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ABSTRACT
This paper describes a general design method for signal depen-
dent frames, or over-complete dictionaries. The design method
is developed for block-oriented frames, overlapping frames, and
constrained frames, which can be regarded as extensions of re-
spectively block-oriented transforms, filter banks, and general fil-
ter banks like wavelets. The frames are optimized for sparse repre-
sentation of a signal class. Using the designed frames and a Match-
ing Pursuit algorithm it is shown that superior, compared to other
methods, sparse representations are achieved for an Electrocardio-
gram signal. It is also demonstrated that compression based on
these sparse representations gives excellent performance at low bit
rates.

1. INTRODUCTION

Compression of Electrocardiogram (ECG) signals is an important
problem that has received considerable attention [1, 2, 3]. ECG
signals are (recorded) electrical pulses the body makes during heart
beats. In this paper we use signals from the MIT database [4], sam-
pled at 360 Hz with 12 bits per sample.

Traditional compression schemes have the following steps: 1)
The signal is decomposed into expansion coefficients by a trans-
form, which may be a block-transform, a filter bank or a wavelet.
The number of coefficients is the same as the number of signal
samples, i.e. the decomposition method iscomplete. 2) The ex-
pansion coefficients are quantized. A common method is to use
a uniform quantizer with thresholding, which makes the zero bin
larger than the other bins. This has been proven to give good per-
formance when used in combination with an End-Of-Block (EOB)
coding scheme. At low bit rates many of the coefficients fall into
the zero bin and are quantized to zero. The number of non-zero
coefficients may be considerably lower than the original number
of signal samples, giving asparserepresentation. To quantify the
degree of sparseness thesparseness factor, S, is defined as the pro-
portion of non-zero coefficients in the signal expansion to the num-
ber of samples in the signal. 3) Entropy coding packs the quantized
expansion coefficients in an efficient way, using few bits. This may
by be done by quite simple Huffman coding or more complex bit-
plane schemes, like in JPEG 2000. 4) Inverse entropy coding and
inverse quantizing restore the quantized coefficients, i.e. they are
approximations to their original values. 5) The reconstructed sig-
nal is built from the quantized expansion coefficients by the inverse
of the transform used in step 1. This corresponds to forming the re-
constructed signal as a linear combination ofsynthesis vectors. In
a filter bank context this step is also called thesynthesisstep. This
compression scheme is also used as a reference in the experiments
in this paper.

Denoting the signal as a vectorx, the expansion coefficients
are found asy = T −1x whereT −1 is a large (or even infinite)
invertible, possibly orthogonal, matrix representing the transform.
The quantized coefficients are denotedỹ, and the reconstructed
signal is formed by thesynthesis equation:

x̃ = T ỹ. (1)

The columns ofT are the synthesis vectors. Using block-oriented
transforms the synthesis vectors within each block do not over-
lap with the synthesis vectors of other blocks andT is a block-
diagonal matrix. For filter banks and wavelets the synthesis vec-
tors will overlap with those in neighboring blocks, so filter banks
and wavelets areoverlappingtransforms.

In [5], it is observed that at low bit rates the main factor de-
termining the performance of an orthogonal transform coder is the
approximation error caused by the sparseness. The more sparse
the approximated representation of the signal is, the lower bit rate
is achieved. Inspired by this observation, it would be an idea
to seek for the transform that gives the best approximation for a
given sparseness factor. Removing the constraint that the matrix
T should be a square matrix and making its width larger than its
height, i.e.K columns for everyN rows andK > N , the matrix
will no longer represent a transform but aframe, assuming that
its columns span the space. The frame is denotedF , it is over-
completeand the degree of over-completeness isK/N . Using a
frame instead of a transform will increase the number of synthe-
sis vectors available and finding a better approximation should be
possible using the same sparseness factor. In this paper we present
a design method for signal dependent frames, which, for a given
sparseness factor, searches for a frame where the representation
error of a training signal is minimized. We will here show that
these frames not only give better sparse representations, but also
give better compression results at low bit rates.

Since we assume thatF is neither orthogonal nor invertible we
can not find the coefficients in the same way as in traditional trans-
form coders. We will not look for some quantized coefficients,ỹ,
but search directly for an appropriate sparse vector of weights,w,
that can be used in the synthesis equation,

x̃ = Fw. (2)

The problem of finding the sparse weight vector, for a given sparse-
ness factor, such that the 2-norm of the residual is minimized, is
an NP-hard problem [6]. Many practical solutions employ greedy
vector selectionalgorithms such as Matching Pursuit (MP), Or-
thogonal Matching Pursuit (OMP) and Order Recursive Matching
Pursuit (ORMP) [7, 8]. ORMP is used in this work.



2. FRAME DESIGN

The design algorithms of this section constitute a synthesis of tech-
niques presented at various levels of development in [9, 10]. The
algorithms presented aim at training a frame to give a good, sparse
representation of a class of signals. The optimal frame will depend
on the target sparseness factor and the class of signals we want
to represent. Thus, we need representative data as training data.
The training signal,x, is divided intoL blocks,xl, each of length
N . The training signal blocks, and also the weight blocks and the
frame itself, will be organized in many different ways in the cases
presented below, whatever is appropriate for the situation.

2.1. Unconstrained Block Based Frame Design

For a one dimensional signal and the block-oriented case the syn-
thesis equatioñx = F w can be written as
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Defining the matricesX = [x1,x2, . . . ,xL],
X̃ = [x̃1, x̃2, . . . , x̃L], andW = [w1,w2, . . . ,wL] the synthesis
equation can also be written as̃X = FW. We want to find the
frame,F, of sizeN×K whereK > N , and the sparse coefficient
vectors,wl, that minimize the sum of the squared errors. The
objective function to be minimized is

J = J(F,W) = ‖X− X̃‖2 = ‖X− FW‖2. (4)

Finding the optimal solution to this problem is difficult if not im-
possible. We split the problem into two parts to make it more
tractable, similar to what is done in the GLA design algorithm for
VQ codebooks [11]. The iterative solution strategy presented be-
low results in good, but in general suboptimal, solutions to the
problem.

The algorithm starts with a user supplied initial frameF(0)

and then improves it by iteratively repeating two main steps:

1. W(i) is found by vector selection using frameF(i). The
objective function isJ(W) = ‖X − F(i)W‖2, and a
sparseness constrain is imposed onW.

2. F(i+1) is found fromX and W(i), where the objective
function isJ(F) = ‖X− FW(i)‖2. This gives:

F(i+1) = X(W(i))T (
W(i)(W(i))T )−1

(5)

Then we incrementi and go to step 1.

i is the iteration number. The first step is suboptimal due to the
use of practical vector selection algorithms, while the second step
finds theF that minimizes the objective function.

2.2. Unconstrained Overlapping Frame Design

When we extend our design strategy to the general overlapping
case, the large frame,F , can be written as
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(6)

The synthesis vectors are the columns ofF orF. F (of sizeNP ×
K) can be partitioned intoP submatrices,{Fp}P

p=1 each of size
N ×K.

We need to rearrange the synthesis equation to be able to use
the algorithm from Section 2.1, i.e. extend the algorithm for block
based frame design to overlapping frame design. LetF be defined
by (6), and substituteF into (3). The synthesis of one signal block
is now:

x̃l =

P−1∑
p=0

Fp+1wl−p = F1wl + F2wl−1 + . . . + FP wl−P+1.

A composite synthesis equation for all the signal blocks can
be expressed as

[· · · x̃l, x̃l+1, x̃l+2, · · · ] = [F1,F2, · · · ,FP ] ·
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Based on this, with obvious definitions, we establish

X̃ = F̂Ŵ. (8)

The objective function for step 2 in the design algorithm is now
J(F̂) = ‖X− F̂Ŵ(i)‖2, with the solution

F̂(i+1) = X(Ŵ(i))T (
Ŵ(i)(Ŵ(i))T )−1

. (9)

In all other aspects the design algorithm is the same, but we must
note that the vector selection step is more involved for the overlap-
ping case than for the block-oriented case [10].

2.3. Constrained Frames — Predefined Structure

Studying (3) and (6) we see that the frames are extensions of block-
oriented transforms and (unconstrained) filter banks. Other filter
banks, especially the wavelet decomposition, have some prede-
fined structure, such as zero patterns and symmetries in the basis
vectors. Imposing similar constrains to the frame we may have:
1) one or more entries are forced to be zero and 2) one or more
entries are defined to be equal to another entry or a factor of an-
other entry, i.e.f(j) = af(i) wherea usually is +1 or -1,f(i)
andf(j) are entries inF. Using these restrictions, the frame (6)
may have a structure similar to that of any filter bank or wavelet



 

Fig. 1. The 16 synthesis vectors for frame(e).

system. We will now show how the imposed structure affect step
2 in the design algorithm.

Ignoring the superscript index(i) and considering only the
overlapping case, which reduces to the block oriented case when
P = 1, the objective function in step 2 isJ(F̂) = ‖X − F̂Ŵ‖2.
This optimizing problem is mathematically the same problem as
that of finding a least squares solution to the over-determined set
of equations

ŴT F̂T = XT . (10)

Denoting the columns ofXT , i.e. rows ofX, as{xn}N
n=1,

and the columns of̂FT , i.e. rows ofF̂, as{fn}N
n=1 the equation

system can be expanded into
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With obvious definitions, this can compactly be expressed asWf =
x. The large matrixW has sizeNL × NKP . Given the above,
we are in a position to precisely explain the implications of the
previously mentioned constraints on the problem:

1. If an element off is forced to zero, i.e.f(i) = 0, this has
the consequence of removing variablef(i) in the equation
set and deleting one column ofW. Thus the problem is
formulated in terms ofW̃ , which is the same matrix asW,
but with column no.i removed.

2. If the relationf(j) = af(i) is imposed on a pair of ele-
ments inf , this corresponds to replacing theW matrix by
W̃ which is found by addinga times columni to columnj,
and removing columni.

The above operations are repeated a number of times consis-
tent with the number and type of constraints imposed by the frame
design specification. If the frame hasQ free variables of its total
NKP entries, the above operations reduce the number of columns
inW from NKP to Q, the number of rows is unchanged. The so-
lution that find the free variables in the frame is

f = (WTW)−1WT x. (12)

3. SPARSE REPRESENTATION AND COMPRESSION

We will now demonstrate the capabilities of the presented methods
when it comes to sparse representation and signal compression. In

this work we use the “MIT100” ECG signal which is a normal
sinus rhythm. The first 5 minutes (108000 samples) are used for
training of the frames and the next five minutes for testing.

Five frames with different structures, denoted(a) to (e), were
designed. They were compared to three transforms, a block-trans-
form (f), a filter bank(g), and a wavelet(h). The different decom-
position methods are now briefly explained, more details on the
frames can be found in [10].

(a) Block-oriented frame with sizeN = 16, K = 32 and
P = 1. The number of free variables (all are free) is
Q = NKP = 512.

(b) Unconstrained overlapping frame with sizeN = 16, K =
32 andP = 2. The number of free variables (all are free)
is Q = NKP = 1024.

(c) Unconstrained overlapping frame, with sizeN = 8, K =
16 andP = 4. The number of free variables (all are free)
is Q = NKP = 512,

(d) Constrained overlapping frame with sizeN = 8, K = 16
andP = 6. A structure is imposed on this frame and the
number of free variables isQ = 246. The constrains are
similar to those of frame(e), see below.

(e) Constrained overlapping frame with sizeN = 4, K = 16
andP = 15. A structure is imposed on this frame and the
number of free variables isQ = 434. The synthesis vectors
are shown in Figure 1, vectors 1-6 are of lengthNP = 60
(1 and 2 are equal except for a translation of 2 samples),
vectors 7-12 are of length 28 and forced to be either odd or
even symmetric, and frame vectors 13-16 are of length 12.

(f) Discrete Cosine Transform (DCT) with size32 × 32, cor-
responding to a frame where the size is given byN = 32,
K = 32 andP = 1.

(g) Lapped Orthogonal Transform (LOT) [12], with size64 ×
32, corresponding to a frame where the size is given by
N = 32, K = 32 andP = 2.

(h) The Daubechies 7-9 bi-orthogonal wavelet filter bank us-
ing four levels. A similar reconstruction structure can be
imposed by a constrained frame where the size is given by
N = 16, K = 16, andP = 8.

The purpose here is to compare the sparse representation effi-
ciencies and the compression capabilities of different frame struc-
tures, (a,b,c,d,e)to the ones of the transform methods,(f,g,h).
A sparse representation is inherent in the frame based represen-
tations, as only a limited number of non-zero coefficients are al-
lowed during vector selection. Sparseness is imposed on the other
methods by thresholding of the coefficients. The desired sparse-
ness factor gives the number of coefficients to keep; the larger ones
are kept and the smaller ones are set to zero. For all decomposition
methods the reconstructed signal is formed as a linear combination
of the retained synthesis vectors. In the end the signal to noise ra-
tios (SNR) at different sparseness factors are found and compared.

Compression was done using the scheme presented in the in-
troduction. For all decomposition methods above the coefficients
(weights) were uniformly quantized with thresholding, the zero bin
was twice the size of the other bins. Different bin sizes were used,
for each we found the corresponding SNR and the bit rate. For the
frame methods the sparseness factor used during vector selection
was reduced (more sparseness) as the bin size in the quantizer in-
creased. The quantized coefficients were run-length and entropy
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Fig. 2. The achieved Signal to Noise Ratio (SNR) in dB for sparse
representation of the test signal for the different frame structures.
The sparseness factorS is along the x-axis. The numbers in the
figure corresponds to SNR values in dB recorded at that point.

coded, using either a Huffman-coder or an arithmetic coder, de-
pending on what performed best for that frame/method, and the
actual bit rate was found. (The Matlab m-files for entropy coding
are available at http://www.ux.his.no/k̃arlsk/proj99)

The results of the sparse representation experiments are shown
in Figure 2. The frames are over-complete, the factorK/N is 2
for frames(a) to (d) and 4 for frame(e). Thus, it is reasonable
to expect the frames to achieve better SNR than the standard de-
composition methods for the same sparseness factor. And truly,
the frame with the largest ratioK/N has the best SNR for a given
sparseness factor. From Figure 2 we see that the frames outper-
form the transform methods, especially at low sparseness factor,
the difference between(e)and(f) is as much as 10 dB atS = 0.02
and more than 6 dB atS = 0.1.

For compression it is not obvious that the frames will be supe-
rior to the transform methods. The over-complete frames demand
more position information identifying the non-zero coefficients.
In addition, using frames the location of the non-zero weights is
more spread out than using a common method like DCT where
the coefficients within each block are sorted by frequency. Note
that the sparseness factor was small in the compression experi-
ments, especially for the (best) frames, for frame(e) it was in range
0.02 ≤ S ≤ 0.08.

In Figure 3 the achieved bit rate (bit per sample) is along the
x-axis. Here we note that the block-oriented frame(a) is not good.
The main reason is probably the relatively short synthesis vectors
of length 16. A frame with size32 × 64 would be expected to
perform better, and would be a more natural comparison to the
32 × 32 DCT. The transform methods and frames(b) and(c) are
all quite close in performance, the DCT is a little bit better than
the rest. But the best results are achieved by the frames(d) and
(e) and we note that frame(e) keeps the lead we observed in the
sparse representation experiments, see Figure 2. At bit rates lower
than 0.45 its performing advantage relative to DCT is more than 2
dB.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

14

16

18

20

22

24

26
e: 22.30
d: 21.80
f: 20.51
b: 20.28
g: 19.96
h: 19.91
c: 19.78
a: 16.91

e: 19.86
d: 19.50
f: 17.14
b: 16.95
c: 16.80
g: 16.28
h: 15.90
a: 13.07

e: 24.66
d: 24.09
f: 23.58
g: 23.19
b: 23.13
h: 23.13
c: 22.48
a: 21.29

Actual bit rate (bit per sample)

S
N

R

 

Fig. 3. The achieved SNR for compression at different bit rates.

4. CONCLUSIONS

This paper has presented a flexible method for the design of signal
dependent frames. The sparse representation capabilities and the
compression performance at low bit rates of the designed frames
were shown to be excellent.
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