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Abstract

We present the Recursive Least Squares Dictionary Learning Algorithm, RLS-
DLA, which can be used for learning overcomplete dictionaries for sparse signal
representation. Most Dictionary Learning Algorithms presented earlier, for
example ILS-DLA and K-SVD, update the dictionary after a batch of training
vectors has been processed, usually using the whole set of training vectors
as one batch. The training set is used iteratively to gradually improve the
dictionary. The approach in RLS-DLA is a continuous update of the dictionary
as each training vector is being processed. The core of the algorithm is compact
and can be effectively implemented.

The algorithm is derived very much along the same path as the recursive least
squares (RLS) algorithm for adaptive filtering. Thus, as in RLS, a forgetting
factor λ can be introduced and easily implemented in the algorithm. Adjusting
λ in an appropriate way makes the algorithm less dependent on the initial
dictionary and it improves both convergence properties of RLS-DLA as well
as the representation ability of the resulting dictionary.

Two sets of experiments are done to test different methods for learning dic-
tionaries. The goal of the first set is to explore some basic properties of the
algorithm in a simple setup, and for the second set it is the reconstruction of
a true underlying dictionary. The first experiment confirms the conjectural
properties from the derivation part, while the second demonstrates excellent
performance.



1 Introduction

Signal representation is a core element of signal processing, as most signal
processing tasks rely on an appropriate signal representation. For many tasks,
i.e. compression, noise removal, communication, and more, a sparse signal
representation is the preferred one. The sparseness can be achieved by thresh-
olding the coefficients of an orthogonal basis, like the discrete cosine transform,
or a wavelet basis. Also, overcomplete dictionaries are well suited for sparse
representations or approximations.

The approximation x̃ =
∑

k w(k)d(k) is formed as a linear combinations of
a set of atoms {d(k)}k which constitutes the dictionary. When most of the
coefficients w(k) are zero the approximation is sparse. General dictionaries,
appropriate for a wide range of signals, can be designed in many ways, for
example by scaling and translation of some basis functions as for Gabor and
wavelet frames. Specialized dictionaries, intended to be used with a particular
class of signals, can be learnt from a large set of signals reflecting the class.
Learning is often restricted to the process of training a dictionary based on
a set of training data, whereas design is used in a broader context including
dictionary size and structure and implementation issues. Several dictionary
learning algorithms (DLAs) have been presented the recent years [1]-[8]. It
has been observed that there are many similarities between the dictionary
learning problem and the vector quantizing (VQ) codebook design problem,
which also lead to similarities in the algorithms.

Our previous work on dictionary learning started with the Method of Op-
timized Directions (MOD) [9, 10]. In MOD dictionary update is the Least
Squares (LS) solution to an overdetermined system of equations [11, 12]. Sev-
eral variants of MOD were also presented [13, 14]. The essence of these works
is summarized in [5] where the LS approach of the different variants is clearly
presented, and included in the name of this family of algorithms, Iterative
Least Squares Dictionary Learning Algorithm, ILS-DLA. In this paper we go
one step further and develop the algorithm into a Recursive Least Squares
(RLS) algorithm in a similar way as ordinary LS can be developed into RLS
in the adaptive filter context.

The k-means method, and the many variants and additions of it, have been
used for classification, data clustering and VQ codebook design since the in-
troduction several decades ago. In k-means a set of class centers, called a
codebook, which here corresponds to the dictionary, is learnt from a larger set
of training data. The k-means variants may be divided into two main classes,
batch and continuous, depending on how often the codebook is updated. The
batch-methods, i.e. the (Generalized) Lloyd Algorithm (GLA) which is also
known as the Linde-Buzo-Gray (LBG) algorithm, update the codebook only
after (re)-classification of all the training vectors in the training set [15]-[18].
The continuous-method, the MacQueen variant [19], updates the codebook
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after classification of each training vector. Both variants have been widely
referred, cited, refined, analyzed and used, but the GLA is perhaps easier to
understand and analyze and thus has been more used. The reference to k-
means is highly relevant when explaining how the new method, RLS-DLA,
relates to other methods, especially ILS-DLA. In short: Like ILS-DLA reduces
to the batch variant of k-means when used for VQ codebook design, RLS-DLA
reduces to the continuous variant of k-means.

The outline of this paper is as follows: First, a brief introduction to dictionary
learning is given in Sec. 1.1. The new algorithm, RLS-DLA, is presented in
Sec. 2. Finally, in Sec. 3, experiments comparing RLS-DLA to ILS-DLA and
K-SVD demonstrate the good performance of RLS-DLA.

We use the following notation: matrices are represented by large letters, ex.
D, X, vectors are represented by small letters, ex. x, u, scalars by Greek
letters, ex. α, λ. w(k) is entry k of vector w, d(k) is the vector numbered
k in a set of vectors or column k in matrix D, and Di is matrix D in it-
eration number i. ‖ · ‖ denotes the 2-norm for vectors and the Frobenius
norm, or trace norm, for matrices. The squared of the Frobenius norm is
‖A‖2

F = trace(ATA) =
∑

i

∑
j A(i, j)2.

1.1 Dictionary learning

A dictionary is a collection of atoms and can be used for signal representation.
The representation is a linear combination of some of the atoms in the dic-
tionary, it can be exact or it can be an approximation to the original signal.
A dictionary and a frame is often regarded as the same thing, but the (tiny)
difference is that a frame spans the signal space while a dictionary does not
have to do this.

Here, the original signal is represented as a real column vector x of finite length
N and we have a finite number K of dictionary atoms {d(k)}Kk=1 which also
have length N . The dictionary is represented as a matrix D ∈ RN×K , where
each atom is a column in D. The representation, or the approximation, and
the representation error can be expressed:

x̃ =
K∑

k=1

w(k)d(k) = Dw, r = x− x̃ = x−Dw, (1)

where w(k) is the coefficient used for atom k. The coefficients, also called
weights, are collected into a column vector w of length K. In a sparse repre-
sentation only a small number s of the coefficients are allowed to be non-zero.
This gives the sparseness factor as s/N .

Dictionary learning is the task of learning or training a dictionary such that it
is well adapted to its purpose. This is done based on some available training
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data, here a set of training vectors, representing a signal class. Usually the
objective is to give a sparse representation of the training set, making the total
error as small as possible, i.e. minimizing the sum of squared errors. Let the
training vectors constitute the columns in a matrix X and the sparse coefficient
vectors the columns in a matrix W . Using the cost function f(·), this can be
stated formally as a minimization problem

arg min
D,W

f(D,W ) = arg min
D,W

∑
i

||ri||22 (2)

= arg min
D,W
‖X −DW‖2

F

where there is imposed a sparseness criterion on W , i.e. the number of non-zero
elements in each column is given as s. The reconstruction matrix is X̃ = DW ,
and the reconstruction error is R = X − X̃ = X −DW .

A practical optimization strategy, not necessarily leading to a global optimum,
can be found by splitting the problem into two parts which are alternately
solved within an iterative loop. The two parts are:

1) Keeping D fixed, find W .
2) Keeping W fixed, find D.

This is the same strategy used in GLA, in ILS-DLA [5], and partly also in K-
SVD [4], but not in our new algorithm RLS-DLA. Convergence of this method
is problematic.

In the first part, where D is fixed, the weights are found according to some
rules, i.e. a sparseness constraint. The vector selection problem,

wopt = arg min
w
‖x−Dw‖2 s.t. ‖w‖0 ≤ s, (3)

is known to be NP-hard [20]. The psuedo-norm ‖ · ‖0 is the number of non-
zero elements. A practical approach imply that the coefficients w must be
found by a vector selection algorithm, giving a good but not necessarily the
optimal solution. This can be a Matching Pursuit algorithm [21, 22], like Basic
Matching Pursuit (BMP) [23], Orthogonal Matching Pursuit (OMP) [20, 24],
or Order Recursive Matching Pursuit (ORMP) [25], or other vector selection
algorithms like FOCUSS [26, 27] or Method of Frames [28] with thresholding.
We use ORMP in this work since it gives better results than OMP [21], and
the complexity, with the effective QR implementation, is the same [22].

Part 2 above, i.e. finding D when W is fixed, is easier. This is also where
ILS-DLA and K-SVD are different. ILS-DLA uses the least squares solution,
i.e. the dictionary that minimizes an objective function f(D) = ‖X −DW‖2

F

as expressed in (2) when W is fixed. The solution is

D = (XW T )(WW T )−1. (4)

K-SVD use another approach for part 2. The problem is slightly modified by
also allowing the values of W to be updated but keeping the positions of the
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non-zero entries fixed. For each column k of D a reduced SVD-decomposition,
returning only the largest singular value σ1 and the corresponding singular
vectors u1 (left) and v1 (right), of a matrix E ′ = X ′ − D′W ′ is done. To
explain the marked matrices let Ik be the index set of the non-zero entries of
row k in W , then in a Matlab-like notation X ′ = X(:, Ik) and W ′ = W (:, Ik)
and D′ = D but setting column k to zeros, i.e. D′(:, k) = 0. After SVD is done
column k of D is set as d(k) = D(:, k) = u1 and the non-zero entries in the
corresponding row of W is set as W (k, Ik) = σ1v

T
1 . This procedure is repeated

for all columns of D.

The least squares minimization of (2) and the sparseness measure of (3) are
only two of many possible dictionary learning approaches available. Other
problem formulations and objective functions can be chosen, leading to other
dictionary learning algorithms [7, 29, 8]. It is especially advantageous to use
the 1-norm as a sparseness measure since vector selection then can be done in
an optimal way. 1

2 Recursive Least Squares Dictionary Learn-

ing Algorithm

This section starts with the main derivation of RLS-DLA in Sec. 2.1. The
resulting algorithm can be viewed as a generalization of the continuous k-
means algorithm, the MacQueen variant. The derivation follows the same
lines as the derivation of RLS for adaptive filter, thus the name RLS-DLA.
Furthermore, a forgetting factor λ is included in the algorithm in Sec. 2.2,
similar to how the forgetting factor is included in the general RLS algorithm.
In Sec. 2.3 the forgetting factor is used to improve the convergence properties
of the algorithm. The compact core of the algorithm is presented in a simple
form in Sec. 2.4. Finally, some remarks on complexity and convergence are
included in Sec. 2.5 and Sec. 2.6.

2.1 Derivation

The derivation of this new algorithm starts with the minimization problem
of (2) and the LS-solution of (4). Our goal is to continuously calculate this
solution as each new training vector is presented. For the derivation of the
algorithm we assume that we have the solution for the first i training vectors,
then our task is to find the new solution when the next training vector is
included.

1RLS-DLA is independent of the vector selection method used and works well also with
1-norm sparse coding algorithms, for example the LARS-Lasso algorithm.
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The matrices are given a subscript indicating the “time step”. This gives
Xi = [x1, x2, . . . , xi] of size N × i and Wi = [w1, w2, . . . , wi] of size K × i. The
LS-solution for the dictionary for these i training vectors is

Di = (XiW
T
i )(WiW

T
i )−1 = BiCi. (5)

where

Bi = (XiW
T
i ) =

i∑
j=1

xjw
T
j (6)

C−1
i = (WiW

T
i ) =

i∑
j=1

wjw
T
j (7)

Let us now picture the situation that a new training vector x = xi+1 is made
available. For notational convenience the time subscript is omitted for vectors.
The corresponding coefficient vector w = wi+1 may be given or, more likely, it
must be found using the current dictionary Di and a vector selection algorithm.
The approximation and the reconstruction error for the new vector x are

x̃ = Diw = BiCiw, r = x− x̃

Taking into account the new training vector we can find a new dictionary
Di+1 = Bi+1Ci+1 where

Bi+1 = Bi + xwT and C−1
i+1 = C−1

i + wwT .

Ci+1 is found using the matrix inversion lemma (Woodbury matrix identity)

Ci+1 = Ci − Ciww
TCi

wTCiw + 1
(8)

which gives

Di+1 = (Bi + xwT )(Ci − Ciww
TCi

wTCiw + 1
)

= BiCi −Bi
Ciww

TCi
wTCiw + 1

(9)

+ xwTCi − xwT Ciww
TCi

wTCiw + 1

Note the fact that Ci is symmetric, Ci = CT
i , since C−1

i is symmetric by
definition in (7). 2

2Ci and C−1
i are also positive definite.
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We define vector u and scalar α as

u = Ciw, uT = wTCi (10)

α =
1

1 + wTCiw
=

1

1 + wTu
(11)

1− α =
wTu

1 + wTu
=

wTCiw

1 + wTCiw

(8) and (9) are now written

Ci+1 = Ci − αuuT . (12)

Di+1 = Di − αx̃uT + xuT − (1− α)xuT

= Di + αruT . (13)

Continuous, i.e. recursive, update of the dictionary thus only require addition
of matrices (matrix and vector outer product) and a few matrix-by-vector
multiplications, some even involving sparse vectors. Unlikely as it might seem
from looking at (5), no matrix-by-matrix multiplication or matrix inversion is
needed.

In the case of extreme sparsity, i.e. restricting each weight vector wi to have
only one non-zero coefficient and set it equal to 1, the RLS-DLA is identical
to the continuous k-means algorithm as MacQueen derived it [19]. In k-means
each class center is the running average of all training vectors assigned to this
class. Let nk be the number of training vectors assigned to class k after the
first i training vectors are processed. A new training vector x is assigned to
class k, the weight vector w is all zeros except for element k which is one. The
running average update for column k in the dictionary, denoted d(k), is as in
the MacQueen paper, d

(k)
i+1 = (nkd

(k)
i + x)/(nk + 1). With x = d

(k)
i + r this can

be written as
Di+1 = Di + (rwT )/(nk + 1). (14)

The RLS-DLA update of the dictionary (13) can be written as

Di+1 = Di + rwT (αCi) (15)

= Di + (rwT )Ci/(1 + wTCiw).

The similarity between (14) and (15) is obvious, (15) reduces to (14) for the
extreme sparsity case. Ci, according to definition in (7), is a diagonal matrix
where entry k is 1/nk and entry k of

(
Ci/(1 + wTCiw)

)
is 1/(nk + 1).

2.2 The forgetting factor λ

The derivation of the RLS-DLA with a forgetting factor λ follows the same
path as in the previous subsection. The dictionary that minimize the cost

7



function of (2) when the weight matrix W is fixed is given in (4), and for the
first i training vectors in (5).

Introducing λ we let the cost function be a weighted sum of the least squares
errors,

f(D) =
i∑

j=1

λi−j‖rj‖2
2. (16)

where 0 < λ ≤ 1 is an exponential weighting factor.

As before a new training vector x (that is xi+1) and the belonging coefficients
w (wi+1) are made available. The new dictionary Di+1 becomes

Di+1 = arg min
D

f(D) = arg min
D

i+1∑
j=1

λi+1−j‖rj‖2
2

= arg min
D

(
λ‖X̂i −DŴi‖2

F + ‖x−Dw‖2
2

)

The matrices X̂i and Ŵi are scaled versions of the corresponding matrices in
previous subsection. They can be defined recursively

X̂i = [
√
λX̂i−1, xi], X̂1 = x1

Ŵi = [
√
λŴi−1, wi], Ŵ1 = w1.

The new dictionary can be expressed by the matrices Bi+1 and Ci+1 which
here are defined almost as in (6) and (7), the difference being that the scaled
matrices X̂i and Ŵi are used instead of the ordinary ones. Thus also Bi+1 and
Ci+1 can be defined recursively

Bi+1 = X̂i+1Ŵ
T
i+1 = [

√
λX̂i, x][

√
λŴi, w]T

= λX̂iŴ
T
i + xwT = λBi + xwT

C−1
i+1 = Ŵi+1Ŵ

T
i+1 = [

√
λŴi, w][

√
λŴi, w]T

= λŴiŴ
T
i + wwT = λC−1

i + wwT

The matrix inversion lemma gives

Ci+1 = λ−1Ci − λ−1Ciww
Tλ−1Ci

wTλ−1Ciw + 1
(17)

and almost as in previous subsection this gives

Di+1 = Bi+1Ci+1 =
(
λBi + xwT

)
·

(
λ−1Ci − λ−1Ciww

Tλ−1Ci
wTλ−1Ciw + 1

)

= BiCi − λBi
λ−1Ciww

Tλ−1Ci
wTλ−1Ciw + 1

+ xwTλ−1Ci − xwT λ
−1Ciww

Tλ−1Ci
wTλ−1Ciw + 1

.
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Here, the vector u and the scalar α are defined as

u = (λ−1Ci)w, uT = wT (λ−1Ci)

α =
1

1 + wT (λ−1Ci)w
=

1

1 + wTu

1− α =
wTu

1 + wTu
=

wT (λ−1Ci)w

1 + wT (λ−1Ci)w

which gives

Ci+1 = (λ−1Ci)− αuuT , (18)

Di+1 = Di + αruT . (19)

This is very close to (12) and (13). The only difference is that we here use
(λ−1Ci) instead of Ci.

2.3 Search-Then-Converge scheme

One of the larger challenges with k-means, ILS-DLA and K-SVD is to find a
good initial dictionary. The problem seems to be that the algorithms quite
often get stuck in a local minimum close to the initial dictionary. Several
approaches have been used to find the initial dictionary in a good way. For
the (continuous) k-means algorithm a Search-Then-Converge scheme has been
used with good results [30, 31, 32]. A similar approach can also easily be
adapted to the RLS-DLA, resulting in some useful hints for how to use the
forgetting factor λ.

In the RLS-DLA, as derived in Sec. 2.2, it is straight forward to let λ get a
new value in each step, say λi for step i. We ask ourselves: How can we set a
good value for λi in step i? The Search-Then-Converge idea is to start by a
small value of λi to quickly forget the random, and presumably not very good,
initial dictionary. As the iterations proceed, we want to converge towards a
finite dictionary by gradually increasing λi towards 1 and thus remember more
and more of what is already learnt. Optimizing an adaptive λ is difficult if not
impossible. Many assumptions must be made, and qualified guessing might be
as good a method as anything.

A fixed forgetting factor λ < 1 effectively limits the number of training vectors
on which the cost function is minimized. The finite sum of all the powers of λ in
(16) is smaller than taking the sum to infinity, i.e. smaller than

∑∞
i=0 λ

i = 1
1−λ

when |λ| < 1. Setting λ = 1− 1/L′ gives a slightly smaller total weight for the
errors than the LS-solution (λ = 1) including L′ error vectors. We may say
that the weights of the previous dictionary and matrix C are as if they were
calculated based on L′ = 1/(1−λ) previous errors. Considering the numerical
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λ

Figure 1: λi is plotted as a function of iteration number for the different
proposed methods of increasing λ. Here one iteration is assumed to process
all training vectors in the training set, to have one iteration for each training
vector the x-axis numbers should be multiplied by the number of training
vectors.

stability of (7), it seems reasonable not to let the horizon L′ be too short. One
example may be to start with L′ = 100 and λ0 = 0.99.

There are many functions that increase λ from λ0 to 1, some are shown in
Fig. 1. The linear, quadratic and cubic functions all set λ according to

λi =

{
1− (1− λ0)(1− i/a)p if i ≤ a
1 if i > a

(20)

Parameter p is the power, and is 1 for the linear approach, 2 for the quadratic
approach, and 3 for the cubic approach. The hyperbola and exponential ap-
proach set λ according to

λi = 1− (1− λ0)
1

1 + i/a
(21)

λi = 1− (1− λ0)(1/2)i/a. (22)

where the parameter a here is the argument value for which λ = (λ0 + 1)/2.

2.4 The RLS-DLA algorithm

Let D0 denote an initial dictionary, and C0 an initial C matrix, possibly the
identity matrix. The forgetting factor in each iteration is 0� λi ≤ 1. The
core of the algorithm can be summarized into some simple steps. The iteration
number is indicated by subscript i.
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1. Get the new training vector xi.

2. Find wi, typically by using Di−1 and a vector selection algorithm.

3. Find the representation error r = xi −Di−1wi.

4. Apply λi by setting C∗i−1 = λ−1
i Ci−1.

5. Calculate the vector u = C∗i−1wi,
and if step 9 is done v = DT

i−1r.

6. Calculate the scalar α = 1/(1 + wTi u).

7. Update the dictionary Di = Di−1 + αruT .

8. Update the C-matrix for the next iteration,
Ci = C∗i−1 − αuuT .

9. If needed update the matrix (DT
i Di).

10. If wanted normalize the dictionary.

We use normalized versions of the first K training vectors as the initial dictio-
nary D0, but other initialization strategies are possible. The non-zero entry in
each coefficient vector will be wi(i) = ‖xi‖2 for i = 1, . . . , K. The C0 matrix,
according to definition in (7), will be diagonal with entry i equal to 1/‖xi‖2

2.

2.4.1 Remark on step 9

Some vector selection algorithms are more effective if the inner products of
the dictionary atoms are precalculated, here they are elements of the matrix
(DTD). Effective implementations of OMP and ORMP both need to calculate
sK inner products, where s is the number of vectors to select. Updating all
inner products, after the update of D as in step 7, may be less demanding than
to calculate the sK needed inner products. Suppose we have the inner product
matrix for the previous iteration, (DT

i−1Di−1), then we find for (DT
i Di)

DT
i Di = (Di−1 + αruT )T (Di−1 + αruT )

= DT
i−1Di−1 + α

(
vuT + uvT

)
+ α2‖r‖2

2(uuT )

where v = DT
i−1r and ‖r‖2

2 =< r, r >= rT r.
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2.4.2 Remark on step 10

The norm of the dictionary atoms can be chosen freely, since the dictionary
atoms may be scaled by any factor without changing the signal representation
of (1), as long as the corresponding coefficients are scaled by the inverse factor.
It is common to let the atoms have unit norm. The dictionary update in step
7 in RLS-DLA does not preserve the norm of the atoms, thus making rescaling
necessary to keep the dictionary normalized. Since normalization constitutes
a large part of the computations in each iteration, and since it is not strictly
demanded, it can be skipped completely or done only for some iterations.

Before normalization a diagonal scaling matrix G must be calculated, each ele-
ment on the diagonal is equal to the inverse of the 2-norm of the corresponding
column of D. The normalized (subscript n) dictionary is then

Dn = DG.

To keep the approximation as well as the error unchanged, we also need to re-
calculate the accumulated weights of C correspondingly. Setting Wn = G−1W
conserves the representation X̃ = DW = DGG−1W = DnWn. This gives

Cn = (WnW
T
n )−1 = GCG.

If used, also the inner product matrix (DTD) needs to be recalculated

(DT
nDn) = (DG)TDG = G(DTD)G.

2.5 Comparison of RLS-DLA to ILS-DLA and K-SVD

Both ILS-DLA and K-SVD use a finite training set, consisting of L training
vectors. Starting with an initial dictionary D0 ∈ RN×K and main iteration
number j = 1, the algorithms have the following steps:

A. for i = 1, 2, . . . , L

A.1. Get the training vector xi

A.2. Find wi using Dj−1 and store it as column i in W .

B.1. Find Dj. ILS-DLA by (4). K-SVD by the procedure outlined in Sec 1.1.

B.2. For ILS-DLA, normalize the dictionary.

B.3. Increase j and go to A)
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Loop A is equivalent to steps 1 and 2 in RLS-DLA. The dictionary update
in RLS-DLA is done continuously in the inner loop, thus the extensive dictio-
nary update of B.1 is not present i RLS-DLA. The complexity of the prob-
lem of equation (2) is dependent on the sizes N , K, and L and the sparse-
ness s = ‖wi‖0. We have s < N < K << L. The complexity depends
on how the external parts are implemented. Using ORMP (or OMP), with
QR-decomposition and pre-calculated inner products, as vector selection algo-
rithm, its complexity is O((s2+N)K) [22]. This gives the complexity for step 2
in Sec. 2.4 and step A.2 above. Also, we assume that reduced SVD can be done
with complexity proportional to the size of the input matrix, this gives com-
plexity for the B.1 step i K-SVD as O(sNL). Step B.1 for ILS-DLA includes
forming the matrices BL (6) and C−1

L (7) with complexity O((s2 + sN)L) and
then find D (5) O(K3). Step B.2 is O(NK), which gives O(K3 + (s2 + sN)L)
for step B. In RLS-DLA Sec. 2.4 steps 4, 8, 9 and 10 are O(K2).

Summing up: One complete iteration through the training set is O((s2 +N +
K)KL) for RLS-DLA compared with O(K3 + (s2 +N)KL) for ILS-DLA and
O((s2 + N)KL) for K-SVD. Vector selection is the dominating step, except
the rare case that K3 > NKL. In the more common cases where K ∝ N and
s is small (s2 ∝ N) all three alogrithms are O(K2L). The hidden constants in
these complexity expressions are important, so the actual running times may
be more useful for comparing algorithm speed. In the experiment in Sec. 3.1
we have s = 4, N = 16 K = 32 and L = 4000 and the observed running times
for one iteration through the training set were approximately 0.05 seconds
for ILS-DLA, 0.20 seconds for RLS-DLA and 0.43 seconds for K-SVD. The
implementation uses a combination of Matlab functions and Java classes,
and the experiments were executed on a PC.

2.6 Reflections on convergence

A complete analysis of the convergence properties of the algorithm is difficult.
The VQ-simplification of RLS-DLA was proved to converge to a local minimum
in [19]. Unfortunately this can not be extended to the general RLS-DLA
because vector selection is done in an non-optimal way. We will here give a
few reflections on the matter leading to some assumptions. Experiments done
roughly confirm these assumptions, some are presented in Sec. 3.1.

Let the training vectors be randomly drawn from a set of training vectors, then
it follows that the expectation of the norm is constant, E[‖xi‖2] = nx. Let the
dictionary be normalized, ‖Di‖F =

√
K and λ = 1. In this situation it seems

reasonable to assume that E[‖wi‖2] ≈ nw and E[‖ri‖2] ≈ nr, even though wi
is dependent on the vector selection algorithm, thus we lack complete control.
The matrix C−1

i in (7) is the sum of positive definite matrices, which implies
that ‖C−1

i ‖F increases linearly by the iteration number, i, and ‖Ci‖F decreases
as 1/i. From step 5 and 6 in Sec. 2.4 E[‖u‖2] ∝ 1/i and α increases towards
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1. Thus, the step size

∆i = ‖Di −Di−1‖F = ‖αruT‖F ∝ ‖r‖2/i (23)

is decreasing but not fast enough to ensure convergence.

If the steps ∆i are (mostly) in the same direction the dictionary will drift in
that direction. Experiments done, but not shown here, imply that the sum of
many steps tends to point roughly in one direction, probably towards a local
minimum of the objective function, when the total representation error for the
training set is large. The direction is more random when the dictionary is close
to a local minimum.

A fixed λ < 1 makes ‖Ci‖F decrease towards a value larger than zero, and also
∆i will decrease towards a value larger than zero and thus the algorithm will
not strictly converge, unless the representation error is zero.

A simple way to make sure that RLS-DLA converges is to include a factor β in
step 7 in Sec. 2.4, i.e. Di = Di−1 +αβruT , and let β (after being 1 for the first
iterations) slowly decrease towards zero proportional to 1/i. Then the step size
∆i will decrease faster, ∝ 1/i2, and the algorithm will converge. However, we
do not think this is a good idea, since it probably will not converge to a local
minimum. It seems to be better to walk around, with a small ∆i, and store
the best dictionary at all times. The Search-Then-Converge scheme of Sec. 2.3
with an appropriate value for λi seems to be a good compromise between
searching a sufficiently large part of the solution space and convergence, Fig. 5
and 6.

3 Experiments

This section presents the results of two experiments. First, training vectors
from a well defined class of signals, autoregressive (AR) signal, are used. The
signal blocks are smoothly distributed in the space R16, without any sparse un-
derlying structure. This experiment is similar to VQ experiments on smoothly
distributed data where there is no underlying clustering, the only goal is to
minimize the representation error for the training set. Next, in Sec. 3.2 a dic-
tionary is used to make the set of training vectors with a true sparse structure.
The goal of the dictionary learning algorithm is to recover this true underlying
dictionary from the set of training vectors.

For both the experiments, finite training sets are used, making a fair compari-
son of the three algorithms possible. The iteration number used in this section
is a complete iteration through the whole training set, while in Sec. 2 there was
one iteration for each new training vector. The reason for using finite training
sets is mainly to be able to compare RLS-DLA to other methods, i.e. ILS-DLA
and K-SVD. RLS-DLA is well suited to infinite (very large) training sets. In
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Figure 2: SNR, averaged over 100 trials, is plotted as a function of iteration
number for the dictionary learning algorithms ILS-DLA, RLS-DLA and K-
SVD.

many cases it is easy to get as many training vectors as wanted, especially
for synthetic signals, for example AR(1) signals, but also for many real world
signals, like images.

3.1 Sparse representation of an AR(1) signal

In the first experiment we want to explore the algorithm properties in terms
of convergence properties, appropriate values for λi, and to compare the rep-
resentation abilities with ILS-DLA and K-SVD. The signal used is an AR(1)
signal with no sparse structure. The implementations of the three algorithms
are all straight forward, without controlling the frequency of which the indi-
vidual atoms are used or the closeness of distinct atoms. The K-SVD and
the ILS-DLA implementations are identical, except for the few code lines up-
dating the dictionary, see Sec. 1.1. First, the three algorithms are compared.
Then, RLS-DLA is further tested using different values for fixed λ and different
schemes for increasing λi.

For all these tests the same finite training set is used. A set of L = 4000 training
vectors is made by chopping a long AR(1) signal into vectors of length N = 16.
The AR(1) signal is generated as v(k) = 0.95v(k − 1) + e(k), where e(k) is
Gaussian noise with σ = 1. The number of dictionary atoms is set to K = 32,
and s = 4 atoms are used to approximate each training vector. ORMP is used
for vector selection.

We calculate the Signal to Noise Ratio (SNR) during the training process, SNR
is 10 log10(

∑L
i=1 ||xi||2

/∑L
i=1 ||ri||2) decibel, where xi is a training vector and ri
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plots ending at 10000 iterations are 5 trials of ILS-DLA.
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Figure 4: SNR, averaged over 100 trials, is plotted as a function of iteration
number for the dictionary learning algorithm RLS-DLA using different fixed
values for λ.

is the corresponding representation error using the current dictionary. For ILS-
DLA and K-SVD this will be the dictionary of the previous iteration, where
one iteration processes the whole training set. For RLS-DLA the dictionary is
continuous updated.

Fig. 2 shows how SNR improves during training. 100 trials were done, and
the average SNR is plotted. Each trial has a new initial dictionary, selected as
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different vectors from the training set, and the order of the training vectors is
permuted. The order of the training vectors does not matter for the K-SVD or
the ILS-DLA, but it does for the RLS-DLA. These results are not promising for
the RLS-DLA, it converges fast and has a better SNR for the first 8 iterations.
Then, ILS-DLA and K-SVD continues to improve the SNR while RLS-DLA
improves more slowly, at 200 iterations the SNR of K-SVD and ILS-DLA is
almost 0.5 decibel better. ILS-DLA and K-SVD performs almost the same,
with K-SVD marginally better.

The observant reader has noted that ILS-DLA and K-SVD do not seem to
have converged after 200 iterations in Fig. 2. This is indeed true, it can be
seen in Fig. 3 where the SNR for thousands of iterations of five individual trials
of ILS-DLA and RLS-DLA are shown. ILS-DLA does not converge nicely, the
SNR is fluctuating in an erratic way in range between 18 and 18.15. The SNR
curves for K-SVD, not shown in Fig. 3, are similar to the ones for ILS-DLA.
RLS-DLA, on the other hand, performs much better, it converges quite well,
to a higher level after fewer iterations. The adaptive forgetting factor λi in the
five RLS-DLA trials of Fig. 3 is according to (22) with a = 100.

The same 100 trials as used in Fig. 2 are repeated with different fixed values
of λ. The results are presented in Fig. 4. Reducing the forgetting factor to
λ = 0.9999 improves SNR after 200 iterations to 17.61 dB. A smaller λ is even
better, the algorithm converges faster and to a better SNR, and at λ = 0.9980
SNR is 17.91. Even smaller λ converge fast but the final SNR values are not as
good. Using λ = 0.9998 = 1−1/5000 (which is almost 1−1/L) the SNR curve
for RLS-DLA in Fig. 4 is almost identical to the ones for ILS-DLA and K-SVD
in Fig. 2. This implies that ILS-DLA and K-SVD “converge” like RLS-DLA
with λ ≈ 1− 1/L.

Finally, the 100 trials are done again with an adaptive λi, increasing towards
1 using the different schemes as plotted in Fig. 1. The results are shown in
Fig. 5. The adaption strategy seems less important, all schemes producing
considerable better results than using different values of fixed λ.

By selecting the parameter a in the adaption schemes for λi in (20), (21) or
(22), the convergence of the algorithm can be targeted to a given number
of iterations. Using the AR(1) training data it is possible to converge to an
average SNR at level 18.10 in fewer than 40 iterations and at level 18.17 in
fewer than 150 iterations, as can be seen from Fig. 6. From Fig. 3 we see that
to reach a level at about 18.20 in SNR requires about 1000 iterations. As seen
in Sec. 2.5 the complexity of the three alorithms are comparable.

17



0 20 40 60 80 100 120 140 160 180 200
17.2

17.3

17.4

17.5

17.6

17.7

17.8

17.9

18

18.1

18.2

L−200, SNR(200)=18.16

L−180, SNR(200)=18.18

Q−200, SNR(200)=18.18

C−200, SNR(200)=18.17

H−10, SNR(200)=18.10

E−20, SNR(200)=18.17

RLS−DLA for AR(1) signal using increasing λ.

Iteration number

S
N

R

Figure 5: SNR is plotted as a function of iteration number during training with
RLS-DLA using the proposed methods for adapting λi as shown in Fig. 1. The
plot results after averaging over 100 trials.

3.2 Reconstruction of a known dictionary

In the experiment of this section we want to reconstruct a dictionary that
produced the set of training vectors. The true dictionary of size N × K,
here 20 × 50, is created by drawing each entry independently from a normal
distribution with µ = 0 and σ2 = 1, written N (0, 1). Each column is then
normalized to unit norm. The columns are uniformly distributed on the unit
sphere in space RN . A new dictionary is made for each trial and 100 trials are
done.

In each trial seven sets of training vectors are made as X = DW + V . W is
a sparse matrix with s = 5 non-zero elements in each column. The values of
the non-zero entries are also drawn from N (0, 1), and their positions in each
column are randomly and independently selected. The number of training
vectors is 2000 in the first five sets, and then 4000 and 8000 for the last two
sets. Finally, Gaussian noise is added, giving signal (DW ) to noise (V ) ratio
(SNR) at 10, 15, 20, 30, 60, 10 and 10 dB for the seven data sets respectively.

Preliminary tests on ILS-DLA, K-SVD, and several variants for RLS-DLA
were done. These tests revealed that the performance of ILS-DLA and K-SVD
were very similar. Also the different adaptation schemes for λi performed very
much the same. These preliminary tests showed that 100 iterations through
the training set were sufficient for the RLS-DLA, but that ILS-DLA and K-
SVD needed at least 200 iterations. The convergence for ILS-DLA and K-SVD
is much better here than in the AR(1) experiment. Thus we decided to restrict
further testing to ILS-DLA, which is faster than K-SVD, and RLS-DLA with
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Figure 6: SNR is plotted as a function of iteration number during training with
RLS-DLA using the cubic adaptive scheme for λi, (20) with p = 3. Parameter
a, shown as first number in legend, is selected to target the convergence at
different number of iterations. The plot results after averaging over 100 trials.

Table 1: Average number of identified atoms, out of 50, using added noise with
different SNR, varying from 10 to 60 dB.

SNR in dB
Met. cos βlim 10 15 20 30 60
RLS 0.995 8.53 49.61 49.96 49.93 50.00
RLS 0.990 36.69 49.99 49.96 49.93 50.00
RLS 0.980 49.38 49.99 49.96 49.93 50.00
ILS 0.995 4.03 43.91 47.00 47.08 46.89
ILS 0.990 23.17 46.91 47.68 47.53 47.38
ILS 0.980 40.62 47.67 48.07 47.92 47.86

the cubic adaptive scheme for λi, (20) with p = 3 and a = 200. We chose to
do 200 iterations in all cases. In the final experiment 1400 dictionaries were
learnt, one for each combination of 100 trials, 7 training sets, and 2 methods.

In each case the learnt dictionary D̂ is compared to the true dictionary D.
The columns, i.e. atoms, are pairwise matched using the Munkres algorithm,
also called Hungarian algorithm [33]. Pairwise matching minimizes the sum
of angles

∑
k βk (= cost function), where βk is the angle between atom d(k) in

the true dictionary and the matched atom d̂(k) in the learnt dictionary. Since
both atoms have 2-norm equal to 1, we have cos βk = (d(k))T d̂(k). A positive
identification is defined as when this angle βk is smaller than a given limit βlim
and thus the quality of the learnt dictionary may be given as the number of
identified atoms (for a given βlim). Pairwise matching by minimizing

∑
k βk

does not necessarily maximize the number of identified atoms for a given βlim,
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Figure 7: The distance between atoms in true and learnt dictionaries is plotted
as a function of βlim.
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Figure 8: The distance between atoms in true and learnt dictionaries is plotted
as a function of βlim.
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Table 2: Average number of identified atoms, out of 50, using 2000, 4000 and
8000 training vectors.

Number of training vectors
Method cos βlim 2000 4000 8000
RLS 0.995 8.53 40.29 49.84
RLS 0.990 36.69 49.81 50.00
RLS 0.980 49.38 50.00 50.00
ILS 0.995 4.03 32.82 46.64
ILS 0.990 23.17 45.66 48.03
ILS 0.980 40.62 47.42 48.57

but it is a reasonable cost function.

The results, averaged over 100 trials, are presented in Fig. 7, Fig. 8, Table 1
and Table 2. In Fig. 7 and Fig. 8 the distribution of the angles βk is plotted
like the cumulative distribution function (cdf). The y-axis is scaled such that
each point on a curve has βlim as x-value and the corresponding number of
identified atoms as y-value.

The most important observations are:

• The performance of RLS-DLA is in general considerable better than that
of ILS-DLA.

• The result improves as the SNR of the training vectors is increased.

• The result improves as the number of the training vectors is increased.

• The main effect of increasing SNR or the number of training vectors is
that the (cdf-like) curves in the figures are moved to the left.

• RLS-DLA identifies all atoms for appropriate values of βlim. This is not
the case for ILS-DLA.

The size of the training set is important when searching for the true dictionary.
The matrix factorization problem X = DW with W sparse is unique if X has
enough columns [34]. It is also often easier to increase the number of training
vectors than to reduce noise, especially if the noise contribution is caused by
the model, i.e. there is no true underlying dictionary.

Intuitively, as we are familiar only with spaces up to three dimensions, we may
think that angles of 20, 10 or even 5 degrees are not a very accurate match.
But in RN the probability for the angle between two random vectors, uniform
on the unit sphere, has a pdf proportional to sinN−2 β, which give the following
values for the cdf when N = 20, F (10) = 6.18 · 10−16, F (15) = 1.31 · 10−12,
F (30) = 3.92 · 10−7, and finally F (45) = 3.38 · 10−4.

21



4 Conclusion

We have presented a new algorithm for dictionary learning, RLS-DLA. It is
closely related both to k-means and RLS, and to earlier presented dictionary
learning algorithms ILS-DLA and K-SVD. The dictionary is updated contin-
uously as each new training vector is processed. The difference, measured by
the Frobenius norm, between two consecutive dictionaries in the iterations goes
towards zero as the iteration number increases, but not fast enough to ensure
strict convergence. Nevertheless, supported by the experiments, we conclude
that the RLS-DLA is a sound algorithm with good convergence properties.

An adaptive forgetting factor λi can be included making the algorithm flexi-
ble. λi can be tuned to achieve good signal representation in few iterations,
or to achieve an even better representation using more iterations, as seen in
Fig. 6. An important advantage of RLS-DLA is that the dependence of the
initial dictionary can be reduced simply by gradually forgetting it. The ex-
periments performed demonstrate that RLS-DLA is superior to ILS-DLA and
K-SVD both in representation ability of the training set and in the ability of
reconstruction of a true underlying dictionary. It is easy to implement, and
the running time is between that of ILS-DLA and K-SVD. Another advantage
of RLS-DLA is the ability to use very large training sets, this leads to a dic-
tionary that can be expected to be general for the used signal class, and not a
dictionary specialized to the particular (small) training set used.

There is still research to be done on this new algorithm. A more complete
convergence analysis would be helpful to better understand the algorithm and
to better judge if it is appropriate for a given problem. Further experiments,
especially on real world signals like images, are needed to gain experience and
to make a more complete comparison of RLS-DLA with ILS-DLA and K-SVD
as well as other algorithms. RLS-DLA, having λ < 1, is (like RLS) an adaptive
algorithm. Future work may identify applications where this adaptability is
useful.
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