List of m-files, with initial comments lines, from f:\matlab\Comp*.m. This
list was printed 21-Feb-2011 09:29:38 by the MakeTex.m function.

| contents.m 981 bytes 21-feb-2011 09:26:00 |

% Text describing the m-files in directory f:\matlab\Comp

% File generated by mkcontnt.m 21-Feb-2011 09:25:59

)

% Arith06 Arithmetic encoder or decoder

% Arith07 Arithmetic encoder or decoder

% entropy Function returns first order entropy of a source.

% eob3 End 0f Block Encoding (or decoding) into (from) three sequences

% Huff06 Huffman encoder/decoder with (or without) recursive splitting

% HuffCode Based on the codeword lengths this function find the Huffman codewords
% HuffLen Find the lengths of the Huffman code words

% HuffTabLen Find how many bits we need to store the Huffman Table information
% HuffTree Make the Huffman-tree from the lengths of the Huffman codes

% Mat2Vec Convert an integer matrix to a cell array of vectors,

% TestArith Test and example of how to use Arith06 and ArithQ7

% TestHuff Test and example of how to use Huff06

% uniquant Uniform scalar quantizer (or inverse quantizer) with threshold

’ Arith06.m 19115 bytes 28-jun-2001 20:54:02

Arith06 Arithmetic encoder or decoder

Vectors of integers are arithmetic encoded,

these vectors are collected in a cell array, xC.

If first argument is a cell array the function do encoding,
else decoding is done.

[y, Res] = Arith06(xC); % encoding

y = Arith06(xC); % encoding

xC = ArithO06(y); % decoding

Arguments:

y a column vector of non-negative integers (bytes) representing
the code, 0 <= y(i) <= 255.

Res a matrix that sum up the results, size is (NumOfX+1)x4

one line for each of the input sequences, the columns are

Res(:,1) - number of elements in the sequence

Res(:,2) - unused (=0)

Res(:,3) - bits needed to code the sequence

Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

Then the last line is total (which include bits needed to store NumOfX)
xC a cell array of column vectors of integers representing the

symbol sequences. (should not be to large integers)

If only one sequence is to be coded, we must make the cell array

like: xC=cell(2,1); xC{1}=x; ' where x is the sequence

Note: this routine is extremely slow since it is all Matlab code

This function do recursive encoding like Huff06.

An alternative (a perhaps better) aritmethic coder is Arith07,

which is a more "pure" arithmetic coder

SOME NOTES ON THE FUNCTION

The descrition of the encoding algorithm is in

chapter 5 of "The Data Compression Book" by Mark Nelson.

The actual coding algorithm is practical identical, it is a translation
from C code to MatLab code, but some differences have been made.

The system model, T, keep record of the symbols that have been encoded.

RPN T T I - I I I I I I A S I 1 1 1 T T T T I I S

S ST ST ST ST s s s

RPN T T T T I B i I i I I I I I S T o I T T I I I

Based on this table the probabiltity of each symbol is estimated. Probability
for symbol m is: (T(m+1)-T(m+2))/T(1)
The symbols are 0,1,...,M and Escape (M+1), Escape is used to indicate an
unused symbol, which is then coded by another table, the Tu table.

POSSIBLE IMPROVEMENTS

- better decision wether to split a sequence or not
- for long sequences, update frequency table T=floor(T*a) (ex: 0.2 < a < 0.9)
and do this for every La samples (ex: 100 < La < 5000)
We must not set any non-zero probabilities to zero during this adaption!!
- Display some information (so users know something is happening)

’ Arith07.m

30008 bytes

02-sep-2004 15:28:28

Arith07 Arithmetic encoder or decoder

Vectors of integers are arithmetic encoded,

these vectors are collected in a cell array, xC.
If first argument is a cell array the function do encoding,

else decoding is done.
[y, Res] = Arith07(xC);
y = Arith07(xC);

% encoding
% encoding

xC = Arith07(y); % decoding
Arguments:
y a column vector of non-negative integers (bytes) representing
the code, 0 <= y(i) <= 255.
Res a matrix that sum up the results, size is (NumOfX+1)x4

one line for each of the input sequences, the columns are

Res(:,1) - number of elements in the sequence

Res(:,2) - unused (=0)

Res(:,3) - bits needed to code the sequence

Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

Then the last line is total (which include bits needed to store NumOfX)
xC a cell array of column vectors of integers representing the

symbol sequences. (should not be to large integers)

If only one sequence is to be coded, we must make the cell array

like: xC=cell(2,1); xC{1}=x; % where x is the sequence

Note: this routine is extremely slow on Matlab version 5.x and earlier

SOME NOTES ON THE FUNCTION

This function is almost like Arith06, but some important changes have

been done. ArithO06 is buildt almost like Huff06, but this close connection
is removed in ArithO7. This imply that to understand the way ArithO6

works you should read the documentation for Huff06 and especially the
article on Recursive Huffman Coding. To understand how ArithO7 works it is
only confusing to read about the recursive Huffman coder, Huff06.

entropy.m

543 bytes

21-feb-2011 09:25:36

entropy Function returns first order entropy of a source.

H = entropy(S)

S is probability or count of each symbol
S should be a vector of non-negative numbers.
Ver. 1.0 09.10.97 Karl Skretting
Ver. 1.1 25.12.98 KS, Signal Processing Project 1998, english version

’ eob3.m

7086 bytes

22-0kt-2010 14:55:08 |

eob3

End Of Block Encoding (or decoding) into (from) three sequences

The EOB sequence of numbers (x) is splitted into three sequences,

(x1, x2, x3), based on previous symbol. The total (x) will have

L EOB symbol (EOB is 0) for the rest x is one more than y

The reason to split into several sequences is that the statistics for

each sequence will be different and this may be exploited in entropy coding

see also ..\ICTools\myreshape.m (which is mainly for images)
x = eob3(y); % encoding into one sequence
[x1,x2,x3] = eob3(y); % encoding into three sequences
[x,x1,x2,x3] = eob3(y); % encoding into one sequence and three sequences
y = eob3(x, N); % decoding from one sequence
y = eob3(x1l, x2, x3, N); % decoding from three sequences
arguments:
X - all symbols in the EOB sequence, this sequence may
be splitted into the three following sequence
length(x)=length(x1)+length(x2)+length(x3)
x1 - the first symbol and all symbols succeeding an EOB symbol
x2 - all symbols succeeding a symbol representing zero (in x this is 1),
this will never be an EOB symbol (which is 0)
x3 - other symbols
y - A matrix, size NxL, of non-negtive integers
N - Length of Block, it is length of column in y,

Note: Number of input arguments indicate encoding or decoding!

Copyright
Hogskolen

(c) 1999. Karl Skretting. All rights reserved.
in Stavanger (Stavanger University), Signal Processing Group

Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/

HISTORY:

Ver. 1.0 01.01.99 Karl Skretting, Signal Processing Project 1998
Ver. 1.1 14.01.99 KS, sort rows of y to get rows with fewest
zeros on the top.
Ver. 1.2 10.03.99 KS, made eob3 based on c_eob
Ver. 1.3 21.06.00 KS, some minor changes (and moved to ..\comp\)
Ver. 1.4 08.06.09 KS, warning messages changed
] Huff06.m 25888 bytes 22-0kt-2010 14:37:30 \
Huff06 Huffman encoder/decoder with (or without) recursive splitting
Vectors of integers are Huffman encoded,
these vectors are collected in a cell array, xC.
If first argument is a cell array the function do encoding,
else decoding is done.
[y, Res] = Huff06(xC, Level, Speed); % encoding
y = Huff06(xC); % encoding
xC = Huff06(y); % decoding
Arguments:
y a column vector of non-negative integers (bytes) representing
the code, 0 <= y(i) <= 255.
Res a matrix that sum up the results, size is (NumOfX+1)x4

one line for each of the input sequences, the columns are

Res(:,1) - number of elements in the sequence

Res(:,2) - zero-order entropy of the sequence

Res(:,3) - bits needed to code the sequence

Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

Then the last line is total (which include bits needed to store NumOfX)

% xC a cell array of column vectors of integers representing the

% symbol sequences. (should not be to large integers)

% If only one sequence is to be coded, we must make the cell array
% like: xC=cell(2,1); xC{1}=x; % where x is the sequence

% Level How many levels of splitting that is allowed, legal values 1-8
% If Level=1, no further splitting of the sequences will be done
% and there will be no recursive splitting.

% Speed For complete coding set Speed to 0. Set Speed to 1 to cheat

% during encoding, y will then be a sequence of zeros only,

% but it will be of correct length and the other output

% arguments will be correct.

)

% SOME NOTES ON THE FUNCTION
% huff06 depends on other functions for Huffman code, and the functions in this file

% HuffLen - find length of codewords (HL)

% HuffTabLen - find bits needed to store Huffman table information (HL)
% HuffCode - find huffman codewords

% HuffTree - find huffman tree

’ HuffCode.m 2242 bytes 21-jun-2000 19:44:18

HuffCode Based on the codeword lengths this function find the Huffman codewords
HK = HuffCode(HL,Display);
HK = HuffCode (HL) ;

h

yA

h

h

% Arguments:

% HL length (bits) for the codeword for each symbol

% This is usually found by the hufflen function

% HK The Huffman codewords, a matrix of ones or zeros

% the code for each symbol is a row in the matrix

% Code for symbol S(i) is: HK(i,1:HL(i))

% ex: HK(i,1:L)=[0,1,1,0,1,0,0,0] and HL(i)=6 ==>

% Codeword for symbol S(i) = ’011010°

% Display==1 ==> Codewords are displayed on screen, Default=0
h
h
yA
h
yA
h
h

Copyright (c) 1999. Karl Skretting. All rights reserved.
Hogskolen in Stavanger (Stavanger University), Signal Processing Group
Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/

HISTORY:
% Ver. 1.0 25.08.98 KS: Function made as part of Signal Compression Project 98
% Ver. 1.1 25.12.98 English version of program

)
’ HuffLen.m 3883 bytes 18-nov-2009 11:53:30
% HuffLen Find the lengths of the Huffman code words
% Based on probability (or number of occurences) of each symbol
% the length for the Huffman codewords are calculated.
%
% HL = hufflen(S);
%
% Arguments:
% S a vector with number of occurences or probability of each symbol
% Only positive elements of S are used, zero (or negative)
% elements get length O.

% HL length (bits) for the codeword for each symbol

4

Example:
hufflen([1,0,4,2,0,1]) => ans
hufflen([10,40,20,10]) => ans

(3,0,1,2,0,3]
[3,1,2,3]

Copyright (c) 1999. Karl Skretting. All rights reserved.
Hogskolen in Stavanger (Stavanger University), Signal Processing Group
Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/

HISTORY:

Ver. 1.0 28.08.98 KS: Function made as part of Signal Compression Project 98
Ver. 1.1 25.12.98 English version of program

Ver. 1.2 28.07.99 Problem when length(S)==1 was corrected

Ver. 1.3 22.06.00 KS: Some more exceptions handled

| HuffTabLen.m 6886 bytes 02-aug-2006 15:28:02 |

HuffTabLen Find how many bits we need to store the Huffman Table information
HLlen = HuffTabLen(HL);

arguments:

HL The codeword lengths, as returned from HuffLen function
This should be a vector of integers
where 0 <= HL(i) <= 32, 0 is for unused symbols
We then have max codeword length is 32

HLlen Number of bits needed to store the table

Function assume that the table information is stored in the following format
previous code word length is set to the initial value 2
Then we have for each symbol a code word to tell its length

’0° - same length as previous symbol

’10° - increase length by 1, and 17->1

71100’ - reduce length by 1, and 0->16

’11010° - increase length by 2, and 17->1, 18->2

’11011° - One zero, unused symbol (twice for two zeros)
’111xxxx’ - set code length to CL=Prev+x (where 3 <= x <= 14)

and if CL>16; CL=CL-16
we have 4 unused 7 bit code words, which we give the meaning
’1110000°+4bits - 3-18 zeros
71110001’ +8bits - 19-274 zeros, zeros do not change previous value
’1110010’+4bits - for CL=17,18,...,32, do not change previous value
’1111111° - End Of Table

’ HuffTree.m 2514 bytes 28-mar-2003 14:09:16 ‘

HuffTree Make the Huffman-tree from the lengths of the Huffman codes
The Huffman codes are also needed, and if they are known

they can be given as an extra input argument

Htree = HuffTree(HL,HK);

Htree = HuffTree(HL);

Arguments:
HL length (bits) for the codeword for each symbol
This is usually found by the hufflen function
HK The Huffman codewords, a matrix of ones or zeros

the code for each symbol is a row in the matrix
Htree A matrix, (N*2)x3, representing the Huffman tree,

needed for decoding. Start of tree, root, is Htree(1,:).
Htree(i,1)==1 indicate leaf and Htree(i,1)==0 indicate branch
Htree(i,2) points to node for left tree if branching point and
symbol number if leaf. Note value is one less than symbol number.
Htree(i,3) points to node for right tree if branching point
Left tree is ’0’ and right tree is ’1’
Copyright (c) 1999. Karl Skretting. All rights reserved.
Hogskolen in Stavanger (Stavanger University), Signal Processing Group
Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/
HISTORY:
Ver. 1.0 25.08.98 KS: Function made as part of Signal Compression Project 98
Ver. 1.1 25.12.98 English version of program

’ Mat2Vec.m

10309 bytes

08-jun-2009 14:09:00 |

Mat2Vec Convert an integer matrix to a cell array of vectors,

several different methods are possible, most of them are non-linear.

The inverse function is also performed by this function,

to use this first argument should be a cell array instead of a matrix.
Examples:

xC = Mat2Vec(W, Method); % convert the KxL matrix W to vectors
xC = Mat2Vec(W, Method, K, L); % convert the KxL matrix W to vectors

W = Mat2Vec(xC, Method, K, L); % convert vectors in xC to a KxL matrix
arguments:

xC a cell array of column vectors of integers representing the

)
Method

symbol sequences for matrix W.
a KxL matrix of integers

which method to use when transforming the matrix of quantized
values into one or several vectors of integers.
The methods that only return non-negative integers in xC are

marked by a ’+’,

the others also returns negative integers

if W contain negative integers.

For Method=10,11,14 and 15 we have K=2,4,8,16,32,64, or 128.

The legal methods are
0 by columns, direct 1 seq.
1 by columns, run + values 2 seq.
2 by rows, direct 1 seq.
3 by rows, run + values 2 seq.
4 + EOB coded (by columns) 1 seq.
5 + EOB coded (by columns) 3 seq.
6 + by columns, run + values 2 seq.
7 + by rows, run + values 2 seq.
8 each row, direct K seq.
9 each row, run + values 2*K seq.
10 each dyadic subband, direct log2(2*K) seq.
11 each dyadic subband, run + values 2*log2(2*K)seq.
12 + each row, direct K seq.
13 + each row, run + values 2*K seq.
14 + each dyadic subband, direct log2(2*K)seq.
15 + each dyadic subband, run + values 2*log2(2*K)seq.

the following ones are for K = 4, 16, 64, 256 or 1024
16 each 2D-dyadic, direct 1+(3/2)*log2(K) seq.
17 each 2D-dyadic, runt+value 2+3*1log2(K) seq.
18 + each 2D-dyadic, direct 1+(3/2)*Llog2(K) seq.
19 + each 2D-dyadic, runt+value 2+3%1log2(K)seq.

ST e e

SL ST S ST ST oYY

R T T T I I B B I I I T

20 + EOB coded (by columns, 2D-dyadic) 3 seq.
K size of matrix W, number of rows
L size of matrix W, number of columns

methods 16-19 added jun 5. 2009, KS

’ Test Arith.m 6257 bytes 22-0kt-2010 15:06:18

TestArith Test and example of how to use Arith06 and Arith07

Copyright (c) 2000. Karl Skretting. All rights reserved.
Hogskolen in Stavanger (Stavanger University), Signal Processing Group
Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/

HISTORY:
Ver. 1.0 10.04.2001 KS: function made
Ver. 1.1 28.06.2001 KS: more test signals

| TestHuff.m 1728 bytes 22-0kt-2010 15:08:22 |

TestHuff Test and example of how to use Huff06

Copyright (c) 2000. Karl Skretting. All rights reserved.

Hogskolen in Stavanger (Stavanger University), Signal Processing Group
Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/
HISTORY:

Ver. 1.0 20.06.2000 KS: function made

first make some data we will use in test

uniquant.m 1880 bytes 22-0kt-2010 14:51:34

uniquant Uniform scalar quantizer (or inverse quantizer) with threshold
Note: Use three arguments for inverse quantizing and
four arguments for quantizing.

Y = uniquant(X, del, thr, ymax); % quantizer

X = uniquant(Y, del, thr); % inverse quantizer

arguments:
X - the values to be quantized (or result after inverse

quantizer), a vector or matrix with real values.
Y - the indexes for the quantizer cells, the bins are indexed as
., -3, -2, -1, 0, 1, 2, 3, ... where 0 is for the zero bin

del - delta i quantizer, size/width of all cells except zero-cell
thr - threshold value, width of zero cell is from -thr to +thr

ymax - largest value for y, only used when quantizing

Copyright (c) 1999. Karl Skretting. All rights reserved.
Hogskolen in Stavanger (Stavanger University), Signal Processing Group
Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/ karlsk/

HISTORY:
Ver. 1.0 27.07.99 Karl Skretting, Signal Processing Project 1999

7

% function made based on c_ql.m
% Ver. 1.2 22.10.10 KS: same as ..\ICTools\uniquant

)3

