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“The proof of this theorem is not easy.”
David Hilbert, 1890



Preface

I have had the opportunity to be working with a topic that combines classi-
cal material, both easy to grasp and quite the opposite, with modern ongoing
research. The objects studied are simple singularities, or Klein singularities,
Du Val singularities, rational doublepoints ... The richness of names gives an
indication of the wide range of possible angles of view. Moreover, the celebrated
ADE classification reveals links to as different subjects as Lie algebras, finite
subgroups of SL(2), quivers, Von Neumann algebras plus some physics and other
stuff T know nothing about. And of course the platonic solids. McKay’s observa-
tion from 1980, the so called McKay correspondence, deals with the link to finite
subgroups of SL(2). In 1996 Ito and Nakamura found a viewpoint connected
with the Hilbert scheme of points in the plane, and their work is the starting
point of my thesis.

The McKay correspondence works as a guiding problem throughout this
text. There are two rather different parts: The first, shorter part is chapter 2,
where a slight variation over Tto/Nakamura’s construction is formulated. Some
results are shown, whereas other conjectures and questions are left open. The
second part, which is chapters 3-6, consists of explicit calculations, verifying
the conjectures from chapter 2 in special cases. This part uses a strategy from
[ES88], utilizing torus actions and associated cell decompositions.

Make the following conventions: All schemes considered are defined over an
algebraically closed field k of characteristic zero. For an affine scheme X | write
k[X] for the coordinate ring, i.e. the ring of global sections of the structure
sheaf Ox. In general the notation follows (of course) Hartshorne [Har77].

I would like to thank everyone at the mathematics department at the Univer-
sity of Oslo, and in particular the algebraic geometry and topology groups—both
students and employees. Most of all I am grateful to my supervisor, professor
Geir Ellingsrud, both for all the time he has spent teaching, explaining and
discussing with me, and for showing me the way into a rich and challenging
subject.

Martin G. Gulbrandsen
Oslo, 1st December 2000
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Chapter 1

Background

1.1 Simple singularities

The objects studied in the present paper are simple singularities and their reso-
lutions. There are many characterizations of such singularities. In this text the
following will be taken as the definition.

Definition 1.1. A point p on a surface X is a simple singularity if it 1s analyt-
ically isomorphic to the singularity at the origin in the quotient A?/G for some
finite group G' C SL(2) acting the natural way on AZ.

It is well known that such a singularity admits a unique minimal resolution
m: X — X, i.e. such that every other resolution factors through m. Further-
more, the components of the exceptional fibre 7=!(0) are smooth rational curves
intersecting transversally.

The conjugacy classes of finite subgroups of SL(2) consist of two countable
families, the cyclic and binary dihedral groups, and the three binary platonic
groups, the binary tetrahedron, octahedron and icosahedron group. The cor-
responding quotient singularities are said to be of type A,, D,, Fs, E7 and
FEg. The naming comes from the following construction: Given the resolution
7 : X — X one may draw a graph, with one vertex for each component of
the exceptional fibre, and with an edge connecting two vertices whenever the
corresponding curves in X intersect. The resulting graph, called the dual graph
of m, is one of the Dynkin diagrams A,,, Dy, Eg, E7 and Fg.

Of interest are also the (non-simple) singularities A?/G for finite subgroups
G C GL(2). The abelian case is treated in chapter 6.

1.2 McKay’s observation

Definition 1.2. Given a finite subgroup G C SL(2), the canonical representa-
tion @ 1s the representation of degree 2 given by the inclusion.

With G as above, let {V;} be the set of irreducible representations and let
Vi®Q = @ a;;V; be the isotypical decomposition. The integers a;; thus defined
turn out to have the properties that a;; = aj; and each a;; is either 0 or 1 (this
is not true for subgroups of GL(2) in general). Thus one may construct a graph
as follows.
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Definition 1.3. The representation graph of a finite subgroup G' C ST.(2) con-
sists of a vertex for each irreducible representation, and an edge connecting the
representations V; and V; whenever V; occurs in V; ® Q.

McKay’s observation [McK80] is that the representation graph is an “ex-
tended” Dynkin diagram: If one removes the vertex corresponding to the trivial
representation then the result equals the dual graph of the minimal resolution of
A?/G. Thus there is a bijective correspondence between the irreducible compo-
nents of the exceptional fibre and the irreducible representations of the group,
preserving the structure given by the edges in the two graphs. This is called
the McKay correspondence. The correspondence can be verified by checking
each case, although such a procedure isn’t very illuminating. The haunt for a
natural way of realizing the McKay correspondence has triggered a lot of re-
search. Of importance is the construction by Gonzalez-Springberg and Verdier
[GSV83] where the correspondence is interpreted in terms of K-theory. Roughly
speaking, it says that K-theory on the resolution of A%/G equals G-equivariant
K-theory on A2, This viewpoint opens for possible generalizations in several
directions.

1.3 Tto/Nakamura’s construction

The following construction is described by Ito and Nakamura [IN99].

Let n be the order of the group G C SL(2). There is a natural inclusion
A?/G < Sym"™(A?) into the symmetric product of n copies of the plane, sending
an orbit to its n points. The Hilbert-Chow morphism

Hilb" (A?) — Sym"(A?) (1.1)

sending a zero-dimensional subscheme to its support, counted with multiplic-
ities, is known to be a resolution of singularities [Fog68]. The idea is to use
this morphism to construct a resolution of the simple singularity. The inverse
image of A%/G is the fixpoint locus Hilb"(A?) under the induced action of
G on Hilb"(A?). Now this subscheme may not be connected, but there is a
distinguished component.

Definition 1.4. The Hilbert scheme of G-orbits, G-Hilb(A?), is the unique
component of Hilb"(A2) containing the points corresponding to free G-orbits
in A2,

Proposition 1.5 ([IN99]). The restriction of the Hilbert-Chow morphism to
G-Hilb(A?) is a minimal resolution of A?/G (considered as a subscheme of

Sym™(A?%)).

A few remarks on the nature of G-Hilb(A?) is in order: At the level of sets,
view (the closed points of) the Hilbert scheme of points as a set of ideals.

Hilb”(A?) = {I C k[A?]| dimy k[A?]/T = n} (1.2)

Proposition 1.6 ([Nak99]). The closed points of G-Hilb" (A?) are the ideals
I in Hilb" (A% such that k[A?]/] = k[G] as k[G]-modules.
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Thus, if one defines a “scheme theoretic orbit” to be a finite G-invariant sub-
scheme 7 C A? with coordinate ring isomorphic to k[G], the scheme G-Hilb(A?)
may be viewed as a parameter space of such orbits.

Ito/Nakamura’s construction of the McKay correspondence is now as follows.
Consider the minimal resolution given by the Hilbert-Chow morphism

f: G-Hilb(A?) = A%/G (1.3)

with reduced exceptional fibre ' = f~'(0).eq decomposing into irreducible com-
ponents F;. Denote the maximal ideal corresponding to the origin in A? by m
and the ideal generated by non-constant invariants by n. Let 7 € F; be an ideal
corresponding to a smooth point of £, then associate to F; the representation
I/(mI 4 n), which turns out to be irreducible and independent of the choice of
I. This association realizes the isomorphism of graphs described by McKay. In
Tto/Nakamura’s work this is verified by case-by-case calculations.

1.4 Generalizations

The construction of G-Hilb(A?) for G C SL(2) can be generalized to G-Hilb(X)
for other groups G acting on other schemes X. In general proposition 1.6 may
not be true, so there are two possible definitions of G-Hilb(A?) — either using
definition 1.4 or taking the characterization in proposition 1.6 as the definition.
In the cases mentioned below, they are equivalent (for this, see [BKR99]). In
any case, there are a number of questions to be raised: Is G-Hilb(X) smooth,
is it a resolution of singularities and can the McKay correspondence be gener-
alized? Having the construction of Gonzalez-Springberg and Verdier in mind,
such generalizations are commonly formulated in terms of K-theory or derived
categories.

The case G-Hilb(A?) for G C SL(3) is the most well-studied generaliza-
tion. The map induced by the Hilbert-Chow morphism is indeed a resolution,
which may be surprising, since Hilb”(A?) is far from smooth. Furthermore,
a McKay correspondence in terms of equivalence of derived categories is con-
structed by Bridgeland and others in [BKR99]. For abelian groups one may
construct G-Hilb(A?) as a toric resolution. However, such a resolution is no
longer unique, so one may ask which one is the “distinguished one”; a question
that is answered explicitly by Craw and Reid [CR99].

Another case of interest is G-Hilb(A?) for any finite, small (i.e. without
reflections) G C GL(2). G-Hilb(A?) is then a minimal resolution. A gener-
alization of the McKay correspondence to this setting does exist and gives a
bijection between the components of the exceptional fibre and a subset of the
irreducible representations, called “special” representations. A description in
terms of derived categories is given by Ishii [Tsh00].

The present paper is mainly devoted to the study of G-Hilb(A?) for G C
SL(2). The techniques used may also be applied to the general case G C GL(2),
but are restricted to dimension 2 because of a heavy dependence upon the
Hilbert-Burch theorem. A short treatment in the case of abelian subgroups of
GL(2) is given in chapter 6.



Chapter 2

Construction of the McKay
correspondence

In this chapter a construction of the McKay correspondence is given. It is
slightly different from the one given by Tto/Nakamura, but shown to be equiv-
alent to theirs. The results given here are partly conjectural. The idea is to
set up a framework in which the correspondence can be given a good formu-
lation, and prove as much as possible in this general setting. The conjectures
are verified in special cases by explicit calculations (independent of the ones by
Tto/Nakamura) in the next chapters.

In the following, the ideals in the exceptional fibre E of the resolution
G-Hilb(A?) — A?/@ are studied. Note that E consists of the ideals supported
at the origin, so one has

E = {I € G-Hilb(A?)| T C m}. (2.1)

It is convenient to work with the local ring k[[z, y] in place of k[A?] = k[z, y]. To
be able to transfer the results back to k[A?] one should make some observations.
First, a G-invariant ideal I C k[z,y] gives rise to the G-invariant ideal J =
Ik[z,y], and if k[z,y]/I is finite dimensional as a k-vector space, then it is
isomorphic to kfz,y]/J as a k[G]-module (the basis for the first vector space
maps to a basis for the latter under the inclusion k[z, y] C k[, y]). Furthermore,
the two k[G]-modules Soc(k[z,y]/I) and I/mI shall be of interest, and these are
isomorphic to Soc(k[z,y]/J) and J/mJ respectively. Here m denotes the ideal
generated by z and y in both rings and the socle is its annihilator. So let
R = k[z, y] for the rest of this chapter and make the convention that “an ideal
I in E” means the ideal generated by I in k[z,y]. Then everything said about
the k[G]-modules Soc(R/T) and I/mI also applies when replacing R by k[z, y].

2.1 Statement

Theorem 2.1 (McKay correspondence). Let G C SL(2) be a finite sub-
group and let

f:G-Hilb(A?) - A?/G (2.2)
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be the resolution given by the Hilbert-Chow morphism with reduced exceptional
fibre E = f=1(0)req decomposing into irreducible components E;. Let I € E; be
a smooth point of E. Then the following holds.

(i) Soc(R/I) is irreducible.

(ii) Up to isomorphism, the representation Soc(R/I) is independent of the
choice of I € E; along smooth points of E.

(ii1) This association gives a bijection between the set of irreducible components
{E;} and the set of irreducible nontrivial representations {V;}.

(iv) Two components F; and E; intersect if and only if the corresponding rep-
resentations V; and V; are adjacent in the representation graph, i.e. V;

occurs in Q @ V;.

The representation Soc(R/I) is shown to be the same as Ito/Nakamura’s
I/(mI + n) in proposition 2.5. The theorem is thus a reformulation of their
work. In the following, an independent partial proof is given: Modulo two
conjectures given, it is shown that the association F; — V; is well defined, and
if it is a bijection, then it is in fact a realization of the isomorphism of graphs
observed by McKay. In the next chapters it is verified that this construction
indeed is a bijection in the A, and D, cases.

2.2 Equivariant free resolutions

In this section the existence of an isomorphism of representations Soc(R/T) =
I/(mI 4+ n) is proved. This result follows from studying G-equivariant free
resolutions of 7. Apart from showing that theorem 2.1 is equivalent to the work
by Ito/Nakamura, the isomorphism is significant for the attempts at proving
the theorem, given later in this chapter.

Since R is local there exists a unique minimal free resolution of 7. In fact
such a resolution can be made G-equivariant.

Proposition 2.2. Let G be a finite group acting on a local ring A, keeping the
mazimal ideal m invariant. Let M be a finitely generated A[G]-module. Then
there exists a minimal free resolution of M as an A-module such that the free
A-modules and the maps between them also carry the structure of A[G]-modules
and -homomorphisms.

Proof. This follows from the standard construction of a minimal resolution,
taking care to make all maps equivariant. By Nakayama’s lemma, there exists a
minimal generating set fi1, ..., fr of M as an A-module, corresponding to a basis
fi, . f. of M/mM as a vector space over K = A/m. Let F} = A®x M/mM,
which is free as A-module. Let ¢ : Fy — M be any A-module-homomorphism
such that there is a commutative diagram

FlL)M

\ | 23)

M/mM
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(for instance defining ¢(a® f;) = af;) where the diagonal map is the composite
Fi = Fy ®a K= M/mM. For any g € G, ¢ may be replaced by the map g - ¢
taking a € Fy to gp(g9~"a) without affecting the commutativity of the diagram,
because the other two maps are equivariant. So one may set

1
pr=T=> g-¢ (24)
G| =2

which is a G-equivariant map Fi; — M, still giving a commutative diagram.
Now replace M by the kernel of this map and construct Fy and s the same
way. Continuing like this gives the resolution. |

The Hilbert-Burch theorem applied to I € E states that the free resolution
is of the form

0—=Fy—>FL—=1—=0 (25)

where Fy = R™ and F} = R™*! as R-modules, and where the (matrix of the)
second nontrivial map consists of the m x m minors of the first, with proper
signs inserted. In fact, the precise R[G]-module structure of the free R-modules
can be determined.

Proposition 2.3. Let I be a point in the exceptional fibre and let
0> Fy—>F,—>1-0 (26)
be a minimal, G-equivariant, free resolution of I. Then

Fi ®r k= SocR/I (2.7)
Fo@Qrk = I/m[

as k[G]-modules.
Proof. Apply — ®g k to the given resolution to obtain the exact sequence
0— Tory(I,k) > R" @k 5 R™ ' @k — [©k— 0. (2.9)

Because of the assumed minimality, the middle map is zero as indicated. Since
I®k = I/ml in a G-equivariant way, the last statement is proved. To calculate
Tory (I, k), use the short exact sequence

0=1—-R—-R/IT=0 (2.10)
which gives
0 — Tora(R/I,k) — Tory (I, k) = 0 (2.11)
in a G-equivariant way. The free resolution of k
0 R g 00 g (2.12)
shows that Tors(R/I, k) is the second homology module of
0— R/I— (R/I)* = R/I. (2.13)
So Tors(R/1,k) = ker(R/I — (R/I)*) = Soc(R/I). a
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Let R(G) denote the representation ring of G and let K(R) denote the
Grothendieck group of finitely generated R[G]-modules, that is, the free abelian
group generated by all finitely generated R[G]-modules, divided by the relations
M — M'" — M" for all extensions 0 - M’ — M — M" — 0. There is an
isomorphism of groups R(G) = K%(R) described by Gonzalez-Springberg and
Verdier [GSV83], sending a representation V' to the R[G]-module V @, R. The
inverse map sends an R[G]-module M to the element Z(—l)iTorf(M, k) of
R(G). For M projective this is just M @r k.

In view of this isomorphism, proposition 2.3 implies that /'y = R®jSoc(R/1)
and Fy = R®p I/ml as R[G]-modules.

Under the isomorphism R(G) = K% (R) just described, the free resolution in
proposition 2.3 carries over to a relation between the representations Soc(R/I)
and I/mlI. For this a lemma is helpful.

Lemma 2.4. Let M be a finitely generated R[G]-module supported in m. Then

M=) miM/m* M (2.14)
i>0

in K9(R). In particular, the class of M is determined by its k[G]-module struc-
ture.

Proof. The short exact sequences
0= m*T'M s m'M - wm'M/m*'M -0 (2.15)

show that m' M = m! M/m*t' M +mi+t' M in K“(R). Since M is supported in m
there exists an integer N such that mM M = 0, thus M = Z?;Bl m! M /mitt M.

The last statement follows when noting that M = @, m' M/mi*!' M as k[G]-
modules, which follows from the same short exact sequence. O

Proposition 2.5. There is an isomorphism I/mI = Soc(R/I) ® k of k[G]-
modules.

Proof. The minimal free resolution
0— R®Soc(R/I) > R®I/mI - R— R/T—0 (2.16)
gives the relation
R®I/ml =R®Soc(R/I)+R—R/I (2.17)

in K%(R). Furthermore, by lemma 2.4, R/I = k[G] in K-theory since they are
isomorphic as k[G]-modules. In R(G) this gives the relation

I/mI = Soc(R/T) + k — k[G] (2.18)

Thus the lemmafollows if k[G] = 0in R(G). For this, consider the G-equivariant
Koszul complex

(2¥) )

—y .
0—>RL>R®1€Q(—y>R—>R/m—>O. (2.19)



12 CHAPTER 2. MCKAY CORRESPONDENCE

Then one may apply — ®g k[G] to obtain the exact sequence
0 — R[G] — R @ (k[G] @& Q) — R[G] — k[G] — 0. (2.20)

Now k[G] ®x @ = k[G]®?, in fact k[G] @k V = k[G]9 98V for any representation
V, since the character x of k[G] is given by x(g) = 0 for any g # 1 and
x(1) = deg V. Thus, in K%(R) there is a relation

R[G] — R[G]** + R[G] — k[G] =0 (2.21)
showing that k[G] = 0. O

Remark 2.6. The representation Soc(R/I) never contains the trivial represen-
tation. For the regular representation R/ contains exactly one copy of the
trivial representation, namely (1). But 1 generates R/I as an R-module, so
1 € Soc(R/I) would imply R/T = (1).

In Ito/Nakamura’s work, the trivial summand in 7/mI is killed off by dividing
out all invariants: By proposition 2.5 and the subsequent remark, Soc(R/I) =
I/(mI 4+ n), so the correspondence formulated in theorem 2.1 is the same as the
one formulated by Ito/Nakamura.

2.3 Partial proof of the theorem

2.3.1 Irreducibility

First consider point (i) in theorem 2.1, the irreducibility of the representation
Soc(R/I).
Proposition 2.7. Let I be an ideal in E. Then the representation Soc R/ is

etther irreducible or a sum of two distinct irreducibles.

Proof. The tangent space at I in Hilb”(A?) is Hompg(I, R/T), hence the tangent
space at I in G-Hilb(A?) is the G-invariant part, or Hompe (1, R/I). Clearly,

Homyg)(I/ml, Soc(R/I)) = Hompgg) (I, Soc(R/1)) C Hompg[e (I, R/I) (2.22)

where the isomorphism is composition with I — I/m/ on the left and the
inclusion is composition with Soc(R/I) < R/I on the right. The leftmost map
is an isomorphism since the kernel of an R-module-homomorphism

I — Soc(R/T) (2.23)

necessarily contains m/, and furthermore z and y act trivially on both I/mI
and Soc(R/I). The result follows from a dimension count: Suppose Soc(R/I) =
P a;V; is the isotypical decomposition. Then, by remark 2.6, the trivial repre-
sentation Vg doesn’t occur, and I/mI & Vy = @ a;V;. By Schur’s lemma

dim Homy ¢ (1/m1,Soc(R/1)) = > af. (2.24)
On the other hand, the dimension of the tangent space Hompg(q (1, R/I) is two

since G-Hilb(A?) is a smooth surface, so by (2.22) one has 5 a7 < 2. Thus, a;
is nonzero for at most two indices i, for which a; = 1. O
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It seems reasonable to suggest the following sharpening of the previous
proposition.

Conjecture 2.8. Let I be an ideal in E. Then the tangent space to E at I is
Tr(E) = Homy g (I/mI,Soc(R/T)). (2.25)

Corollary 2.9. Assume conjecture 2.8 is true. Then, if [ is a smooth point
in E, Soc(R/I) is irreducible. Otherwise Soc(R/I) is the sum of two distinct
irreductbles.

In particular, point (i) of theorem 2.1 follows from the conjecture.

In [IN99] it is proved by case-by-case computations that 7/(mI 4+ n) is ir-
reducible at smooth points of £, and the sum of two irreducibles at singular
points. Thus, in view of proposition 2.5, the corollary is true. This provides
some evidence for the conjecture.

2.3.2 Global socle

Let E; be an exceptional component in G-Hilb(A?), and let 7 : Z — E; be
the restriction of the universal family to Ej;, such that the fibre over p € E;
is the subscheme of A? corresponding to the point p itself. Let I be the ideal
corresponding to p. Then the fibre over p has coordinate ring R/I, and there is
a homomorphism of representations

R/I = R/I® Q (2.26)

sending a € R/ to az @ y — ay @ . Note that for this map to be equivariant, it
is essential that G is a subgroup of SL(2). The representation Soc(R/I) is the
kernel of this map. The idea is to give a “global” version of this construction, in
terms of sheaves on F;, which fibrewise approximates this situation.

So consider the G-equivariant morphism of Og,-modules

Oz — (71'*02) k@ (2.27)

defined locally as above, sending a € Oz(7~'(U)) to azx@y—ay@z for any affine
open U C E;. Let £ denote the kernel of this map. This is the candidate for a
“global socle”. Restricting to the fibre over p one has R/I = (7.Oz) ®0g, k(p),
where k(p) denotes the residue field at p. The complex obtained by applying
— @ k(p)

EQk(p) =m0z @ k(p) = ((m07) @1 Q) @ k(p) (2.28)

may not be exact. However, the kernel of the rightmost map is by definition
Soc(R/I), so there is a canonical homomorphism of representations € ® k(p) —
Soc(R/I). This may not be an isomorphism, but due to the fact that E; is a
smooth curve, it is in fact a monomorphism.

Lemma 2.10. Let p € FE; correspond to the ideal I C R. Then the canonical
homomorphism £ ®y k(p) = Soc(R/I) is injective.
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Proof. Consider the exact sequence of Og,-modules
08— m0z - (m0z)0, Q> F =0 (2.29)

where F is the cokernel. The claim is that the inclusion & — 7,07z is locally
split. If this is the case, then tensoring with k(p) preserves the splitting, giving
the inclusion £ ® k(p) — 7.0z @ k(p) with image in Soc(R/I) as above.

The local splitting occurs as follows. Since 7 is finite and flat .0z is
locally free. Thus the map (m.0z) ®k @ — F is locally the beginning of a free
resolution of F. In fact the kernel G of this map must also be locally free, since
the projective dimension of any Og,-module is locally at most dim F; = 1, F;
being smooth. So there is a short exact sequence

05€8—->m0z >G>0 (2.30)

where the middle and rightmost modules are locally free. Thus the sequence is
locally split. O

Now for the proof of (ii) in theorem 2.1. Assuming (i) is true, the following
result is sufficient.

Proposition 2.11. Let p; € E; (j = 1,2} be two smooth points of E corre-
sponding to ideals I; such that the representations Soc(R/I;) are irreducible.
Then Soc(R/I1) = Soc(R/I2).

Proof. Let e; € k[G] be idempotent elements such that k[G] = € e;k[G] is the
isotypical decomposition. Then there is a canonical decomposition of the “socle
sheaf” £ = Pef.

Now the map & @ k(p;) — Soc(R/I;), which is injective by the previous
lemma, must be an isomorphism when Soc(R/ ;) is irreducible. Thus E&@k(p;) is
also irreducible, equal to one of its direct summands e, (E@k(p)) = (e1,£) @k(p).
But then £ = ¢;,& = ¢;,&, so there are in fact isomorphisms

Soc(R/I) = E® k(p1) = € @ k(p2) = Soc(R/I3) (2.31)

proving the proposition. |

2.3.3 Adjacency

Now assume that (iii) in the theorem is true, such that the association £; — V;
constructed is a bijection. To shed some light on point (iv), the adjacency
condition, one may again utilize the global socle construction.

Proposition 2.12. Letp € E;NE; for i+ j and assume F; and E; correspond
to two distinct irreducible representations V; and V;. Then Soc(R/T) 2 V; @ V.

Proof. Let £ and &' be the “socle sheaves” on FE; resp. ;. Then, by lemma
2.10, there are two injections

Vi 2 €@ k(p) = Soc(R/I) « & @ k(q) = V;. (2.32)

By assumption V; 2 V;, so Soc(R/I) contains V; @ V;. By proposition 2.7,
Soc(R/I) is the sum of at most two irreducible representations, hence the iso-
morphism is proved. |
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Hence if two components E; and E; intersect, one has the reducible repre-
sentation Soc(R/I) at the intersection point. A possible strategy for explaining
point (iv) of theorem 2.1 is then to study which representations that can coexist
in a socle.

For this consider the G-equivariant product map

m/m? ® Soc R/T — I/ml. (2.33)

Note that this is indeed well defined. The representation m/m? is precisely the
canonical representation ). Letting V' = Soc R/I and composing on the right
with the projection I/mI — I/(mI + n) = V, one obtains a homomorphism of
representations

QeV sV (2.34)

Now, if V is irreducible, this map is zero by Schur’s lemma, since the represen-
tation graph of G C SL(2) contains no loops.

Conjecture 2.13. If V = Soc(R/I) is the sum of two irreducible representa-
tions, the map

QaV =V (2.35)

defined above 1s a projection.

If the association F; — V; defined by the socle construction is a bijection
between irreducible exceptional components and nontrivial irreducible represen-
tations, point (iv) of theorem 2.1 follows from this conjecture. In other words,
the bijection between the nodes of the two graphs considered gives an isomor-
phism of graphs. For this, assume F; and E; are two components that intersect,
so that Soc(R/I) = V;@V; for I € F;N E;. The conjecture claims the existence
of a projection map Q @ (V; @ V;) — Vi @ V;. Then Schur’s lemma implies that
Vi occurs in @ @ Vj, i.e. Vi and Vj are adjacent in the representation graph.
Thus there is an edge in the representation graph for each edge in the dual
graph of the resolution. Conversely there can’t be any other edges present: The
exceptional fibre is connected, hence the dual graph is connected. The presence
of an extra edge would then imply the existence of a loop in the representation
graph, but no such loop exists.



Chapter 3

Preliminaries on torus actions

3.1 Torus actions and cell decompositions

In this section, some techniques from [ES87, ES88] are reviewed, together with
some other general results, for later application to G-Hilb(A?). There are no
new results in this section.

Let k[Ty, Ty, T5] be the homogeneous coordinate ring of P? and define A% C
P2 by Ty # 0. Thus k[A?] = k[z,y] with @ = 71/T5 and y = T3/T5. Then
Hilb" (A?%) denotes the subscheme of Hilb" (P?) consisting of finite schemes of
length n supported in the chosen A% C P2.

Let T' C SL(3) be the two-dimensional algebraic torus consisting of all diag-
onal matrices. Then there is a canonical action of T' on P2 given by 1; — a;1;
for each element a = diag(ag, a1, az2) in I'. Then A? is invariant under I’ and the
action restricts to # /> ZLa and y — ¢2y. Let A and p denote the corresponding
characters, such that A(a) = ¢ and p(a) = 2. Note that the induced action
on Hilb"(P?) keeps Hilb"(A?) invariant.

One may now consider one-parameter subgroups G,, — [, inducing an
action of G,, on the schemes P%, A? Hilb"(P?) and Hilb"(A?). The reason

for studying this is the following result.

Definition 3.1. A cell decomposition of a scheme X is a chain of closed sub-
schemes Xo C X1 C -+ C X,, = X such that each X; \ X;-1 (with X_1 = @) is
a disjoint union of locally closed subschemes U;;, each isomorphic to some affine
space A", The spaces U;; are called the cells of the decomposition.

Theorem 3.2 ([BB73|[BB76]). Let X be a smooth projective variety with a
G,,,-action such that the fizpoint locus is a finite set {p;}. Then X has a cell
decomposition with cells

Ur={pe X | limt-p=pi}. (3.1)

Furthermore, denote by Ty, (X)*1 the subspace of the tangent space Ty, (X) where
the weights of the induced G, -action are positive. Then

Tpi(Ui) :Tpi(X)+' (32)

16
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This result is applied to Hilb” (P?) in [ES88]. In this paper it will be ap-
plied to some other subschemes of Hilb" (P?). The finiteness of the fixpoint set
requires some discussion.

Lemma 3.3. Let I C k[z,y] be invariant under the I'-action above. Then I is
generated by monomials.

Proof. Let f € I be the sum of terms cijmiyj. Then
yof =Y A u(y ety €T (3.3)
for all v € I'. Since k is infinite it follows that each term cijxiyj isin 1. O

Obviously this shows that there are finitely many I-fixpoints in Hilb" (A %),
since there are finitely many monomial ideals of length n. For Hilb"(P?), one
may write any finite scheme Z C P? of length n as the union of finite schemes of
length < n supported in some affine A2 C P? and apply the same observation.

For most one-parameter subgroups ¢ : G,,, — T, the fixpoint set under the
G,,-action 1s the same as that under the I'-action: For the next lemmas, let
T' be any n-dimensional torus (after this it will stay two-dimensional forever!)
with n linearly independent characters A;. Then 9 is determined by the integers
(a1, ...,an) € Z" such that A; o ¢(t) = t%. Thus one may write ¢y € Z".

Lemma 3.4. Let X be a scheme, proper over k, with an action of a torus T'.
Then the firpoint locus XU is nonempty.

Proof. By induction on dimI'. First assume dimI' = 1, that is, I' = G,,,. For
any p € X, lim;_,gt - p is a fixpoint, and the limit exists because X is proper.
Induction step: If dimT > 1 write I' = 'y x 'y where T'; are tori of dimension
< dimT. By induction X1 is nonempty, and since it is ['s-invariant and closed
the induction hypothesis may be applied again to see that (XT1)T' is nonempty.
But this is X, O

Proposition 3.5. Let X be a projective scheme with an action of an n-dimen-
stonal torus T' such that the fixzpoint locus is finite. If a one-parameter subgroup
¥ 1 G, — T s chosen outside a finite number of fired hyperplanes in Z", then
XT = XGm,

Proof. 1f W is a component of XG=  then W is closed and T-invariant by the
commutativity of the two actions. Thus, by lemma 3.4 there is a T'-fixpoint
p € W. The induced action of T' on T,(X) decomposes into irreducibles with
characters x1,...xr, and since all fixpoints of T' are isolated, x; # 0 for all 7.
The action of G,;, on T,(X) has characters y;o1, so p is also an isolated fixpoint
for G, (that is, {p} = W) if ¢ is chosen outside the hyperplanes defined by
xi 0% = 0. Repeating this for each point in XT gives the finite number of
hyperplanes. O

Remark 3.6. Given a torus action on a scheme X, a subgroup G,, — I will be
called generic if it is chosen outside the hyperplanes dictated by the previous
lemma.
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S I

tangent vectors

v eyl
yoryl b
1 e 22

Figure 3.1: Monomial ideal

So any generic one-parameter subgroup ¢ : G,, — ' induces a cell decom-
position of Hilb” (P?). Moreover, if the subgroup is chosen with some care then
Hilb" (A?) is a union of cells in the decomposition of Hilb™ (P?): If the induced
G,,-action on A? has negative weights on coordinates, that is, ¢ - = t?z and
t-y = tby for all t € G,,, where a and b are negative integers (for short, just
say that G,, acts with negative weights on k[A?]), then lim;_,o¢-p is the origin
for any p € A2, Furthermore, the complement of A? in P? is T-invariant, so if
p € P? is in the line at infinity, then ¢ - p also approaches a point at the infinity.
For the Hilbert scheme this means that if I € Hilb™(A?), such that V ({) is sup-
ported in A2, then ¢ - V(I) approaches a scheme supported at the origin, thus
corresponding to a point in Hilb" (A2). Conversely, for any [ in the complement
of Hilb" (A?), lim;_,o¢- V() has supporting points at the infinity, giving a point
also in the complement of Hilb”(A?). This shows that Hilb”(A?) is a union of
cells. Tndeed the same argument shows that if X C Hilb"(P?) is closed and
invariant, then X NHilb”(A?) is a union of cells in the cell decomposition of X,
again provided the chosen one-parameter subgroup gives negative G,,,-weights
on k[AZ].

The fixpoints in Hilb"(A?), i.e. the monomial ideals of colength n, will be
of importance in the next chapters. Monomial ideals I will be depicted as in
figure 3.1: The monomials outside the staircase are in / whereas those inside
the staircase give a basis for k[z,y]/I.

For any I-fixpoint I € Hilb"(A?) there is an induced action of I' on the
tangent space at /. This action can be computed. For this, let S be the points
inside the staircase in figure 3.1:

S={(i4) 'y &1} (3.4)

Each point 2%y determines a hook, which is the shaded area in the figure. Let
a; and b; denote the endpoints of the hook:

a; = min{a | 2%y € I} (3.5)
b = min{b | 2'y’ € T} (3.6)

In this notation, there is the following result.
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Proposition 3.7 (JES87]). Let A and u be two linearly independent characters
of T. Let T be the tangent space at the T-fizpoint T in Hilb™(A?), with the
induced action of T'. Then, in the representation ring of T

T = Z ()\i—ajubi—j—l + )\aj—i—luj—bi) ) (37)
Remark 3.8. The exponents involved can be thought of as the vectors (i—aj, b;—

j—1) and (a;j —i—1,j — b;) as indicated in figure 3.1. This makes the formula
easy to use in practice.

Also, recall the following well-known result.

Proposition 3.9. Let X be a smooth scheme over k, with an action of a finite
group G. Then the following holds.

(i) X is smooth
(i) T,(XF) = T,(X)9 for allp € XC

3.2 Morphisms to Hilb"(A?)

Let I € Hilb"(A?) be a I-fixpoint, i.e. a monomial ideal of colength n. In the

decomposition of Hilb" (A?) induced by the one-parameter subgroup G, — T,

let U be the cell containing 7. In order to find an isomorphism A" = U explicitly,

one may utilize the following construction of morphisms A™ — Hilb”(A?).
One may obviously find a generating set of the form

I=(yr afryfe o akmorylm phm) (3.8)

such that l; > l;41 and k; < k;j41 (for example taking all the monomials along
the “staircase” in figure 3.1). Such a generating set gives rise to a free resolution,
possibly non-minimal,

0 R™ & R S R R/T— 0 (3.9)
where R = k[z, y],
zh 0
yjl ri2
A= (3.10)
yjm—l J;im
0 yjm

and the exponents are defined by
p=kp—kp—1, Jp=1lp —lpta (3.11)

With k‘o = lm+1 = 0
The free resolution above can be modified such that it becomes I'-equivariant.
For this, define R(«, 3) = k[z,y] with v € I acting by y-z'y? = A(y)iT*pu(y)I+°.
Also write R = R(0,0). Then the free resolution
m m+1
0= P Riky, 1) = € Rikg-1,1y) » R— R/T -0 (3.12)
p=1 g=1
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is -equivariant. The idea is, very roughly, to insert parameters uq, ..., u, into
A, obtaining a new matrix A, and define a map A” — Hilb"(A?) by sending
(u1,...,u;) € A7 to the ideal generated by the maximal minors of A evaluated
at that point.

So replace any number of zero entries in A by parameters uq, ... ,u,, thus
obtaining a new matrix A with entries in R = k[z, y; u1, ..., u,] (for an example,
see the matrix A;; in theorem 5.1). The free resolution then becomes

m m+1
@R’ kp, 1) R(kg-1,l) = R— R/T =0 (3.13)
p=1 1

-+

<
1l

where 7 is the ideal generated by the maximal minors of A and E(a,ﬁ) =

klz,y;u1,...,ur] with [' acting on z,y as above. To keep the resolution I'-
equivariant, one is forced to define
youp = M) R p(y) e Tl Yy €T (3.14)

if u; sits in entry (g, p) in A. This construction defines a family 7 over A",

V(AU) — A? X A"

N

AT

where V(g) denotes the degeneration locus of A, that is, V(f) If the family
is flat and with fibres of constant length n, this defines a morphism A" —
Hilb" (A?%).

Theorem 3.10. Let I be a monomial ideal of colength n in k[z,y], let A be
a matriz constructed from I as above and let 7 = V(A) C A? x, A”. Fira
generic one-parameter subgroup v : G,, — T with negative weights on k[A?]. If

the parameters u; are situated in A in such a way that G,, acts on each u; with
negative weights, then the following holds.

(i) The family 7 : Z — A7 thus defined is flat and with fibres of constant
length n.

(i) If B is the set of monomials in k[x,y] not in I, then B maps to a basis for
the coordinate ring k[7Z,] of the fibre over p for every p € A”.

The proof is broken up into two lemmas. Keep the conditions of the theorem
in the following.

Lemma 3.11. The morphism 7 : Z — AT 1is finite. In fact, the monomials in
B generate k[7] as a k[A"]-module.

Proof. The subscheme Z C A2 xj, A" is defined by the ideal T in k[A2] @y k[A"].
View the elements of that ring as polynomials in z and y with coefficients from
k[A"] = k[u1, ..., u,]. The generators of I are the maximal minors of A which
can be written

f=az"+g (3.15)
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where the monomials 2*y' generate I and g is a polynomial in 2 and y with
coefficients of positive degree in k[A"], i.e. every term involves some parameter.
In view of the T'-equivariant free resolution (3.13), each such minor is semi-
invariant under the T-action. This implies that each term in f has the same G,;,-
weight. On the other hand the G,,-weight is negative on all parameters, which
implies that the leading term z*y' has minimal weight among all monomials
z'y in f. Hence any monomial divisible by z*y' is congruent modulo T to some
polynomial in k[A?] @ k[A”] whose monomials have strictly larger weights.
Now B consists of the monomials not divisible by any of the leading terms
z*y'. Furthermore, note that the G,,-weight on a monomial z'y/ is increasing
with decreasing i and j since G, acts with negative weights on z and y. Thus
every element in k[A?] @ k[A"] not in the k[A"]-module generated by B is
congruent modulo Ttoa polynomial in that module. This proves that k[Z] is
generated by B. O

This lemma implies that B maps to a generating set of k[7,] as a k-module
for every fibre Z,. Thus, once point (i) in the theorem is proved, such that k[7,]
has dimension n as a k-vector space, point (ii) follows from the lemma.

Lemma 3.12. The morphism w: 7 — A" s flat.

Proof. Z is flat over a point p € A" if and only if, for every affine curve C'
and every morphism f : C' — A" sending some basepoint ¢ € C' to p, the
pullback f*Z — C is flat over q. Moreover, this is the case if and only if no
component of f*7 is supported in the fibre over q. Now f corresponds to a ring
homomorphism

f#  k[AT] — k[C]. (3.16)

Then f*Z C A? xj C is the degeneration locus of the matrix obtained by
applying the map

id@f# : k[AY @k k[AT] = k[A?] @ k[C] (3.17)

to the entries in A. Thus f* 7 is the determinantal subscheme of A2 x; C defined
by the maximal minors of this matrix, which implies that any component has
codimension at most 2, hence dimension at least 1. By lemma 3.11, every fibre
is zero-dimensional, so no component of dimension > 1 is supported in the fibre
over ¢q. This proves flatness. O

So m:Z — A" is finite and flat. Then 7.Qz is locally free, so the fibres
have constant length. This concludes the proof of theorem 3.10.

Remark 3.13. Since the family 7 in theorem 3.10 is T-invariant, the induced
morphism ¢ : A" — Hilb"(A?) is T-equivariant, thus in particular G,-equi-
variant. Furthermore, with negative weights on the parameters, ¢ - p approaches
the origin when ¢ — 0 for any p € A", so t - ¢(p) approaches the monomial
ideal I. Hence the image of ¢ is contained in the cell surrounding [ in the
decomposition induced by G,,.



Chapter 4
Cyclic groups

Let G C SL(2) be the cyclic group of order n generated by

o= (g 591) (4.1)

where ¢ is a primitive n’th root of unity. The simple singularity A2?/G is of type
An_1.

Theorem 4.1. Let G C SL(2) be as above and for i =1,...,n define

T u
Ai(u,v) = |yt 2| (4.2)
v Y

(i) The family 7, defined by the ideal generated by the mazimal minors of
Ai(uav):

7 —— Spec k[z, y] xx Spec k[u, v]
- l (4.3)
Spec k[u, v]

is flat over Spec k[u, v] and the coordinate rings of the fibres are isomorphic

to k[G] as k[G]-modules.
(ii) The morphisms
@i - A = G-Hilb(A?), i=1,...,n (4.4)
thus defined are open immersions, and their images form an open covering
of G-Hilb(A?).

Remark 4.2. By the uniqueness of the minimal resolution of A%/G, G-Hilb(A?)
is isomorphic (over A?/G) to the toric resolution. The construction described
here, however, uses no reference to the toric resolution.

The strategy is as follows: The two-dimensional algebraic torus I' acts on
P? and Hilb"(P?) as described in chapter 3, keeping A? resp. Hilb"(A?) in-
variant. One may view G as a subgroup of I' (sending o to diag(1,6,e"') €' C

22
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SL(3)), such that G acts on Hilb"(P?) commuting with the action of T'. Thus
Hilb™ (P?)¢ is T-invariant and therefore admits an induced cell decomposition
for each generic one-parameter subgroup G,,, — I'. By the discussion in chapter
3, Hilb" (A%) is a union of cells if the G,,-action has negative weights on k[A?].

In this way, each generic subgroup G, — T’ with negative weights on k[A?]
induces a decomposition of Hilb”(A%)% into locally closed affine spaces, and
thus the same is true for each component. In particular, there is an induced
decomposition of G-Hilb(A?). By varying the one-parameter subgroup, and
thus varying the decomposition, the affine charts in the theorem occur as two-
dimensional, open cells.

4.1 Cell decompositions

The I'-fixpoints in G-Hilb(A?) are, using proposition 1.6, the G-invariant mono-
mial ideals I such that k[z,y]/I is the regular representation. Note that, since
G is abelian, the irreducible representations of GG are all of degree one, and they

are given by
ot k=0,...,n—1 (4.5)

Furthermore, since I is monomial, a basis for k[z,y]/T is given by (the images
of) the monomials z'y/ not in I, and these elements are eigenvectors for ¢ with
eigenvalues g'~7 .

Proposition 4.3. The set of T'-firpoints in G-Hilb(A?) is the finite set consist-
ing of the ideals

L=y ey), i=1,...,n (4.6)

Proof. By what is said above, the fixpoints are the monomial ideals I such that
each value ¢*, k =0,...,n — 1, occurs exactly once among the eigenvalues '~/
for the monomials z'y/ ¢ I. In particular, if I is a fixpoint, all but one invariant
monomial belongs to 7, and this monomial must be 1. So zy € I, and if ' € I
is the smallest power of x in I, then ¢ < n. Since the colength of I is n, the only
possibility is 7 = I;.

Conversely, the monomial basis for k[z,y]/I; is

Lz, ..., 27yt Ly (4.7

Le,...,et7t el .. et (4.8)
so k[z,y]/1; is the regular representation. O

The next step is to construct an affine open neighbourhood of each fixpoint
I;: If one can find a one-parameter subgroup Gy, — I' such that the cell contain-
ing /; in the induced decomposition is two-dimensional, that cell would be open,
being locally closed in a surface. By theorem 3.2, the cell is two-dimensional
precisely if both weights in the induced action on Tr,(G-Hilb(A?) are positive.
These weights can be found with the aid of proposition 3.7.
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y | Ty

1 =z z? '

Figure 4.1: Torus fixpoints in G-Hilb(A?)

Proposition 4.4. The tangent space to the I'-fixpoint I; in G-Hilb(A?) is given
in the representation ring of T' by

Tr,(G-Hilb(A?%)) = A= p™ = 4 Xi=Tyimn=t, (4.9)

Proof. The staircase picture of the ideal I; 1s shown in figure 4.1. To avoid too
many indices, let T = I;.

G-Hilb(A?) is a component of the G-invariant part of Hilb" (A?), which is
smooth by proposition 3.9. By the same proposition, the tangent space at the
fixpoint T is given by

Tr(G-Hilb(A?)) = Ty (Hilb" (A?))“. (4.10)

Proposition 3.7 gives a basis of common eigenvectors for the action of I' on
Tr(Hilb”(A?%)) and the G-invariant subspace is spanned by the G-invariant
eigenvectors.

In view of the inclusion G' C I, the eigenvalues for ¢ € GG acting on the eigen-
vectors corresponding to the terms =% p?—=1 and A%~i=1,7=% in proposi-
tion 3.7 are given by substituting A = ¢ and g = ¢~ 1:

glimaj)=(bi=j—1) _ —(a;—j+bi—i-1)

4.11
elas=i=1)=(G=bi) — aj—j+bi—i—1 ( )

Hence, these two eigenvectors are G-invariant at the same time, namely when
a;—j+b—i—1=0 (mod n). (4.12)

But this expression is precisely the area of the hook determined by (i, ;) as in
figure 3.1. Comparing this with the picture of T in figure 4.1, there is only one
hook with area congruent to n, namely the whole staircase. The summand in
proposition 3.7 corresponding to this hook is precisely A=# =% 4 Xi=1y

i—n—1

O

Corollary 4.5. For each fizpoint I; there exists a generic one-parameter sub-
group ¢ : G — I, inducing negative G, -weights on k[A?], such that the cell
U; containing I; in the induced decomposition is two-dimensional.
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Proof. Define ¥ by Ao ¢(t) = t* and p o 3(t) = t° for two negative integers
a and b. Then, by the previous proposition, the two weights for the induced
action on the tangent space at I; are positive if and only if

a(=i) +b(n—1i) >0

a(i—1)+b(i—n—-1)>0. (4.13)

This is equivalent to

n—1 a n—1+1
a n-ttl 414
Sy S Tioa (4.14)

and such a, b can obviously be found. Furthermore, there is enough freedom to
choose them outside any finite number of hyperplanes. O

Thus the existence of open affine neighbourhoods U; around each fixpoint I;
is proved. The morphisms ¢; of theorem 4.1 will be constructed such that the
images are U;. So, after showing that they actually form an open covering of
G-Hilb(A?), the next step is to construct the morphisms ; explicitly.

Proposition 4.6. The open sets U; form an open covering of G-Hilb(A?).

Proof. Let Y be the closed set G-Hilb(A?)\ |JU;. Recall that I € U; if and
only if ¢ - I approaches I; as t — 0, where ¢t € G, acts according to the chosen
subgroup in corollary 4.5. Then each U; is I'-invariant, because for any v € T
one has

lim#-(y-1) = limy - (t-7)
:7'}1_%t'7 (4.15)

using the continuity of the I'-action when moving v out of the limit. This
implies that Y is invariant. If Y is nonempty, take any I € Y and some generic
one-parameter subgroup G, — ' with negative weights on k[A2?]. Then t - I
approaches a I'-fixpoint supported in A2, which is in Y since Y is closed. But
every fixpoint is in some U;, so Y is empty. O

4.2 Affine charts

Recalling the construction in theorem 3.10, there are free I'-equivariant resolu-
tions of the [-invariant ideals I;,

R(O,n —1+1)
R(ln—i+1) | @
0 @ 24 R(L,1) 5 L0 (4.16)
R(i, 1) &
R(1,0)
where
x 0
Aj= |yt 2 (4.17)
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Now insert the parameters u, v in the zero slots in the matrix, thus obtaining
the matrix A;(u,v) of theorem 4.1 with entries in R = k[z, y; u,v] and the free
resolution

R(0O,n —i+1)
E(l,n—i—}-l) As(u) _
0— @ =20 R(L,1) = Li(u,v) = 0 (4.18)
R(i,1) ®
R(i,0)

where I;(u,v) is generated by the maximal minors of A;(u,v). To keep the
resolution equivariant, one is forced to define v - u = A(y)'p(y)~"u and v -
v = Ay)! 7 u(y)" "+ v, This defines an action of T on the parameter space
A? = Spec k[u, v].

Remark 4.7. Note that with this action, the weights of the induced action on
TO(AQ) coincides with the weights on 17, (G—Hilb(AQ)) in proposition 4.4. This
is promising in view of trying to realize the isomorphism A? = U; by means
of the family defined by A;(u,v). Moreover, the one-parameter subgroups in
corollary 4.5 act with negative weights on the parameters u, v, so theorem 3.10
applies.

For the rest of this section let ¢ be fixed and write A(u,v) = A;(u,v), I = I;
and U = U;. By theorem 3.10, A(u,v) defines a I'-equivariant morphism

¢ A? - Hilb"(A?). (4.19)

By the same theorem, the monomialsin B, i.e. the monomials not in the ideal 7,
maps to a basis in k[Z,]. Since the monomials are eigenvectors for the G-action,
this implies that k[7,] = k[z,y]/T = k[G] as k[G]-modules. Thus the image of
¢ is in G-Hilb(A?).

Lemma 4.8. The differential
deo : To(A?) = Tip(0y(G-Hilb(A?)) (4.20)
is an isomorphism.

Proof. 1t is enough to show that dgg is injective, since the source and target
schemes are both smooth and of the same dimension.

Letting D = Spec k[¢]/e?, the Zariski tangent space Tyh(A?) is the set of
morphisms D — A? sending the closed point in D to the origin, whereas
Ty(0)(G-Hilb(A?)) is the space of first order deformations of the subscheme
of A% defined by ¢(0). The differential map

W c— x@2 xXg D .
J p is flat and
Morg (D, A?) X‘ l k[W,] = k[G] (4.21)
S forall s€ D

is given by sending a morphism a : 1) — A? to the pullback 7 x 52 D of the
family 7 — A? defined by the matrix A(u,v).
So let @ be defined by the ring homomorphism

o kfu,v] — k[e]/e%. (4.22)
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Such a map belongs to the Zariski tangent space at the origin if and only if
o#(u) = ac and o#(v) = be for some a,b € k. The family dp(«) is then the
subscheme of A% x D = Spec k[z, y;¢]/¢? defined by the degeneration locus of
the matrix

z ae
gt gl (4.23)
be Yy
whose maximal minors are
vt —asy™t,  xy, YT — beatL (4.24)

Now the zero element of the Zariski tangent space Tw(o)(G—Hilb(AZ)) corre-
sponds to the family defined by the ideal Iy generated by ¢(0) in k[A? xj D] =
k[z,y,¢]/e% Thus, if dp(a) = 0, the ideal generated by the minors above equals
Io. But then aey”~" and bexz’~! are elements of the same ideal, which implies
a =0b=0, so dy is injective at the origin. O

Proposition 4.9. ¢ is étale.

Proof. Tet V. C A? be the set of points p € A? such that dp, : Tp(A?) —
Tw(p)(G—Hilb(AQ)) is surjective. By [Har77, Prop. 10.4], ¢ is étale if V = A2
But the complement W of V is closed, being the degeneration locus of the
matrix dy, and it is Gp,-invariant: Any ¢ € Gy, acts as an automorphism on
both schemes, and by the Gj,-equivariance of ¢ one obtains a commutative
diagram

d.
T (A%) 1 Ty (G-Hilb(A?))

dtplz dtw(p)lz (4.25)
do;.
Typ(A?) 20 T (G-Hilb(A2)

which shows that dy, is surjective if and only if dy;., is surjective. Being
invariant, W is a union of orbits, but any G,-orbit contains the origin in its
closure since G, acts with negative weights on the parameters. But the origin
is in V by the previous lemma, so W is empty. O

Corollary 4.10. ¢ is an open immersion.

Proof. By [Gro67, Théoréme 17.9.1], a morphism is an open immersion if and
only if it is injective, flat and finitely presented. Being étale, ¢ is flat, so it
remains only to check injectivity.

So take two points p,q € A? and assume ¢(p) = ¢(q). Let C' C A? be the
closure of the G,,-orbits containing p and ¢, that is C' = G,pU Gq. This
curve is mapped by ¢ to the curve D = G ¢(p), using the Gp,-equivariance
of ¢. Then the restriction ¢|c : C' — D is proper by the valuation criterion,
using the G,-action to take limit of curves. Thus ¢,O¢ is coherent, so upper
semicontinuity of the length of fibres holds for ¢|c. Now the fibre over the origin
has length 1 by proposition 4.9 so a general fibre has also length 1. Then p = ¢
since otherwise the general fibre would have length 2.. O
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Figure 4.2: Affine covering of G-Hilb(A?)

| ? | u,v | Soc(R/I) | character |
i=1 v=20 ) £
I<i<n|u=0,v#0 (x*) e’
I<i<n |u#0,v=0]| ") gn?
i=n u=20 (z"~T) en~t

Table 4.1: Soc(R/I) at smooth points of the exceptional fibre

Corollary 4.11. The image of ¢ s U.

Proof. The inclusion im¢ C U follows from the G,,-equivariance (see remark
3.13). Conversely, the image of ¢ is a neighbourhood of I;, so if ¢ - I approaches
I; ast — 0, there exists some t € G, such that ¢- T € img. Then, again by the
equivariance of ¢, I is also an element of im¢. O

This concludes the proof of theorem 4.1. For ¢ i1s an open immersion by
corollary 4.10, and by proposition 4.6 the sets U cover G-Hilb(A?).

4.3 Remarks

Solving the equation ¢;(u;, v;) = @i41(Uit1, viy1) one finds the usual transition
functions

Ujp1 = u?vi, vig1 = 1/u;. (4.26)

Figure 4.2 indicates the affine covering in theorem 4.1, suppressing the overlaps
for clarity, where the black lines show the exceptional fibre. Note that ¢;(u, v)
is in the exceptional fibre E if and only if the support of the corresponding
subscheme of A? is the origin, which is equivalent to uv = 0 for 1 < i < n,
v =0fori=1and u =0 for i = n. Thus one may find the representations
Soc(R/I) explicitly. This is done in table 4.1 for all the smooth points of F,
verifying the bijection of theorem 2.1(iii) in the A,-case.

Moreover, theorem 4.1 implies that the conjectures in chapter 2 are true.
Let R = k[z,y] in the following.

Corollary 4.12 (of theorem 4.1). Conjecture 2.8 is true in the A, case, i.e.
the tangent space to the exceptional fibre E at a point I is

Tr(F) = Homyg(1/ml, Soc(R/ 1)) (4.27)
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Proof. The exceptional fibre is singular precisely at the points I where Soc(R/T)
is reducible. At these points both sides of the equality are two-dimensional, thus
equal the whole tangent space to G-Hilb(A?), so there is nothing to prove.

So assume I is a nonsingular point of E. Let U; be the affine chart containing
I. Then I = pi(u,0) or I = ¢;(0,v). The two cases are similar, so concentrate
on the first case. There is a G,-action on U; with fixpoint locus equal to the
exceptional component E given in U; by v = 0, namely

T } fort € G,,. (4.28)
yr—t /

Hence
Ty (E) = Hompg (I, R/ 1) (4.29)

and in view of the isomorphism Homyg(1, R/I) = Homyg(I/ml, R/I) in
equation (2.22) it is enough to show that an R[G]-homomorphism ¢ : [ — R/I
is Gp-equivariant if and only if its image is in Soc(R/I). For this, use the
decomposition of k[z,y]/I as a G-representation given by the basis B: ¢ is
determined by the image of the generators for I, and the G-equivariance of ¢
demands

p(e’ —uy"™") € (y" ') = Soc(R/T) (4.30)
p(zy) € (1) (4.31)
oy € (@' (4.32)

Then ¢ is G,,-equivariant if and only if ¢(zy) = @(y*~*!) = 0, i.e. the image
of ¢ is in Soc(R/T). O

Corollary 4.13 (of theorem 4.1). Conjecture 2.13 is true in the A, case,
1.e. the multiplication map

m/m” @ Soc(R/I) — I/(mI + n) (4.33)
for I in the exceptional fibre, is a projection for Soc(R/I) reducible.

Proof. The representation Soc(R/I) is reducible precisely for I = ¢;(0,0), with
1 <1 < n. In that case, fix the following bases.
Soc(R/I) = (zi_],y”_i)
/(i +n) = (o', ") (434
m/m? = (z,y)

Then the multiplication map is given by

r @il g

ry" " 0

. 4.35
y@z "l =0 ( )

y ® yn—i — yn—i-{-l

and is thus a projection. O



Chapter 5

Binary dihedral groups

Let G C SL(2) be the binary dihedral group of order 4n generated by

=5 0) =(5 0 (1)

for € a primitive 2n’th root of unity. The simple singularity A?/G is of type
Dyyo.

Theorem 5.1. Let G C SL(2) be as above, and define

T 0 ] 0

yi'”_zn_2 T 0 t

Aij(s, tyu,v) = 0 2Tt gt -0
u 0 y piti—2n=2

0 v 0 y

Also let S be the surface
S = V(su+ sv+tv,uv +v? + (=1)""") C Spec k[s, t, u, v].

(i) Writing V(M) for the determinantal subscheme defined by the mazrimal
minors of a matrix M, the families

V (Ant2,n41(s,t,u,v)) C Spec k[z,
4 (Ai,i(oat; (—])n+1f, 0)) C Spec k[z,

[z,y] ¥k S

[, 9] i Spec k[,

t=n+2,...,2n
4 (AN-HJH-] (ta 0; 0: (_1)n+1t)) C Spec k[I;

[

[

oo«

' X1 Spec k[t
v (An+27n(t,0,0,:l:\/(—1)")) C Spec kz,

Vv (zy,m2" + ™" — t) C Spec k[z,y] xx Spec k[t

Y] ]
y] Xx Spec k[t]
] ]

are flat over the base schemes S resp. Spec k[t], the fibres are G-invariant

and the coordinate rings of the fibres are isomorphic to k[G] as k[G]-
modules.

30
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(ii) The morphisms thus defined, in the same order,

¢ : S — G-Hilb(A?)
Y Al = G-Hilb(A?), i=n+2,...,2n
a:A' - G-Hilb(A?)
By : A — G-Hilb(A?)
v :A' — G-Hilb(A?)

are locally closed immersions, and their images form a stratification of

G-Hilb(A?).
(iii) The exceptional fibre is given as follows within each stratum.

o(s,t,u,v)  fors+t=0,u=0,v==(-1)" (two lines)
o(s,t,u,v)  fors=t=0uv+v? 4+ (=1)"* =0 (a hyperbola)

¥i(t) for all t (a line)
a(0) (a point)

B+(0) (two points)
7(0) (a point)

Remark 5.2. The surface S in the theorem is isomorphic to A' x (A \ {0}).
For this, replace the coordinate u by w = u + v such that the two equations
become

sw+tv =0, vw=(=1)". (5.2)

Then projection onto the ¢ and v coordinates gives an isomorphism with A’ x

(A'\ {0}), since w = (=1)"/v and s = (—1)"T 112

The strategy for obtaining this stratification can be sketched as follows. In
contrast to the A, case, the actions of G and T" on Hi1b4“(A2) do not commute,
so there is no torus action on G-Hilb(A?) to be utilized. However, letting H C G
be the index 2 subgroup generated by o, the actions of H and I' do commute,
so I' acts on Hi1b4n(A2)H. So consider the inclusions

G-Hilb(A?) C Hilb*™*(A%)Y c Hilb™ (A7 (5.3)

and let ¥ C Hilb**(A%) be the component containing G-Hilb(A?). Then T
acts on Y, so every generic one-parameter subgroup G,, — T[' with negative
weights on k[A?] induces a decomposition of Y into locally closed affine spaces.
Unfortunately there are “too few” subgroups G, — [ to obtain open cells
around every ['-fixpoint in Y. Instead one may fix a particular one-parameter
subgroup and compute the induced decomposition Y. The T-invariant parts of
the cells form a stratification of Y@, Thus one obtains a stratification of each
component of Y& and in particular of G-Hilb(A?%). This is the stratification in
the theorem, for a particular choice of one-parameter subgroup.
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5.1 A cell decomposition
Note that the irreducible representations of H are of degree one, given by
c—ef k=0,...,2n—1. (5.4)

By [IN99, Lemma 9.4], the isomorphism class of the k[H]-module k[A?%]/T is
independent of the choice of I within each connected component of Hilb*" (A2)H
(for any finite H C GL(2), hence in particular for the one considered here). Now
k[G) = k[H]®? as k[H]-modules, so G-Hilb(A?) is contained in some component
of Hilb** (A?)7 where k[A?]/T = k[H]®%. Thus define Y C Hilb*"(A%)" to be
the union of all such components. In fact Y turns out to irreducible.

Throughout this section, fix a generic one-parameter subgroup G, — T
with negative weights on k[A?], but otherwise arbitrary. In the induced de-
composition of Y there is a cell U for each I-fixpoint I, isomorphic to some
affine space A". To construct the isomorphism A”™ = U explicitly, proceed as in
section 3.2: First determine all T-fixpoints, that is, the monomial ideals in Y.
Then construct a ['-equivariant free resolution of each fixpoint I and “insert pa-
rameters” to obtain a morphism A" — Hilb*"(A?). Doing this with some care
this can be made a locally closed immersion with image the cell U containing I.

Proposition 5.3. The fizpoint set YT consists of the following ideals.

Ii; = (2, 2207042y 2%y? 2y T2 ord ! Y 5.5
i= by V)Y iconso i o ©F
Ji = (ri,ry, y4”_i+1) fori=1,...,4n (5.6)

Proof. As before, the fixpoints I are monomial ideals, and a basis for k[z,y]/],
which is an eigenvector basis for the H-action, is given by the monomials ziy/ ¢
I. The corresponding eigenvalues for ¢ are ¢=7. Thus, k[z,y]/T = k[H]®? if
and only if each ¢® occurs twice among the eigenvalues £'=7,

In particular there should be only two invariant monomials left in k[z, y]/I,
first assume these are 1 and zy. Then z%y®> € I. Let ' and 3 be the minimal
powers of z and y in I. Since 22" and y*" are invariants, one must have i, j < 2n.
Now note that zi~! and y?*~'+! are two monomials surviving in k[z, y]// with
the same eigenvalues. Thus any other monomial with the same eigenvalue is
in I, so xzy?"~i+? € I. Switching the roles of 2 and y one finds z?"~it1y € I.
So I C I;; and this is in fact an equality since both ideals have colength 4n.
Conversely, one verifies that k[z,y]/l;; = k[H]®? by writing out the eigenvalues
of the surviving monomials.

Now assume zy € I and let ' be the smallest power of # not in I. For I
to have colength 4n, I must be equal to J;, and then k[z,y]/J; is isomorphic to
k[H]®2 O

When constructing free resolutions of the ideals above, it is not so clear
how to “insert parameters” in a good way: In the A, case there were just
two zero entries in the matrices in the free resolutions, adequate for inserting
two parameters. This time there are lots of zero entries. However, one may
use remark 4.7 as a guide: The aim is to obtain a I'-equivariant isomorphism
¢ : A7 — U for each cell U. In particular the differential dypg : To(A") —

T,

0(0)(U) must be an isomorphism of I-representations. Therefore one may use
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Figure 5.1: Monomial ideals in YV

proposition 3.7 to determine the T'-action on the tangent spaces at each fixpoint
I'in Y and make sure T' acts in the same way on T5(A"). In other words, one
should insert parameters into entries in the matrix in the free resolution of 7
such that the induced T-action on the parameters (determined as in equation
(3.14)) agrees with the action on T7(Y).

Proposition 5.4. In the notation of proposition 5.3, the tangent spaces to the
fizpoints 1;; and J; in'Y are given in the representation ring of I' by

Ty..

L3

(V) = Ai—ZH—Zn-I-i—Z + Al—iu2n—i+1
_I_ AQn_j+1/,L1_j +A_2n+j_2/,tj_2
TJ, (Y) — Ai—lﬂi—tln—l + A_i/,LA‘n_i
_I_ A_1ﬂ2n_1 _|_M—2n fOT‘ i S m
TJ, (Y) — Ai—lﬂi—tln—l + A_i/,LA‘n_i
IS LD WD St fori>2n

(5.7)

Proof. As in the proof of proposition 4.4, the tangent space T7(Y) to a mono-
mial ideal T is the H-invariant part of Tr(Hilb**(A?)), which is spanned by
H-invariant eigenvectors. Again, the eigenvectors corresponding to the terms
Xi=aiybi=i=1 and A% ~i=1 7 =b in proposition 3.7 are H-invariant if and only if

aj—j+bi—i—1=0 (mod n). (5.8)

and this is the area of the hook determined by (7, j). Referring to the picture
of I;; in figure 5.1, there are two hooks of area 2n, and these are all the hooks
with area congruent to 0. Similarly, for J; there is one large hook of area 4n
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and a silly “hook” which is only a strip (with no bend) of area 2n. The result
follows from substituting the right values for 4, j, a; and b;, as indicated by the
arrows in figure 5.1. O

So let E(a,ﬁ) = k[z,y; s,t,u,v] with T acting on z and y as in section 3.2,
and consider the following I'-equivariant free resolution, where the fixpoint I;;
is obtained by setting s =t =u =v = 0.

_ R(0,5)
R(1,7) _ ©
B o R(1,2n —i+2)
R2m—it2) 8
0— @ S R(2,2) — Iij(s, t,u,v) = 0 (5.9)
R(2n — j+2,2) ®
@ R(2n —j+2,1)
R(i,1) ®
R(i,0)

Here the matrix A;;(s,t, u,v) is as defined in theorem 5.1 and v € T acts by

Y58 = AT () s Yt =) () T (5.10)
You= AT (Y ey e = M) ()T

Note that with this action, the tangent space Ty(Spec k[s, t, u, v]) is isomorphic
to Tr,;(Y) as a ['-representation as wanted.

In the minimal resolutions of the fixpoints J;, there are no entries in the
matrices with correct I'-weights. The trick is to take a non-minimal generating
set by adding the monomials at the endpoints of the short arrows in figure 5.1.
So in the case 7 < 2n consider the generating set

Ji — (y4n—i+1’$y2n—i+2’ nyn—i-I—l’ l‘y,l’i). (5.11)

This leads to a non-minimal free resolution where one can indeed insert param-
eters to obtain the correct I'-action as follows.

R(0,4n —i+1)
R(1,4n —i+1) o
0 R(1,2n — i+ 2)
R(toan—it2) 000 @
0 — o ———= R(1,2n—i+41) = Ji(s,t,u,v) = 0 (5.12)
R(1,2n —i+1) ®
® R(1,1)
R(i,1) ®
R(1,0)

Here the map between the free modules is given by the matrix

T ] 0 t
TR | 0 0
Bi(s, t,u,v) = u y 1 0 (5.13)
0 0 y2n—i 1:1'—1
v 0 0 y
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and v € T acts by

ys=A)u)' s ¥t =A) ply) (5.14)
yu=p(y) yov= A )T .

Similarly, for i > 2n one should consider the non-minimal generating set
Ji = (y*" 7 py, 2172y 21720+ Yy 2f) and the free resolution

~ R(0,4n—i+1)
R(1,4n —1i+1) _®
8 R(1,1)
R(1 — 2n,1) . 8
0 @ Deletwn),  Ri—om 1) = Ji(s,tuw) 0 (5.15)
R(i—2n+1,1) o ®
B R(i—2n+1,1)
R(1,1) 8
R(i,0)
where
z 0 0 s
y4n—t :L,z—2n—1 0 0
Bi(s,t,u,v) = 0 1 T t (5.16)
0 0 1 2!
u 0 v y
and v € T acts by
o5 =) p(y) s ¥ ot= M) (5.17)
you=A) T ()T y v =)'y

The degeneration locus of each of the matrices above, i.e. the closed sub-
scheme of Spec k[z,y] Xi Spec k[s,t, u, v] defined by the ideal generated by the
maximal minors, is a possibly non-flat family over Spec k[s, ¢, u,v]. However,
by theorem 3.10, the families defined by including only the parameters with
negative G,,-weights are flat and with fibres of constant length. So for each
I-fixpoint Iy (equal to I;; or J;), let » be the number of parameters with neg-
ative G,-weights and let 7 C A? x; A" be the flat family over A” defined by
the corresponding matrix. Also recall that the set of monomials B outside /g
maps to a basis in the coordinate ring of every fibre Z,. Since the monomials
are eigenvectors for the H-action, this proves that k[7,] = k[Zy] = k[H]9? for
every p € A”. Thus the family defines a morphism A" — Y. Moreover, by the
I-equivariance of this morphism, the image 1s contained in the cell U surround-
ing the T-fixpoint considered (see remark 3.13). In sum, this construction gives
morphisms

p: AT > U (5.18)
equivariant under the T'-actions on parameters defined above.

Proposition 5.5. ¢ : A" — U 1is étale.
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Proof. Note that r is precisely the number of positive weights on T, y(Y'), which
is the dimension of U according to theorem 3.2. Thus dgq : To(A") = Ty 0y (U)
is an isomorphism if it is injective, and this is enough to show étaleness arguing
as in proposition 4.9.

So let D = Speck[e]/e? and let a € Mor(D, A?) be defined by the ring
homomorphism a# : k[A"] — k[¢]/¢2. Then a corresponds to a point in the
Zariski tangent space to A" at 0 if a# sends each parameter to some scalar
times ¢. Let Io be the ideal generated by (0) in k[A? x D] = k[z, y; ] /<%

First consider the case where ¢ is defined by the matrix A;;(s,t, u, v), with
some of the parameters s, ¢, u, v possibly zero. Then dgg(a) is the subscheme of
A? xp D defined by the ideal generated by the maximal minors of the matrix
obtained by applying a# to the parameters in A;;(s,t, u,v), that is

fl — y] + dEIi_Qyi+j_2n_2 +CE£L‘2n_j+1y

fZ — :L,an—H—Q 4 dE;‘Ei_l

fs=z"y’ (5.19)

f4 — :L,Zn—j+2y _ (IEyj_l

fS — $i + bEfyZn_i+1 +a6$i+j—2n—2yj—2.
Then dgg(a) = 0 if and only if the ideal thus obtained equals Iy, which is
generated by the leading terms of the f;. The minors fs and f; show that
dex’=" and agy’~' are elements of Iy, thus @ = d = 0. Similarly, f; and f5 show
that b =¢ =0.

Now consider the case where i < 2n and B;(s,t, u,v) defines the morphism
. Then the family corresponding to dgg(a) is defined by the minors

fl — y4n—i+1 _ caan—i+1 _ dEéL‘i_l

f2 — Iy2n—i+2

f3 _ xyZn—i+] _ a6y4n—i (520)
fa = xy — asy®™

f5 — .Z'i _ aEwi—]yZn—] _ b6y4n—i

and Iy is generated by the leading terms. Then dyg(a) = 0 if and only if
In=(f1,...,f5). Then f3 givesa =0, f5 gives b =0 and f; gives c =d = 0.

The case 7 > 2n is similar. |
Corollary 5.6. ¢ is an isomorphism A" = U.

Proof. As in corollary 4.10, ¢ : A™ — U 1s an open immersion, using étaleness
and I'-equivariance. By the I'-equivariance, the image is U as in corollary 4.11.

O

This ends the construction of the decomposition of Y.

5.2 Stratification of G-Hilb(A?)

Now fix the one-parameter subgroup v : G, — T defined by X o 9(f) = ¢* and
pod(t) =19 with @ < § < 0. The induced decomposition of Y is given
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Figure 5.2: G,,-weights for the action on Y

by the matrices in the previous section, one just has to decide the sign of the
G,-weights on the parameters for each fixpoint. The particular one-parameter
subgroup chosen has the advantage that this is rather easy.

The G,-weights w(s), w(t), w(u), w(v) of the parameters may be calculated
by substituting () for 4 in the expressions (5.10), (5.14) and (5.17) defining

the I'-action in the various cases. First, for the fixpoints /;; one finds

w(s) =2a(n—j+2)4+4d(2-7)
w(t)=2a(-n+i—-1)4+6(: —2n—1)
w(u) =2a(-n+j—1)+6(j —1) (5:21)
w(v) =2a(n—i+2)+5(2n -1+ 2).

Taking s as an example, the weight is negative if n — j + 2 > 0 and positive if
n—j+2<0. If n—j42 =0, then the weight is given by the J-term, and
then §(2 — j) = —dn > 0 so the weight is positive. In this way, the set of pairs
(4,7) indexing the ideals 7;;, and hence the cells in the decomposition of V', is
divided into chambers according to the sign of each of the four G,,-weights.
This is shown in figure 5.2, where the dots are the allowed indices (z,j) and
the horizontal and vertical lines show where the weights change sign. From
the figure the dimension of the cells can be read off as the number of negative
weights. In particular, the four-dimensional cell is the one containing In42 n41
and, with two exceptions, the 7-invariant fixpoints (on the diagonal ¢ = j) lie
in two-dimensional cells.

For the fixpoints J; the situation is simpler. First, for ¢ < 2n, substitution
into equation (5.14) shows that the Gy,-weights are positive on s and ¢ and
negative on u and v. For i > 2n, equation (5.17) gives positive Gp,-weights on
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u and v and negative weights on s and ¢, with the sole exception ¢ = 2n + 1,
where w(u) is negative also.

Now for the stratification, that is, determining the 7-invariant part of each
cell. Note that although G-Hilb(A?) is a component of Y&, there might be other
components. However, by [Nak99, Theorem 4.4], all such extra components are
isolated points, so if I € Y% belongs to a stratum of dimension > 1, it is
automatic that T € G—Hﬂb(AQ). For zero-dimensional strata, one must check
whether k[z, y]/I is the regular representation or not. All cells belonging to the
same chamber in figure 5.2 can be treated simultaneously, thus one obtains a
stratification of the calculations!

In the following, for each I'-fixpoint I, let B be the set of monomials outside
Iy, mapping to a basis in k[z,y]/I for every ideal in the cell containing I
according to theorem 3.10.

The 4-dimensional cell: i=n+2and j=n+1

The cell containing I, 42 »41 is defined by the matrix A, 49 n41(s,t, u, v), whose
maximal minors are

fi=y"T 4 (u+v)e"y — (tuv)z" !

fo=zy" + (v)x"+1 — (su)y !

f3 = x2y? — (su + sv +tv)zy + (stuv) (5.22)
fa ="y — (tv)2" + (s)y"

fs=a" 24 (s+t)ay ! — (stu)y™ 2

n—

Let I be a 7-invariant ideal defining the fibre over a point (s,¢,u,v). Then
Tfs— fs =2(su+svttv)ey €] (5.23)
showing su + sv + tv = 0 since zy € B. Similarly,

vfi +(=1)"7fs = (uv + v? + (—l_)”'l'l)z”y

_ (tuv2 + (—1)"5u)az”_1 =} (5.24)

and since "y and z"~! belong to B, the coefficients are zero. In particular
uv + v + (—1)”+1 = 0. Thus, the two equations
su+sv+tv=0

5.25
uv + U2 + (_1)n+1 -0 ( )

are necessary conditions for I to be r-invariant. Conversely, this is sufficient,
since then

tfi=(=1)"(u+v)f2

= (=1)"(v)fi

Tfs=f3 (5.26)
Tfa= (=1)"yfa + (=1)"(v) fa

mfs = (=1)"yfi + (=1)" T (u 4 v)z" "2 f.

This defines the morphism ¢ in theorem 5.1.
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The exceptional fibre is as follows in this cell: The orbit defined by 7 is
supported in the origin if and only if stuv = 0, which gives the two lines

s+t=0, u=0, v==x/(-1)" (5.27)
and the hyperbola

s=t=0, uv + v2 + (—])n+1 =0. (5.28)

Top left chamber: i <n+1 and j >n+2

These cells are defined by the matrices A;;(0,0,u,v), so let T be a r-invariant
ideal generated by the minors

fl — y] + 1)xi—2yi+j—2n—2 4 1L$2n_j+1y

f2 _ my2n—z+2 + ’Ul‘z_l

fs =2y (5.29)
f4 IQn—j-{-?y
fs=2a'

Then 7f5 = (—1)%y* € I which is impossible since y* € B, because j > i in this
chamber. So there are no invariant ideals in this chamber.

Bottom right chamber: i >n+3 and j <n

Again there are no 7T-invariant ideals. The argument is entirely symmetric to
the one for the top left chamber.

Top right chamber: i >n+3 and j > n+ 2

These cells are defined by the matrices A;;(0,t,u,0), so let I be a r-invariant
ideal generated by the minors

fl _ y] + (u)$2n—j+]y
f‘7 _ nyn—i-l—Q
fa = 2%y’ (5.30)
fa =2ty
f5 _ l‘i 4 (t)l‘an_H-l
If i > j or ¢ < j, the elements 7f; or 7f5 give impossible relations among the
basis elements in B. So assume ¢ = j, then

fs—1fi=(+ (—])iu)z‘yzn_i'l'l el (5.31)
which shows, since zy?"*~i*1 ¢ B, that

t+ (=1)'u=0. (5.32)
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Conversely, this condition is sufficient, since then

th=1F Tfa=(=1)fo
Tfo=—fa tfs=(=1)'f
Tf3 = f3.

This defines the morphisms v¢; for i > n 4+ 3 in theorem 5.1. Note that these
cells are completely contained in the exceptional fibre.

Horizontal slice: i >n+3 and j=n+1

These cells are defined by the matrix A;;(s,, u,0), so let I be a r-invariant ideal
generated by the minors

A=yt +ury

o = y?nmiH? _ gytnitt

fs = 2%y? — suxy (5.33)
fa= 2"y + sy

fo = 2+ tay? T foggi Tyl gyt

2n—i+42

Then 7fy = 22?712y — suz?~*! ¢ I which is impossible since z y and

z?1=+1 belong to B. So there are no r-invariant ideals in this cell.

Vertical slice: i =n+2 and j > n+ 2
These cells are defined by the matrix A;;(0,%,u,v), so let T be a r-invariant
ideal generated by the minors
=y oy " 4w Iy — pupae? I
f? — myn —|—vm"+1
fa = 2%y? — tvay (5.34)
f4 — m2n—j+2y _ tvlﬂn—j+1
f5 — l,n+2 +t$yn—1.

The element 7f5 = (—1)"y"T? — tz"~'y gives an impossible relation among
elements in B unless j = n + 2. Assuming this, one finds

Tfo+ fa=v(=1)"e"t —tua" " e T (5.35)

which shows that v = 0, since "t and z"~! are in B. This case is then
identical to the other cases on the diagonal ¢ = j in the “top right chamber”, so
the T-invariant part is given by

v=0, t+(=1)u=0 (5.36)

and is entirely contained in the exceptional fibre. This defines the morphism ;
for i = n + 2 of theorem 5.1.
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Thecell i=n+1land j=n+1

This cell is defined by the matrix A;;(s, 0, u,v), so let I be a r-invariant ideal
generated by the maximal minors

fi= y"+1 +oz™ ' 4 uz™y

fo= J:y"+1 + vz" — suy”

fa = a%y® — suxy — sv (5.37)
fa= 2"y + sy

f5s = 2"t 4 sy”_].

Then
fit (=) rfs= (0 + (=1)"s)2" " tusy €1 (5.38)
which is only possible if
u=0, v+ (=1)"s=0. (5.39)

Conversely, this is sufficient since then

tfi=Ffs thi= (1)t f,
Tfo=—fa tfs = (=1)"*'f
Tfs=f3

and the exceptional fibre is given by the single point s = u = v = 0. This
defines the morphism « in theorem 5.1.
The cell i=n+2and j=n

This cell is defined by the matrix A;;(s,t,0,v), so let T be a r-invariant ideal
generated by the minors

fi= g v
fZ — Iyn 4 U;‘En+1
fs = 2%y? —tvzy — sv (5.40)

f4 — ;‘En+2y—tv;‘6n+1 _+_Syn—1

f5 — In+2 +tCL‘yn_1 +Syn—2.

The element 7f3 — f3 = 2tvzy € I shows that tv = 0 since zy € B. If v =0
then 7f; = 2" € I, but 2” € Bso v # 0 and ¢t = 0. Furthermore

fi—vrhi = (11— (=)"hy" eI (5.41)

shows that 1 — (=1)"v? = 0 since y* € B. Thus, necessary conditions for
T-invariance are

t=0, v==x(-1)" (5.42)
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and this is sufficient, since

7fi=(—1)"vm (5.43)
T3 = f3 (5.44)
Tfs = (=1)" v " Img + (= 1)"y*my (5.45)

and fy = zf1 and f4s = yfs. This defines the two morphisms 4 in theorem 5.1.
The ideal is supported in the origin if and only if sv = 0, which gives the
two points

s=t=0, v==/(-1)". (5.46)

The cells containing J; with i < 2n

The cells are given by the matrix B;(0,0, u,v), so let I be a r-invariant ideal
generated by

fl — y4n—i+] _ uyZn—i-l—] _ ’!)l‘i_]

f2 — nyn—i-l—Q

fa = zy?n it (5.47)
fa=xy
f5 = l‘i.

Then 7fs = (—1)'y" € I which is impossible, since y' € B. So there are no
T-invariant ideals in this cell.

The cells containing J; with i > 2n

For i > 2n + 1 the cells are defined by the matrix B;(s,¢,0,0), and a similar
argument to that above shows that there are no r-invariant ideals.

If i = 2n + 1 the cell is defined by B;(s,t,u,0), so let I be a T-invariant ideal
generated by the minors

fi = y*" — uz? 4+ tu

fo =2y —su

fa = xy — su (5.48)
fa

f5 _ x2n+1 _ San—l —tr

xly — sux

where f3 and f4 of course are superfluous. Then f3 + 7fy = 2su € I showing
su=0.If u=0then 7f; = 22" € I, but 2" € B'so s = 0. In that case

erhi +uy’ o — fs=tu+ Dz €T (5.49)
sot=0oru=—1.1f u=—1 the ideal is invariant, since
th=h
Tfo=—f2 (5.50)

Tfs =2 o — yfr.
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Y
"/)271,
Figure 5.3: Stratification of G-Hilb(A?)
| Representation V' | degV  xv(o) xv(T) |
Vo 1 1 1
Vi 1 1 -1
1 for n even
V2 ! -1 1 for n odd
—1 for n even
Vs 1 -1 —1 for n odd
WT‘ ¢ r -r
(r=1,...,n-1) 2 € te 0

Table 5.1: Character table for the binary dihedral group of order 4n

Ift =0 and u # —1 then
th4ufi =1 —u?)z®™ el (5.51)

and since z?® € B and u # —1 one must have u = 1. And the ideal is then
invariant.

So the invariant part of this cell has two components, namely the line s = 0
and v = —1, and the isolated point s =t = 0 and u = 1. But the isolated
point may not belong to the component G-Hilb(A?), and actually it does not.
For let I be that point and let x be the character of k[z,y]/I. If I belongs to
G-Hilb(A?), then k[z,y]/T should be the regular representation, so x(g) = 0 for
all ¢ # 1. But using the monomial basis for k[z, y]/I given above one verifies
that x(7) = 2.

So an ideal in this cell is in G-Hilb(A?) if and only if

s=0, u=-1. (5.52)

In this case the generating set of the ideal reduces to (zy,z?™ 4+ y** —t). This
defines the morphism v of theorem 5.1. The ideal is supported at the origin if
and only if £t = 0.

These calculations conclude the proof of theorem 5.1.

5.3 Remarks

The stratification of G-Hilb(A?) in theorem 5.1 is illustrated in figure 5.3, in-
dicating the configuration of the exceptional components. A single arrow rep-
resents an Al whereas the double arrow represents an A!\ {0}. The two-
dimensional cell given by ¢ is the dotted oval to the right, containing parts of
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| I | Soc(k[z, y]/1T) representation |
7(0) () Vi
Yan(t), 1 # 0 (zy) Vi
w(t) t ;é 0 <I2n—i+1 21 2n—i+1> Wi
Win+2<i<on—1 ¥ 1y i

uv+vi+ (=1)"F =0 bl oom
SD(OJOJUJU){ l’#im <'13 y y> Wn—]
a(O) <:L,ny’ xyn> Wn—l

, S ;é O 41 o)
(s, —s,0,v) {v — 1 O (vz™t! 4 2™y) Vs or V3

B+ (0) (xnF1y) Vs or Vi

Table 5.2: The irreducible representations Soc(k[A?]/])

three exceptional components. The rest of the exceptional fibre is contained in
the one-dimensional strata given by ;, with the exception of four points “at
the edges”. These are contained in one-dimensional strata that are left out for
clarity, given by «, 84+ and ~.

Generators for all irreducible Soc(k[A?]/) are shown in table 5.2, verifying
the bijection in theorem 2.1(iii) in the D, case. The representations V; and
W; refer to the character table 5.1. A few comments are in order: In the
last two rows there is a choice of sign which flips Soc(k[A?]/I) between the
two representations V5 and V3. Which sign that gives which representation is
dependent on whether n is even or odd. Furthermore, note that W; = Wa,_;
such that the exceptional components given by 49, ..., %2,_1 correspond to
the representations W, _o, ..., W7 in that order.

Corollary 5.7 (of theorem 5.1). Conjecture 2.13 is true in the D, case, i.e
the multiplication map

m/m? @ Soc(k[z,y]/I) — I/(mI + n) (5.53)
for I in the exceptional fibre, is a projection when Soc(k[x,y]/I) is reducible.

Proof. Just write out the multiplication map in each case. To compute bases
for the representations I/(ml 4+ n) one should recall that the invariants of the
binary dihedral group are

$2y2, x?n + y?n, $y($2n _ y?n) (554)

so n is generated by these. Also fix the basis m/m? = (z, y).
Case I = 15,(0): Writing out the generators one easily determines the bases

Soc(klz,y]/1) = (wy, 2™~ y"" ")
1/(mI + ) = (2, a2y, a?).

Then the multiplication map is given by

z@z? 1 gt z@y" =0 z @y zy

y®x2n—1'_>0 y®y2n—1'_>y2n:x2n y®xyl—>xy2.



5.3. REMARKS 45

and is thus a projection.

Case I = ;(0), n+ 2 < i < 2n: Choose the bases
Soc(k[z,y]/1) = (&'~ 1,y' ! @ Ty ay?n T
I/(mI 4n) = (2f yf, 2207142y gy?n=i+2y,

Then the multiplication map is given by

r® ,’Bi_l — .I‘i r® m?n—i+1y — I?n—i+2y
y®mi—1'_)0 y®x2n—i+1y._>0
@y =0 z®zy it 50
y ® yi—l — yi y ® Ian—i-l—l — xy?n—i+2

and 1s thus a projection.

Case I = ¢(0,0,0,v), v = :I:\/W: Choose the bases
Soc(kle,y)/1) = (z"**, 2"y, va" + y")
I/(ml +n) = (" Ty 2" vy, zy™ + vz ).
Then the multiplication map is given by

@zt -0 r@z"y— 2"y 2@ (v + ") = zy? 4 vt

y@a"tM s "My y@a"y— 0 y®(vaf:”+y“)r—>y“+1+va:“y

and is thus a projection.
These are all the reducible cases, since all other points I in the exceptional
fibre are listed in table 5.2, where the socles are irreducible. O

The stratification in theorem 5.1 determines the tangent space to the ex-
ceptional fibre at all points I where Soc(k[AZ?]/I) is irreducible, except at the
four points given by a, 81+ and 7. At these four points the theorem isn’t strong
enough to verify conjecture 2.8, but at every other point this can be done. To
avoid too many calculations, consider only the points in the image of the ;’s.

Corollary 5.8 (of theorem 5.1). Let I be a point in the image of ¢; in the-
orem 5.1 such that Soc(k[x,y]/I) is irreducible. Then the tangent space to the
exceptional fibre E at I is

Tr(E) = Homyg (I /mI, Soc(k[x,y]/I)) (5.55)
so conjecture 2.8 is true in this case.

Proof. Let I be the image of p € A! under ;. The point p corresponds to a
homomorphism k[t] — k sending ¢ to some scalar a. A vector in the Zariski
tangent space at p corresponds to a homomorphism k[t] — k[¢]/e? sending t
to a + be for some scalar b. The image under di is given by the family over
D = Spec k[g]/e? obtained by substituting ¢ — a4+ be in the matrix defining v;,
giving the ideal generated by

g1 = yi + (_1)n+1(a + bE)iL‘2n_i+1y

gs = Ian—i+2
g3 = 2y’ (5.56)
ga = $2n—i+2y

gs =z’ + (a+ be)wyzn_H’l
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Now the ideal I = t;(p) has generators fi,..., f5 obtained by letting ¢ = 0 in
the above expressions. Thus the element of Hom(7, k[x,y]/I) corresponding to
the first order deformation above is given by

fim b Ty f s by (5.57)

sending the other generators to zero. Comparing with table 5.2 one finds that
the image of this homomorphism is in Soc(k[z,y]/I). This shows the inclusion
Tr(F) C Homgg(I/ml,Soc(k[z,y]/I)). Since the two vector spaces have the

same dimension this is an equality. |



Chapter 6

Abelian subgroups of GL(2)

Let G = Cp ¢ C GL(2) be the cyclic group generated by

o= <E§ ;l> (6.1)

where ¢ < n are coprime integers and &, is a primitive n’th root of unity. Up
to conjugation, these are all the abelian, finite, small subgroups of GL(2).

6.1 Fixpoints

As in the Ap-case, the actions of I' and G on Hilb" (A?) commute, so I' acts on
G-Hilb(A?). The discussion in chapter 4 gives a recipe for describing G-Hilb(A?)
and in fact, everything works in this generalized setting.

The irreducible representations of G are of degree one, given by

o et k=0,...,n—1. (6.2)

Thus the fixpoints for the T'-action are the monomial ideals I of colength n such
that every e* occurs exactly once among the eigenvalues £2~7 for the monomials
ziy mot in 1. An example is shown in figure 6.1 in the case n = 8,¢ = 5: A
monomial ideal is drawn as a staircase as before, but writing the number ¢qi — j
in place of the monomial x'y/. The task is then to find all staircases such

that every number 0,...,n — 1 occurs exactly once inside the staircase. In the
3
6
1
4 4
7 7
2 23
5 56 567
0 01 0123 4] 01234567

Figure 6.1: Torus fixpoints in the case n = 8 and ¢ =5

47
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N wi1+i2

Figure 6.2: Torus fixpoints in general

example there are four such, shown in the figure. In general this leads to a
combinatorial question which is not treated here.

Even without knowing the fixpoints explicitly, one can say just enough to
continue the construction of G-Hilb(A?).

Lemma 6.1. The I'-fizpoints in G-Hilb(A?) can be written
I = (yj1+j2,l‘i1yj2’.’[ji1+i2) (63)
for some integers i1,12, j1, ja.

Proof. By proposition 2.7, the socle of k[A2%]/I is the sum of at most two ir-
reducible representations. In the abelian case this means that Soc k[A2]/T is
at most two-dimensional, thus there are at most two “steps” in the staircase
picture. In other words there are three monomial generators, and they can be
written in the above form. O

Such a torus fixpoint is depicted in figure 6.2. The two arrows indicate
very natural candidates for the tangent space as a T'-representation. However,
without knowing explicitly i1, i2, j1, jo2 it is somewhat hard to verify this directly.
Nevertheless this guess turns out to be very true, see remark 6.5.

6.2 Affine charts

Following the construction of morphisms in section 3.2 one may consider, for
each fixpoint I, the T'-equivariant free resolutions

_ R(0, j1 + j2)
R(i1, j1 + Jj2) Aww) = ®
0— _ @ —_— R(il,jz) — [(U, 'U) —0 (64)
R(i1 + i, ja) . ©
R(il + 29, 0)
where
zi 7]
Alu,v) = [y a2 (6.5)

v yj 2
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and v € T acts on u,v by

i14i2

v u= )R u(y)
yv= AT u(r) .

Lemma 6.2. Let I € G-Hilb(A?) be a fizpoint as above, and let I act on
Spec k[u, v] as in equation 6.6. Then there exists a generic one-parameter sub-
group ¥ : G — ' with negative weights on k[A?] such that the weights on u
and v are negative.

(6.6)

Proof. By direct computation: If Ao () = t% and p o ¥(t) = t* with a and b
two negative integers, then

t-u—= ta(il'l'iz)—bjzu

t.op = 4~ 0tb(1+i2), (6.7)
showing that the weights are negative if and only if
G ntR (6.8)
11 + 29 b 19
and such a and b exist. O

By theorem 3.10 the matrix A(u, v) defines a flat family over Spec k[u, v] with
fibres of constant length. Furthermore the basis B in that theorem consists of
semi-invariant elements under the G-action, so the coordinate rings of the fibres
are isomorphic to k[G] as k[G]-modules. Thus a morphism

¢ A? — G-Hilb(A?) (6.9)
1s defined.

Lemma 6.3. ¢ s étale.

Proof. As before it is enough to show that dig is injective. Let o € Mor(D, A?)
be given by the ring homomorphism o# : k[u, v] = k[¢]/e? sending u ~ ae and
v+ be. Then dipg sends a to the family in A? x; D defined by the minors

f‘1 — yj1+j2 _ bEIi2

fo =ty (6.10)

fa ="tz —geylt

If this equals the ideal generated by the initial terms then a = b = 0 since z'2
and 37! is not in that ideal. O

Theorem 6.4. Let G C GL(2) be a finite abelian subgroup. Then there are
open immersions

¢ A? — G-Hilb(A?) (6.11)

for each fizpoint in 6.1, defined by the matrices A(u,v) in equation (6.5), whose
images form an open covering of G-Hilb(A?).
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Proof. As in the A,-case, the image of ¢ is the two-dimensional, open cell in
the decomposition induced by the chosen subgroup G,, — I'. And these cover
G-Hilb(A?). O

Remark 6.5. Since ¢ is I'-equivariant under the action defined on u and v in
equation (6.6), it follows that the tangent space at the fixpoint I is indeed as
proposed in figure 6.2, that is T = A=#1=#zyJ1 4 \i1y=J1=J2 in the representation
ring of T

One should note that this description coincides with the one constructed by
Kidoh [Kid]. That description is based on the toric resolution of A?/G. In her
work, the exponents i1, i, j1, j2 are given explicitly by two continued fractions.
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