
Sparse Approximation by Matching Pursuit
using Shift-Invariant Dictionary

Karl Skretting and Kjersti Engan

University of Stavanger, 4036 Stavanger, Norway,
{karl.skretting,kjersti.engan}@uis.no

Abstract. Sparse approximation of signals using often redundant and
learned data dependent dictionaries has been successfully used in many
applications in signal and image processing the last couple of decades.
Finding the optimal sparse approximation is in general an NP complete
problem and many suboptimal solutions have been proposed: greedy
methods like Matching Pursuit (MP) and relaxation methods like Lasso.
Algorithms developed for special dictionary structures can often greatly
improve the speed, and sometimes the quality, of sparse approximation.
In this paper, we propose a new variant of MP using a Shift-Invariant
Dictionary (SID) where the inherent dictionary structure is maximally
exploited. The dictionary representation is simple, yet flexible, and equiv-
alent to a general M channel synthesis FIR filter bank. Adapting the
MP algorithm by using the SID structure gives a fast and compact
sparse approximation algorithm with computational complexity of order
O(N logN). In addition, a method to improve the sparse approximation
using orthogonal matching pursuit, or any other block-based sparse ap-
proximation algorithm, is described. The SID-MP algorithm is tested by
implementing it in a compact and fast C code (Matlab mex-file), and
excellent performance of the algorithm is demonstrated.

Keywords: Sparse Approximation, Matching Pursuit, Dictionary, Shift-Invariant

1 Introduction

Obtaining a sparse representation of a signal is an important part of many signal
processing tasks. A typical way to do this is to use a dictionary of atoms, and
to represent the signal as a linear sum of some of the available atoms. A sparse
approximation of a signal x of size N × 1, allowing a (small) error r, can be
written as

x̂ = Dw =
∑
k

w(k)dk, x = x̂ + r (1)

where D is the N ×K dictionary, dk of size N × 1 is atom number k, w(k) is
coefficient k, and w is the K × 1 coefficient vector. For a sparse approximation,
only a limited number, s, of the coefficients are non-zero.

Common predefined dictionaries are the Discrete Cosine Transform (DCT)
basis, wavelet packages and Gabor bases, both orthogonal and overcomplete
variants can be used. Advantages of these predefined dictionaries are: They can
be implicitly stored, they are, in general, signal independent and thus can suc-
cessfully be used for most classes of signals, and fast algorithms are available for
common operations. The overlapping transforms, i.e. wavelets and filter banks,
perform better than the block-based transforms, like DCT, on many common sig-
nals. This is because the structure in the overlapping transforms does not need
the signal to be divided into (small) blocks and thus they avoid the blocking
artifacts.

Learned dictionaries are an alternative to predefined dictionaries. Since they
are learned, i.e. adapted to a certain class of signals given by a relevant set of
training signals, they will usually give better sparse approximation results for
signals belonging to the class. Many methods have been proposed for dictionary
learning; K-SVD [2], ODL [14], MOD [8] [9] and RLS-DLA [23]. All these meth-
ods are block-based and the blocks should be rather small to limit the number
of free variables in the dictionary; as seen from Eq. 1 the number of elements in
D is NK.

Structured learned dictionaries try to combine the advantages of predefined
dictionaries and general (all elements are free) learned dictionaries [22] [17]. Im-
posing a structure on the dictionary allows the atoms to be overlapping and the
dictionary could be very large and still have a reasonable number of free vari-
ables. In addition, the structure can make dictionary learning computationally
more tractable. Several variants of structured dictionaries are possible [1], [22],
[9] and [3]. An example of a structured dictionary that has been shown to be
useful is the Shift-Invariant Dictionary (SID) [18] [12] [20]. In this paper, we
propose a flexible representation for the SID structure.

The sparse approximation step is an important part when both using and
learning a dictionary. It is often the computationally most expensive part, thus
its speed is very important. Popular approaches are the l1-norm minimization
methods like LARS/Lasso [7], and the greedy algorithms directly using the l0-
quasinorm. For the latter approach Matching Pursuit (MP) [15] and its many
variants, like orthogonal matching pursuit [19], are much used. MP algorithms
typically has computationally complexity of O(N3) and this effectively limits
the dictionary size. To overcome this restriction FFT-based algorithms tailored
for shift-invariant dictionaries have been developed [10].

FFT-based algorithms work very well for regular dictionaries, i.e. Gabor,
harmonic, chirp or DCT based atoms, but for short arbitrary waveforms time-
domain algorithms should be expected to perform better. As an example the
execution times for Matlab functions fftfilt() and filter() can be compared
for different signal and filter lengths; the time domain approach is faster for filters
shorter than 300 and a signal length of 10000 samples. For many learned shift-
invariant dictionaries, the atoms will be arbitrary and of limited (short) length,
and sparse approximation should benefit from using a well-designed and well-

↑ PM fM (i)-wM (kM) -w̃M (n) x̂M (n)

↑ P2 f2(i)-w2(k2) -w̃2(n) -x̂2(n)

↑ P1 f1(i)-w1(k1) -w̃1(n) x̂1(n)

...

6

?j+ -x̂(n)

Fig. 1. A general synthesis filter bank of M channels (filters). Filter fm has length Qm

and upsampling factor Pm, these values may be different for each filter. w̃m(n) is the
upsampled coefficients for filter m. If each filter fm here is given as the reversed (and
shifted) atom qm the synthesis equation can be written as in Eq. 5.

implemented time domain based algorithm. Therefore, this is what we present
here.

The matching pursuit variant presented in this paper, denoted as SID-MP,
is completely implemented in time domain but still has the same low computa-
tionally complexity of order O(N logN) as the FFT-based algorithms, it uses a
simple and flexible representation for the shift-invariant dictionary, and it allows
the atoms to be shifted in steps larger than one. For short arbitrary shape atoms,
it should be faster than FFT-based algorithms.

Orthogonal Matching Pursuit (OMP) finds better approximations than MP
using the same number of non-zeros [4] and fast algorithms are available for
small dictionaries. For large shift-invariant dictionaries (true) OMP is slow, but
a low complexity approximate OMP variant has been presented by Mailhé et al.
[11]. This variant is FFT-based and achieves results close to true OMP with exe-
cution times close to MP. We propose another OMP variant, denoted SID-OMP.
Its main idea is to divide the long signal into blocks (segments) of moderate size
that are processed by OMP or any other block-oriented sparse approximation al-
gorithm. By doing several iterations, or using partial search [24] instead of OMP,
better approximation than (true) OMP can be achieved. The SID structure is
used in the proposed method, it has computationally complexity of order O(N)
but the constant factor is large and depends on the segment size.

The organization of this paper is: Section 2 presents the representation of the
SID structure. The proposed algorithm SID-MP is presented in Section 3 and
the SID-OMP method in Section 4. Finally, in Section 5, it is shown that the
proposed algorithms are fast and efficient.

2 The Shift-Invariant Dictionary

A Shift-Invariant Dictionary (SID) should be represented independently of the
signal size, and it should be easy to extend it to match the (possibly large)
signal length N . In this paper, we suggest to use a dictionary structure, denoted
as SID structure, equivalent to the general synthesis filter bank in Fig. 1. A
matrix representation as in Eq. 1 is equivalent to the M channels filter bank in
Fig. 1 when each channel is represented by one submatrix Dm and the dictionary
is a concatenation of these:

D = [D1, D2, · · · , DM], (2)

One submatrix, Dm, contains one atom (the reversed synthesis filter) and its
shifts (below the shift Pm = 1 is visualized):

Dm =

qm(1)
qm(2) qm(1)

...
...

. . .

qm(Qm) qm(Qm − 1)
. . . qm(1)

qm(Qm)
. . . qm(2)
. . .

...
qm(Qm)

. (3)

Atom m is denoted as qm with elements qm(i) for i = 1, 2, . . . , Qm. It has length
Qm and is shifted Pm positions down for each new column in Dm. Here it is
assumed that each atom has unit norm and is real. Note that the support for
all shifts of an atom is completely within the dictionary column (length N).
There is neither circular extension nor mirroring at the ends. This means that
the number of columns in submatrix Dm is given as:

Km = d(N −Qm + 1)
/
Pme. (4)

d·e denotes the ceiling function. The dictionary D has size N ×K where K =∑M
m=1 Km. The overcomplete factor, i.e. the ratio K/N (as N →∞), is

∑M
m=1 1/Pm.

The SID structure is given by the number of atoms M , the atom lengths {Qm}Mm=1,

their shifts {Pm}Mm=1, and their Q =
∑M

m=1 Qm values which are collected into
one vector qT = [qT

1 ,q
T
2 , . . .q

T
M]. This structure for a shift-invariant dictionary

is actually quite flexible, and many dictionaries fit quite well into this structure.
It is a subclass of the flexible structure dictionary introduced in [3].

The sparse approximation equation can be divided into blocks as

x̂ = Dw = [D1, . . . , DM]

 w1

...
wM

 (5)

= D1w1 + · · ·+ DMwM = x̂1 + · · ·+ x̂M ,

Matching pursuit algorithm:

1 w = MP(D,x, s)
2 w := 0, r := x
3 while not Finished
4 c := DT · r
5 find k : |c(k)| = maxj |c(j)|
6 w(k) := w(k) + c(k)
7 r := r− c(k) · dk

8a Finished := (‖r‖ < some Limit)
8b Finished := (s non-zero entries in w)
9 end
10 return

Fig. 2. The matching pursuit algorithm. The columns (atoms) of D should have unit
norm. Input s is the target number of non-zero coefficients to select.

where the approximation is split into M terms, each corresponding to a subma-
trix of the dictionary. It is easily seen that this is an alternative representation
of a general synthesis FIR filter bank [5] of M filters as in Fig. 1.

3 Matching Pursuit using SID

Matching Pursuit (MP), presented and analyzed in [15] and [6], is the simplest of
the matching pursuit algorithms. An overview of the algorithm is given in Fig. 2.
The MP algorithm is quite simple, but it is not very efficient. The loop may
be executed many times (≥ s), sometimes selecting the same dictionary atom
multiple times, and the calculation of the inner products (line 4) is demanding,
where approximately NK multiplications and additions are done. As both K
and the number of non-zero coefficients to select, s, are (usually) of the order
O(N) this gives the computational complexity of MP as O(N3). Using FFT
and taking advantage of the dictionary structure, and all shift steps equal to
one (Pm = 1), shift-invariant MP can be implemented by an algorithm of the
order O(N logN) [10]. Below, we present a simple time domain algorithm that
exploits the SID structure, and allows different shift steps Pm ≥ 1. It follows the
steps of MP as seen in Fig. 2, but has the complexity order of O(N logN) or
O(MQN logN) if the (constant) SID size is included.

The proposed algorithm is done in a straightforward way in time domain,
but exploiting the SID structure maximally and thus making the inner loop as
fast as possible. An outline of the algorithm is given in Fig. 3 and the similarity
to MP in Fig. 2 is obvious. The input is the SID which is given by the number of
atoms M , the atom lengths {Qm}Mm=1, their shifts {Pm}Mm=1, and their Q values,
the signal x (length N) and the target number of non-zeros s. In the analysis
below the SID is assumed to be constant and independent of signal length N .

Matching pursuit using a shift-invariant dictionary:

1 w = SID-MP(sid,x, s)
2 w := 0, r := x
3 c := DT · r, InitHeap
4 while not Finished
5 k =: topHeap,
6 w(k) := w(k) + c(k)
7 r := r− c(k) · dk

8 Update c and Heap
9 Check if Finished
10 end
11 return

Fig. 3. The Matching pursuit algorithm using shift-invariant dictionary. Input s is the
target number of non-zero coefficients to select. The inner products are stored in a
heap, initialized by the InitHeap-function, top extracted by topHeap-function, and in
line 8 the inner products and the heap are updated, but only for atoms where the
inner product has changed, i.e. the atoms with support overlapping the support of the
selected atom.

As for MP, initialization sets w to zeros and the residual r to x, but here the
calculation of the inner products, c, is done before the main loop. Since the atoms
has fixed support the complexity is O(N). Line 5 in Fig. 2 has the computational
complexity of O(N) which is not wanted inside a loop. To avoid this a max-heap
data structure is used, to build the heap outside the loop is O(N). Inside the
loop max is found in O(1) and the heap is updated in O(logN).

The most demanding task inside the loop is to update the involved inner
products and their place in the heap. But, since all atoms have local support
the number of inner products to update is limited, depending only of the SID
structure and independent of signal length N . The update step (line 8) is thus
O(logN) which also becomes the order of the loop. The loop is done at least
s = O(N) times. This gives the computational cost for the SID-MP algorithm
in the order of O(N logN).

An implementation of this algorithm could be both compact and fast and it
will be available on the web: http://www.ux.uis.no/~karlsk/dle/.

4 Orthogonal MP using SID

Orthogonal Matching Pursuit (OMP), somewhere denoted as Order Recursive
Matching Pursuit (ORMP), finds better approximations than MP using the
same number of non-zeros [4]. A throughout description of OMP/ORMP can
be found in [4] or [24] and is not included here. For small (or moderately sized)
dictionaries OMP is efficient, and fast implementations using QR-factorization
are available: SPAMS from Mairal et al. [13] and OMPbox from Rubinstein et

http://www.ux.uis.no/~karlsk/dle/index.html

al. [21]. Nevertheless, these effective implementations have time complexity of
order O((K +s2)N) = O(N3) where N and K refer to the size of the dictionary
for the signal block.

To do OMP on a large signal using a shift-invariant dictionary is more com-
plicated than to do MP; since orthogonalization is done when a new atom is
selected the effect on the residual, and thus the updated inner products, goes
beyond the support of the selected atom. But the effect decreases as the dis-
tance from the selected atom increases. Using this fact, an approximate OMP
algorithm can be developed in a way similar to the MP algorithm [11]. An-
other approach is used in the proposed method. It utilizes the local support of
the atoms to divide the large OMP problem into many moderately sized OMP
problems. The segment size is fixed and independent of N giving the computa-
tional complexity as O(N), but the constant factor is large O(N3

seg) where Nseg

is the signal segment length used in the OMP problems.
The proposed method, denoted as SID-OMP, has almost the same input as

the SID-MP algorithm in Fig. 3: the shif-invariant dictionary represented as a
SID structure, the long signal x of length N , and the target number of non-
zero coefficients s or an initial coefficient vector w having the target number s
non-zero elements. The initial coefficient vector w is found by the SID-MP algo-
rithm in previous section if s is given as input, or w could be found by another
preferred initialization method and given directly as input. The algorithm then
does some few iterations, and in each iteration improved coefficients are found
but the number of non-zero coefficients is unchanged. The coefficient vector w
is returned. A detailed description of one iteration follows:

1. The signal is divided into L consecutive segments, the segment length is
Nseg and the signal may be longer than the total length of the L segments,
N = Nb +LNseg +Ne. The excess portions are Nb samples at the beginning
and Ne samples at the end of the signal, 0 ≤ Nb, Ne < Nseg.

2. The coefficients for atoms with support completely within one segment are
set to zero, for each segment the number of coefficients set to zero is stored:
si for i = 1, 2, . . . , L. The other coefficients are not changed. The original
coefficients (and segment residuals) are also stored, and may be restored for
some of the segments (in step 5 below).

3. The residual is calculated using the remaining coefficients, i.e. only the non-
zero coefficients belonging to atoms with support that span two segments.

4. The residual segments are used as input for the block-oriented sparse ap-
proximation algorithm. If the segment size is chosen correctly, depending on
the SID (Pm values), the dictionary Dseg will be the same for all segments
and all iterations. For each segment the target number of non-zeros is si as
found in step 2.

5. The coefficients are updated. If the sparse representation for a segment is
better than what it was the new coefficients are used, if not the coefficients
are set to the values they had when the iteration started. This way each
iteration will improve (or keep) the sparse approximation.

6. Go back and do next iteration using a new segmentation of the original
signal, i.e. new values for Nb and Ne. A few (4-8) iterations are sufficient.

Fig. 4. Example of a shift-invariant dictionary. This structure is used in Table 1 and
first row in Table 2.

One remark should be made to the algorithm as it is described above. The
locations of the non-zeros coefficients will only change slowly from one iteration
to the next, and it will take many iterations to move one non-zero coefficient a
long distance. This problem with the algorithm can be avoided by selecting a
good initial distribution, as SID-MP will give, or by modifying the algorithm:
For all segments (i = 1, 2, . . . , L) the sparse approximation in step 4 could find
solutions for si−1, si and si +1 non-zero coefficients and the respective residual
norms, ri,−1, ri,0, ri,+1, can be calculated. A non-zero coefficient should be moved
from segment i to segment j if (rj,0 − rj,+1) > (ri,−1 − ri,0). Repeating this
will move non-zeros from one segment to another as long as this operation will
reduce the total error. The locations of the non-zeros will now move more quickly
between signal parts. We should also note that SID-OMP does not need to use
OMP as the sparse approximation algorithm, any block-oriented algorithm will
do.

5 Experiments

In this section we present three simple experiments to illustrate how the proposed
methods work. All experiments are conducted on an ECG signal from the MIT
arrhythmia database [16]. The used signal, MIT100 where a short segment is
shown in Fig. 5, is a normal heart rhythm, and the reason for using such an
ECG signal is that it will obviously benefit from a SID structure. This signal

Fig. 5. First part of the used MIT100 normal rhythm ECG signal.

was also used for dictionary learning. As the purpose of these experiments is to
test sparse approximation only, not a particular application, the actual signal or
dictionaries used are not that important.

Experiment 1 is done to show how well, i.e. how fast, the SID-MP and
SID-OMP algorithms run as the signal size increases. A SID with structure
M = 5, Qm = {35, 25, 20, 10, 10} and Pm = {5, 2, 2, 1, 1} as illustrated in Fig. 4,
is used to make a sparse approximation of the MIT100 signal. The sparsity factor
throughout the experiment is kept at 0.08, i.e. the number of non-zero coefficients
is 0.08N , where N is the signal length. The MIT100 signal is 250000 samples
long, and longer test signals are made simply by repeating it. Fig. 6 shows the
running time for SID-MP as the signal length increases, it scales (as expected)
close to linear order and it is fast. For the longest signal, N = 5 million samples
and the total number of dictionary atoms is K = 15.6 million, the number of
non-zero coefficients is 0.4 million, and to find these takes less than 8 seconds on
an Intel Core i5 3.2 GHz CPU PC. Another advantage of the proposed algorithm
is that it is small (the compiled mex-file is 23 kB) and it does not depend on any
special pre-installed libraries. The running times for one iteration for SID-OMP
are also shown in Fig. 6, this line shows the linear order for computational times.

In Experiment 2 SID-OMP is tested using different segment sizes Nseg

and different number of iterations. For one segment size OMP is replaced by
the computationally more demanding partial search algorithm [24] in the sparse
approximation step. All tests use 250000 samples of the MIT100 signal and the
sparsity factor is 0.08. Doing eight iterations the Signal to Noise Ratio (SNR)
improves for each iteration as shown in Table 1. Most of the improvements is
achieved already after two iterations, and using smaller segment sizes keeps on
improving SNR for more iterations. After eight iterations, using Nseg = 150 is
the better option. Also, using many small segments is faster that using fewer

Fig. 6. Running times on an Intel Core i5 3.2 GHz CPU PC for the SID-MP algorithm
shown on line marked by disks. The line marked by boxes is running time for one
iteration of the SID-OMP algorithm. The segment dictionary Dseg has size 360×1170.
Note that SID-OMP should do 4-8 iterations.

and larger segments. Thus it is better to use smaller segments than larger, but
note that Nseg should always be larger than maxm Qm.

Experiment 3 tests SID-MP and SID-OMP using five different dictionaries,
i.e. SID structures. The first three dictionaries are learned for the MIT100 signal,
the first is as in Fig. 4. The fourth dictionary is a SID structure with atoms set
as low-pass or band-pass filters, Qm ∈ {128, 64, 32, 16} and Pm ∈ {8, 4, 2, 1},
and the fifth dictionary has synthesis atoms from the modified DCT transform,
Qm = 64 and Pm = 1. The results are shown in Table 2.

6 Conclusion

The presented SID-MP is a variant of the matching pursuit algorithm that can
be used for a shift-invariant dictionary structure. This structure is flexible as it
encompasses any system that can be expressed as a general synthesis FIR filter
bank of M filters, including the shift-invariant dictionary. The algorithm is fast
and scales well to large signals. We also presented the SID-OMP method that
allows us to use any (fast) block-oriented MP algorithm to further improve the
sparse approximation.

SA in SNR after iteration number (SID-MP: 23.63)
SID-OMP Dseg 1 2 3 4 5 6 7 8 time [s]

OMP 100 × 275 24.56 25.02 25.17 25.26 25.35 25.39 25.41 25.43 1.92
OMP 150 × 435 24.76 25.15 25.25 25.32 25.39 25.42 25.44 25.44 2.29
OMP 200 × 595 24.88 25.20 25.27 25.34 25.38 25.40 25.42 25.43 2.73
OMP 250 × 755 24.95 25.23 25.31 25.35 25.38 25.40 25.42 25.43 3.32
OMP 300 × 915 25.02 25.25 25.30 25.34 25.37 25.39 25.40 25.41 3.77
OMP 400 × 1235 25.09 25.27 25.31 25.34 25.36 25.37 25.38 25.39 5.23
OMP 500 × 1555 25.10 25.28 25.32 25.34 25.36 25.37 25.38 25.39 7.09

PS 150 × 435 25.36 25.88 26.03 26.12 26.15 26.19 26.21 26.23 67.5

Table 1. This table shows that SID-OMP in Section 4 improves the sparse approxima-
tion (SA) after SID-MP, SNR after SID-MP was 23.63. The table shows the achieved
SNR after each of the iterations in SID-OMP. Time is shown for 8 iterations. The SA
step in each iteration was performed by the OMP implementation in SPAMS except
for the last line where the computationally more demanding Partial Search (PS) was
used for comparison. There are 20000 non-zero coefficients and signal length is 250000.
The segment size Nseg, and thus the segment dictionary Dseg, varies for the different
rows.

SID structure SID-MP SID-OMP
No. M Q K/N SNR time [s] SNR time [s]

1 5 100 3.2 23.61 0.3 25.44 2.3
2 6 200 3.3 24.15 0.4 25.74 4.0
3 12 622 7.0 26.20 1.5 27.84 5.9

4 16 960 7.5 21.92 1.8 23.76 5.9
5 32 2048 32.0 18.11 8.8 19.65 16.3

Table 2. The achieved SNR for 250000 samples of the MIT100 signal using different
SID structures: dictionary 1-3 are learned, dictionary 4 is a predefined filter bank, and
5 is a modified DCT. For each row, achieved SNR and the computational time for the
two methods are shown.

References

1. Aharon, M., Elad, M.: Sparse and redundant modeling of image content using
an image-signature-dictionary. SIAM Journal on Imaging Sciences 1(3), 228–247
(2008)

2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. Signal Processing, IEEE Transactions
on 54(11), 4311–4322 (2006), http://dx.doi.org/10.1109/TSP.2006.881199

3. Barzideh, F., Skretting, K., Engan, K.: The flexible signature dictionary. In: Proc.
23rd European Signal Processing Conf., EUSIPCO-2015. Nice, France (Sep 2015)

4. Cotter, S.F., Adler, J., Rao, B.D., Kreutz-Delgado, K.: Forward sequential algo-
rithms for best basis selection. IEE Proc. Vis. Image Signal Process 146(5), 235–244
(Oct 1999)

5. Cvetković, Z., Vetterli, M.: Oversampled filter banks. IEEE Trans. Signal Process-
ing 46(5), 1245–1255 (May 1998)

http://dx.doi.org/10.1109/TSP.2006.881199

6. Davis, G.: Adaptive Nonlinear Approximations. Ph.D. thesis, New York University
(Sep 1994)

7. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals
of Statistics 32, 407–499 (2004)

8. Engan, K., Aase, S.O., Husøy, J.H.: Method of optimal directions for frame design.
In: Proc. ICASSP ’99. pp. 2443–2446. Phoenix, USA (Mar 1999)

9. Engan, K., Skretting, K., Husøy, J.H.: A family of iterative LS-based dictionary
learning algorithms, ILS-DLA, for sparse signal representation. Digital Signal Pro-
cessing 17, 32–49 (Jan 2007)

10. Krstulovic, S., Gribonval, R.: MPTK: Matching pursuit made tractable. In: Pro-
ceedings ICASSP 2006. vol. 3, pp. 496–499. Toulouse, France (May 2006)

11. Mailhé, B., Gribonval, R., Bimbot, F., Vandergheynst, P.: A low complexity or-
thogonal matching pursuit for sparse signal approximation with shift-invariant dic-
tionaries. In: Proceedings ICASSP 2009. pp. 3445–3448. Taipei, Taiwan (Apr 2009)

12. Mailhé, B., Lesage, S., Gribonval, R., Bimbot, F.: Shift-invariant dictionary learn-
ing for sparse representations: Extending K-SVD. In: Proceedings of the 16th Euro-
pean Signal Processing Conference (EUSIPCO-2008). Lausanne, Switzerland (aug
2008)

13. Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision processing.
Foundations and Trends in Computer Graphics and Vision 8(2-3), 85–283 (2014)

14. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: ICML ’09: Proceedings of the 26th Annual International Conference on
Machine Learning. pp. 689–696. ACM, New York, NY, USA (jun 2009)

15. Mallat, S.G., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE
Trans. Signal Processing 41(12), 3397–3415 (Dec 1993)

16. Massachusetts Institute of Technology: The MIT-BIH Arrhythmia Database CD-
ROM. MIT, 2 edn. (1992)

17. Muramatsu, S.: Structured dictionary learning with 2-D non-separable oversam-
pled lapped transform. In: Proceedings ICASSP 2014. pp. 2643–2647. Florence,
Italy (May 2014)

18. O’Hanlon, K., Plumbley, M.D.: Structure-aware dictionary learning with har-
monic atoms. In: Proceedings of the 19th European Signal Processing Conference
(EUSIPCO-2011). Barcelona, Spain (aug 2011)

19. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In:
Proc. of Asilomar Conference on Signals Systems and Computers (Nov 1993)

20. Pope, G., Aubel, C., Studer, C.: Learning phase-invariant dictionaries. In: Pro-
ceedings ICASSP 2013. Vancouver, Canada (May 2013)

21. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD
algorithm using batch orthogonal matching pursuit. Tech. rep., CS Technion, Haifa,
Israel (Apr 2008)

22. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: Learning sparse dictio-
naries for sparse signal approximation. IEEE Transactions on Signal Processing
58(3), 1553–1564 (Apr 2010)

23. Skretting, K., Engan, K.: Recursive least squares dictionary learning algorithm.
IEEE Transactions on Signal Processing 58, 2121–2130 (Apr 2010), digital object
identifier: 10.1109/TSP.2010.2040671

24. Skretting, K., Husøy, J.H.: Partial search vector selection for sparse sig-
nal representation. In: NORSIG-03. Bergen, Norway (Oct 2003), available at
http://www.ux.uis.no/~karlsk/

	Sparse Approximation by Matching Pursuit using Shift-Invariant Dictionary

