.

Section 3 defines the properties of a PaP system. Section 4 defines a PaP
reference architecture which makes dynamic PaP possible. Section 5 discusses
component categories and capabilities. Section 6 gives conclusions.

2 RELATED WORKS

The “grade of network intelligence” is here defined asthe efficient flexibility in
the execution of teleservices and the efficient flexibility in the introduction of new
teleservices. The semantics of network intelligence is obviously related to time
period in question. Intelligent Networks (IN) ([ITU92], [ITU93], [ITU97]),
Telecommunication Information Networking Architecture (TINA) ([TINA94],
[TINA95a], [TINA95b], [TINA95c], [TINA97a]) , Mobile Agents and Active
Networks ([Bies97], [Bies98a], [Bies98b], [Raza99], [Tenn96a], [Tenn96b],
[Tenn97]) are all solutions aimed to improve the network intelligence.

The PaP system described in this paper is based onmobile code. Both Mobile
Agents and Active Networks are based on mobile code. The mobile code can be
based onCode On Demand(i.e. get the code when you need it),Remote Evalu-
ation (i.e. send pieces of code to the destination, where the code can cooperate
with other pieces of code), andMobile Agents(i.e. the code has intelligence to
take decisions of where to go to get executed). Our model will mainly be based
on Code on Demand. Solutions to PaP within telecommunication networks has
also been proposed based on Mobile Agents ([Bies97], [Raza99]). However,



Towards A Plug and Play Architecture for Telecommunications 323

the PaP functionality proposed are less comprehensive compared to the PaP
functionality proposed in this paper. Note also that PaP as defined here has a
wider scope of the network flexibility and adaptability than any of the above
refered mobile agent and active network approaches.

3 PROPERTIES OF THE PAP SYSTEM

3.1 PaP components

The entities in the system subject to PaP are the PaP components. APaP
componentis a real-world “concrete” reactive hardware or software module.
PaP components can be:

Combined hardware/softwaremodules with one or more external hard-
ware interfaces and a software platform capable of running PaP applica-
tion software. Typical hardware modules are user nodes (i.e. user equip-
ment with network connection), network nodes (i.e. circuit switches,
packet switches, routers, cross-connects) and service nodes (i.e. service
providing servers and databases).

Pure software moduleswith interface to a software platform capable
of running PaP application software. Typical software modules provide:
Teleservice functionality, service and network management functionality,
resource and QoS handling functionality, network protocol, routing and
switching functionality and also plug-in and plug-out functionality.

Pure hardware modules are not feasible in the context of dynamic PaP. PaP
components will exist together with components that do not have the PaP func-
tionality. These are denoted as non-PaP components. In the following it is
assumed that all PaP components interact via a common DPE (Distributed Pro-
cessing Environment. PaP components can interact with non-PaP components.
Figure 1 shows a general PaP component model.

A PaP component cancontainother PaP components. All PaP components
have a relationship toPaP support. The PaP support is based on database
support. All PaP components can have a local data store not indicated in the
figure. The logical relationships between the PaP components is partly related
to how PaP is solved and partly to the specific functionality of the system.

As will be discussed in next section, the PaPcomponentfunctionality is de-
fined by afunctional object modelconsisting offunctional PaP objects. The
relationship between two PaP components is the result of the external commu-
nication between the functional PaP objects that are used for the “realisation”
of the PaP components. A functional PaP object is an instance of an PaP object
type. More details on this subject will be given in Section 4.



324 Finn Arve Aagesen, Et Al.

DPE (Distributed Processing Environment)

PaP support

PaP
Software
Component

PaP
Software/hardware
Component

PaP component Software

Database

Legend:
�

Hardware component

support

Non PaP
Software
Component

Non PaP
Software/hardware
Component

Non PaP
Hardware
Component

PaP
Software/hardware
Component
interfacting
non PaP components
and DPE

Figure 1 A general component model.

3.2 Requirements to the PaP system

PaP, as discussed here, is a technology intended for systems that shall be:

flexible and adaptable,

robust and survivable, and

QoS aware and have resource control.

The goal of the plug-and-play technology is to significantly simplify and
speed up the tasks of deployment, installation, management, evolution and
maintenance. However, system structure and functionality to ensure a depend-
able and traffic handling capable solution are also important system properties.
Note that neither the three "qualities" listed above, nor the requirements listed
below are strictly disjoint. PaP properties that contribute toflexible and adapt-
ablesystems are:

1. A system structure and functionality that is not fixed, but which allows
structural operations like adding, moving and removing components on de-
mand, blocking/deblocking of components in response to failures, etc. Hence,
it should be possible to add and change the functionality of the entire system
by adding or changing (software) components.



Towards A Plug and Play Architecture for Telecommunications 325

2. New components and their external capabilitiesare found automatically.
When a new component is plugged into a system, the system shall become
aware of its presence. For instance, a new transmission line plugged between
two routers should be recognised by the network and its capabilities, e.g. ca-
pacity, should be propagated to the routing algorithm of the network.

3. Continuous adaptation to the environment and operation strategies/policies.
These are responses of a PaP system to changes in its operational environment
and the conditions and rules it operates under. The system shall for instance
be able to adapt to a change in the volume and interest of the traffic offered.
Strategies/policies are set by the owner/operator of the system to guide its be-
haviour. Examples of strategies/policies are: priorities between services and/or
users, and routing in the transport network.

4. Recursive PaP functionality.A PaP system may be a PaP component of
a larger PaP system, i.e. aggregation of components. For instance, a router
may be a PaP component of a local area network. This network may again be a
component of a corporate network. With this recursiveness in mind, Property
3) also applies to the components of a system. Hence, they should have the
ability to configure themselves when they are added into a system or network
(ideally without human intervention) and have the ability to adapt themselves
to changes in their surroundings in the system or particular events.

To berobust and survivablea PaP system must:

5. Be based on a dependable distributed architectureencompassing both the
resources and the functionality of the system. The system shall not have a single
point of failure, i.e. rely on unreplicated centralised resources and information.
The system shall inhibit malicious and/or unauthorised modules to be plugged
into the system.

6. Reconfigure itself in the presence of failuresdue to logical and physical
faults. Failures due to physical faults will inevitably occur. The system shall
be able to detect failed hardware components and automatically reconfigure
itself so it can handle the workload and the functionality of the system to the
extent that the physical resources in the system allow. Failures due to logical
(software) faults are the more frequent. The system shall be able to detect these
and to reinitialise failed components. It should also be able to prevent the prop-
agation of errors in the system and import of errors from its environment.

7. Provide continuous operation.The system shall continue operation and
shall not interrupt service provision more than strictly necessary under: plug-in



326 Finn Arve Aagesen, Et Al.

and plug-out of components, changes in services, operation and maintenance
policies and manifestation of physical and logical faults.

To beQoS aware and to provide resource controla PaP system must:

8. Negotiate QoS and allocate resources in an optimal way. The basic types of
resources of the system will be transfer (transmission) capacity, storage capacity
and computation power. Limitations of these types of resource will restrict the
QoS provided for a given workload and service mix. The system (and its com-
ponents) shall negotiate with the users of its resources to ensure a good/optimal
utilisation of its resources under the operating policies of the system.

9. Provide monitoring of the resource utilisationand dynamically take ac-
tions to improve it. Improvement of resource utilisation includes, reallocation
of workload to other network elements and rearranging the location of pure
software components. With respect to physical resources, it is expected that the
system should be able to advice network operators and service providers about
resources needed and changes required in the physical structure.

4 A PAP REFERENCE ARCHITECTURE

4.1 The functional object model

The PaP components are modelled and designed using object-oriented prin-
ciples. PaP components are composed from (one or more) interacting instances
of PaP functional objects, where each instance is defined by reference to an
object type. ISO’s reference model for Open Distributed Processing (ODP)
[Duts96] defines the enterprise, computational, information, engineering and
technical viewpoints. These viewpoints are tools for some kind of separation of
the total system complexity. The computational and the engineering viewpoints
are the viewpoint ofprimary interestwith respect to PaP. The PaP components
are basically engineering viewpoint objects. However, the PaP components
have a computational viewpoint specification by the PaP functional objects,
which are basically computational viewpoint objects.

We consider behaviour specification to be a computational aspect indepen-
dent of the language used to express it. This because PaP always involves
behaviour. The PaP of pure information will also be described as a part of
the dynamic functionality. The computational model will also model the in-
formation which is subject to dynamic changes caused by the behaviour. In
the PaP context, information models are supplementary models supporting the
behaviour models.

A functional PaP objectis a model of an aspect of a PaP component focusing
on some behaviour aspect of the component. Most object-oriented systems



Towards A Plug and Play Architecture for Telecommunications 327

supports dynamic creation and removal of individual object instances. While
this may be sufficient for static PaP, dynamic PaP requires in addition that:

it is possible to change the definition of object instances and object in-
stance structures, i.e. to change their type,

to propagate the effect of such changes to involved object instances.

Thus, dynamic PaP require a PaP support system with the ability to manip-
ulate type definitions, and to dynamically change object behaviours and object
structures according to the changes of the corresponding types. This situation
has many similarities with the theatre, which is chosen as a model to describe
the support functionality of the PaP system. The basic structure of the PaP
system is illustrated in Figure 2. This model also acts as a “bridge” between the
PaP component specification and the functional PaP object specification. PaP
components are “realised” by actors and actors are the entities “realising” the
PaP functionality objects.

Actor
�

Playing−base

Manuscript−base

Director

Repertoire−base

Figure 2 PaP system - Basic structure.

The model has many actor instances, one instance of a PaP-director, one
instance of a repertoire-base, one instance of a manuscript-base and one instance
of a playing-base. For simplicity, the system is in the present version modelled
as a centralised system. An E-R model comprising important PaP concepts is
illustrated in Figure 3.

An actor is a generic object with a generic behaviour. Actors are able to
behave according to amanuscript. An actor also has a defined set ofcapabil-
ities, which is the ability or power to do something. Capabilities are inherent
properties of an actor, which can not be removed, replaced or copied without re-
moving, replacing or copying the entire PaP actor. The capabilities are the result
of the available hardware functionality connected to the hardware executing the



328 Finn Arve Aagesen, Et Al.

Manuscript

1

*
�

Supervise

Follow
*

�

1

*
�

ReferTo

Interface

Has

1

11
*

�

Follow

Term−manus
� Dynamics−manus

Role

*
�

Projected to
*

�

Follow
Projected

Capability

Has
*

�

1

Need

1

*
�

Director

Actor
�

1

1

1

1

1

*
�

1

Play

Has

Has
*

�
1

ReferTo

1

*
�

Defines

1

Role−session

Repertoire

Figure 3 PaP concepts.

actor software behaviour, but also the quantitative aspects such as processing
capacity. In other words, an actor is a generic abstraction of the whole or part of
the functionality of a real-world PaP component as defined above. The actors
capability will define which real-world PaP component functionality it is able
to act on behalf of.

A play is a defined autonomous functionality. The play defines the context
for relationships between PaP objects and their behaviour. One important PaP
object functionality necessary to initialise any play is thedirector. A director
behaviour is also defined by an instance of a play. An actor has three distinct
behaviour phases: 1): the plug-in phase, 2): the play phase and 3): the plug-
out phase. The director guides actors in the plug-in phase as well as in the
plug-out phase. Important functionality related to the plug-in-phase is actor
identification, actor access control, actor capability control and actor resource
and QoS negotiation and allocation.

The initiative to the plug-in of an actor will come from another PaP object
instance than the one that is to be plugged-in (i.e. an actor object instance
playing the same or another role). The initiative to plug-out can come from the
same object instance as the plug-out object instance.

The manuscript-basehas the manuscripts used by the actors to play their
roles. Theplaying-basekeeps a structural model of the instances of PaP objects
that is actually playing. Therepertoire-basekeeps an overview of the potential
plays and roles. Actors get an instance of a manuscript from the manuscript-
base via the PaP-director. The manuscript of the PaP-director is also a part of



Towards A Plug and Play Architecture for Telecommunications 329

the manuscript-base. Behaviour and accordingly the manuscript is part of a
play.

An actor is able to play various roles. A role is here similar to the theatre
concept. The role is defined by a manuscript. Manuscript defines the total
behaviour of an object. Arole sessionis a projection of the behaviour of the
actor with respect to one of its interacting actors. The role behaviour is specified
by an instance of a manuscript. The manuscript specifies: cooperating PaP
objects, how to reach the cooperating PaP objects, the interactions with the
cooperating PaP objects and internal behaviour resulting from an incoming
interaction.

There are two types of manuscripts:term-manusanddynamics-manus. A
term-manus is a dictionary of terms which might be referred to by actors during
their interactions to avoid ambiguity and misunderstanding. A dynamics-manus
describes the overall dynamic characteristics of an actor. The dynamics-manus
will also comprise the definitions of interfaces to be used during the play as well
as needed capabilities. The dynamical behaviour is specified by an Extended
Finite State Machine (EFSM).

Different from the theatre, and caused by the nature of telecommunication
service providing systems, an actor can have its behaviour related to various
plays at a time. However, an actor performs only one manuscript at a time.
A PaP component, however, can handle various manuscripts by using various
actors playing different manuscripts.

4.2 PaP support functionality

The following functionality is part of our dynamic PaP system: Play plug-in,
Play changes plug-in, Dynamic detection of needs for actors/plays/roles, Actor
plug-in, Actor behaviour plug-in, Actor play, Actor change behaviour, Actor
behaviour plug-out, Actor plug-out and Play plug-out.

Play plug-in involves the updating of Repertoire-base and the Manuscript-
base. The Play and role definition is assumed to have been done properly before
the plug-in. The validation of possible conflicting interactions with other plays
is a part of the new play plug-in problems to be considered. We denote this as
play interaction problem. The service interaction problem [Najm99] discussed
for years in the Intelligent networks community is of a similar nature.

Play-changes plug-ininvolves new object types and modified object types.
Problems related to conflicting behaviour is as discussed for Play plug-in above.
External changes must be considered as play plug-in. The challange is to keep
the system operational during the play-change installation period.

Dynamic detection of need of actors, plays and rolesis specified in a manuscript.
This is the "dynamic resource determination" solution. The advantage with this
solution is that it is dynamically determined if, when, and how many actors and



330 Finn Arve Aagesen, Et Al.

plays are involved. Another possible solution can be to statically determine the
needs for actors’ prior to the playing of a certain play. In this case all need
for, and allocation of actors and plays is done before the play start. The main
advantage with this solution is to assure that all needed resources are available
when starting a play. This is the "static resource determination" solution. A
third solution, the "combined resource determination", may be to allow use of
a combination of the two other solutions.

Actor plug-in is the creation of generic objects capable of playing various
roles. An actor pending for play is initiated. An actor needs an actor-id. An
actor is registered in the playing-base with a location-id and also its defined
capabilities.

Actor behaviour plug-outis necessary procedures for taking an actor out of
a play. This involves other actors and the playing-base.Actor plug-outis the
local removal of actors pending for play and also the updating of the playing-
base.Play-plug-outis the removal of the play from the repertoire-base and also
the manuscript-base. The semantics ofActor change behaviouris dependent
of the nature of the new behaviour. If the role is part of an existing “old” play,
then actor change behaviour is equivalent toActor behaviour plug-in. If the
role is part of a brand new play, then actor behaviour plug-in must be preceded
by play plug-in or play-changes plug-in.

The functions: actor behaviour plug-in, actor play and actor behaviour
plug-outcomprise the initialisation of a generic actor pending for a play, per-
forming the real play, and finally making the actor pending for a new play. This
functionality is denoted as thebasic PaP functionalityand is briefly described
as follows. The actor is initialised by first activating its PaP-director. An actor
negotiates with the PaP-director in order to obtain its behaviour. The negotia-
tion is related to the limiting capabilities of the actor, the needed capabilities of
the role and the optional choices of the role defined by the manuscript. Once
the negotiation has been completed, the PaP-director will create an instance
of a behaviour manuscript object with all necessary parameters bound particu-
larly for the actor and then send it to the actor. The PaP-director also acts as a
binding object which helps to establish communication or interactions among
actors. After receiving an instance behaviour manuscript from the PaP-director,
an actor will immediately start acting according to the specification described
in the manuscript. From this point on in time the actor becomes autonomous
and independent of the PaP-director.

5 COMPONENT CATEGORIES AND CAPABILITIES

The PaP component can be classified as clients and/or servers. A server
can be one of more clients for other servers. This gives atree-structuredsys-
tem of client-server relationships. A resource is a server with limited capacity.



Towards A Plug and Play Architecture for Telecommunications 331

Resources are important entities in a PaP system. A resource has a defined
capability with respect to a service and quality of service (QoS). The PaP com-
ponents can be categorised as

single objects,

local objects aggregatedand

global objects aggregated.

The single objects category is the simplest case where just one actor is
plugged into a given play. An example is a new terminal server. For local
objects aggregated, one component is plugged by using several actors at the
same location. Examples are user nodes, network nodes and server nodes. In
global objects aggreated, one component is plugged by using several actors at
different locations. One example is a server requiring new software compo-
nents at existing clients. In generala teleserviceis global and corresponds to
the result of behaviour performed by several distributed objects having various
roles. Each teleservice is seen as a play. Each new play adds some new roles.
Teleservices can not be defined separately and easily combined.

A capability has previously been introduced as the ability and/or power to
perform functions or provide information. A capability of a PaP component is
an:

inseparable,

non-replaceableand

non-replicable

by the system itself functionality or attribute of the component. An attribute
may be (private) information the component holds as well as performance char-
acteristics. Hence, the functionality and parameters given an actor during the
plug-in and during the play according to manuscripts are not capabilities. A
component may have several capabilities. A certain set of (provided) capabili-
ties is a prerequisite for filling a role as previously discussed.

The capabilities of an actor represents inherent, basic features that can be used
to perform the roles assigned to it. The use of capabilities may be specified in a
manuscript dynamically given to the actor, but the capabilities themselves can
not be specified by such manuscripts. If an actor is seen as a machine that can be
programmed using a manuscript language, then the semantics of this manuscript
language will be related to the capabilities. Loosely speaking the capabilities
provides the "instruction set" of the actor. They are not programmable (by
dynamic PaP operations), but may be used as primitives in manuscripts.



332 Finn Arve Aagesen, Et Al.

The concept of capabilities are most easily understood forcombined hard-
ware/software components. In this case, the functionality of the hardware is
embedded within the actor. The software part of the actor uses the functionality
of the hardware to play roles in a system. As one example consider a hardware
crypto module (e.g. a PCI board) and its accompanying software as a PaP
component. The ability to perform fast and strong encryption (and decryption)
based on the functionality of the hardware is capabilities of the corresponding
actor(s). Actors from this component may take a variety of roles like encryption
engine, decryption engine, digital signature generator and verifier and random
number generator.

Pure software componentsalso have capabilities, although these do not de-
pend on a physical item. In these components the capabilities will be defined
by:

Proprietary code. This code is embedded within the actor and can not
be (legally) separated from it or replicated in other ways. A software
implementation of crypto functionality mentioned in the example above
is an example of such code.

Private information. This may be personal information or company con-
fidential information which the actor may use but not reveal when it
performs its functions. Such information will be found in actors with
"agent functionality". For instance, an "agent-actor" playing in an auc-
tion type of service will have the bidding policies of its owner as one of
its capabilities.

Needed capabilitiesare used together with play roles and related manuscript,
whileprovided capabilitiesare used together with actors and components. Dur-
ing play performance the needed capabilities must be checked against the pro-
vided capabilities. This checking can be closely related to the interaction speci-
fications for a play. Each interaction specification has defined needed capability
requirements to the interacting actor. Only actors which can offer the needed
capabilities are allowed, and able to perform the specified interaction. The
conditions to be fulfilled before an interaction is possible due to requested ca-
pabilities, may be expressed as calculated optional sets of capabilities.

Since interaction between different plays are allowed, this also means that
both play identifiers (play-id) and capabilities must be globally unique.

6 CONCLUSIONS

An architecture concept for dynamic Plug-and-play has been presented. The
vision is a concept to be used to simplify and speed up the tasks of deploy-
ment, installation, operation, management, maintenance and evolution of vari-
ous types of telecommunication equipment and services.



Towards A Plug and Play Architecture for Telecommunications 333

Plug-and-play components has been defined as real-world concrete reactive
hardware and software modules. The PaPcomponentfunctionality is defined
by aPaP functional object model, consisting offunctional PaP objects. A func-
tional PaP object is an instance of an PaP object type. Dynamic PaP requires
that it is possible to change the behaviour of an object and to propagate the effect
of such changes. A functionality analogous to the theatre is chosen for the real-
isation of PaP. The most central issues are actors, roles, plays, manuscripts and
capabilities. An actors capability defines his possibilities for playing various
roles according to manuscripts.

The model presented is a step towards a complete architecture specification.
The results presented are now applied for the specification and implementation
of a PaP tele-school application demonstrator.

References

[Bies97] Andrzej Bieszczad and Bernard Pagurek, Towards Plug- and Play Net-
works with Mobile Code, Proceedings of ICCC’97, November 1997,
http://www.sce.carleton.ca/netmanage/publications.html.

[Bies98a] Andrzej Bieszczad and Bernard Pagurek and Tony White, Mobile Agents for
Network Management, IEEE Commucations Surveys, volume 1 number 1, 1998,
http://www.comsoc.org/pubs/surveys.

[Bies98b] Andrzej Bieszczad, S.K. Raza, Bernard Pagurek and Tony White, Agent-based
Schemes for Plug-and-Play Network Components, Proceedings of the3rd In-
ternational Workshop on Agents in Telecommunications Applications, IATA’98,
July 1998, http://www.sce.carleton.ca/netmanage/publications.html

[Duts96] Joubine Dutszadeh and Elie Najm, Formal Support for ODP and Teleservices,
Proceedings of the IFIP/ICCC conference on Information Network and Data
Communication, June 1996.

[Najm99] Elie Najm, On Service Feature Interaction, Proceedings of Smartnet’99, Invited
paper.

[ITU92] ITU-T, Principles of intelligent network architecture, October 1992.

[ITU93] ITU-T, Q1204: Intelligent network distributed functional plane architecture,
March 1993.

[ITU97] ITU-T, Intelligent network - Service plane architecture, September 1997.

[Raza99] S. K. Raza and Andrzej Bieszczad, Network Configuration with Plug
and Play Compnents, The Sixth IFIP/IEEE International Sympo-
sium on Integrated Network Management (to be presented) in 1999,
http://www.sce.carleton.ca/netmanage/publications.html.

[Tenn96a] David L. Tennenhaus,S.J. Garland, L. Shrira and M. Frans Kaashoek, From In-
ternet to ActiveNet, Request for Comments, January 1996.

[Tenn96b] David L. Tennenhouse and David J. Wetherall, Towards an Active Network Ar-
chitecture, Computer Communication Review, Volume 26 number 2, April 1996.

[Tenn97] David L. Tennenhouse, Jonathan M. Smith, David Sincoskie, David J. Wetherall
and Gary J. Minden, A Survey of Active Network Research, IEEE Communica-
tions Magazine, Volume 35 no 1, 1997, pages 80-86.



334 Finn Arve Aagesen, Et Al.

[TINA94] TINA Consortium, TINA-C Deliverable: Engineering Modelling Concepts, V2.0,
December 1994.

[TINA95a] TINA Consortium, TINA-C Deliverable: Overall Concepts and Principles of
TINA V1.0, February 1995.

[TINA95b] TINA Consortium, TINA-C Deliverable: Computational Modelling Concepts,
V2.0, February 1995.

[TINA95c] TINA Consortium, TINA-C Deliverable: Information Modelling Concepts, V2.0,
December 1995.

[TINA97a] TINA Consortium, TINA-C Deliverable: Service Architecture, V5.0, June 1997.


