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Outline of the talk
I. Classical Loewner Theory
II. Interesting application: Stochastic Loewner Evolution
III. Abstract approach by Bracci, Contreras and Díaz-Madrigal
IV. Analogy with Lie Group Theory and representation problem
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The starting point of Loewner Theory is the seminal paper by

Czech – German mathematician

Karel Löwner (1893 – 1968) known also as
Charles Loewner

Untersuchungen über schlichte konforme
Abbildungen des Einheitskreises,
Math. Ann. 89 (1923), 103–121.

In this paper Loewner introduced a new method to study the famous
Bieberbach Conjecture concerning the so-called class S.
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Ludwig Bieberbach, 1916: analytic properties of conformal mappings

f : D
into
−−−→ C, D := {z : |z| < 1}, f(0) = 0, f ′(0) = 1.

Class S
By S we denote the class of all holomorphic univalent functions

f(z) = z +

+∞∑
n=2

anzn, z ∈ D. (1)

the famous Bieberbach Conjecture (1916)
|an | 6 n∀f ∈ S ∀n = 2,3, . . . (2)

Bieberbach (1916): n = 2; Loewner (1923): n = 3; . . .
de Branges (1984): all n > 2 — using Loewner’s method
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– there is no natural linear structure in the class S;

– the class S is not even a convex set in Hol(D,C);

+ the class S is compact w.r.t. local uniform convergence in D;

+ U0(D) :={
ϕ ∈ Hol(D,D) : ϕ is univalent and ϕ(0) = 0, ϕ′(0) > 0

}
is a topological semigroup w.r.t. the composition operation
(ϕ,ψ) 7→ ψ ◦ ϕ and the topology of locally uniform convergence.
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Pavel Parfen’evich Kufarev
Tomsk (1909 – 1968)

Christian Pommerenke
(Copenhagen, 17 December 1933)

Classical Loewner Theory 6/29



Universitetet i
StavangerParametric Representation of the class S

Loewner – Kufarev ODE
dw
dt

= −w(t) p
(
w(t), t

)
, w(0) = z ∈ D, (3)

where p : D × [0,+∞)→ C is a classical Herglotz function, i.e.
I p(z, ·) is measurable for all z ∈ D;
I p(·, t) is holomorphic for all t > 0;
I Re p > 0 and p(0, t) = 1 for all t > 0.

It is known that:
For any z ∈ D, the solution t 7→ w(t) to (3) is unique

and exists for all t > 0.

NOTATION:

ϕp
0,t (z) := w(t)
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dw
dt

= −w(t) p(w(t), t), w(0) = z ∈ DLoewner – Kufarev ODE: (3)

ϕp
0,t (z) := w(t)NOTATION:

S :=
{
D 3 z 7→ f(z) = z +

+∞∑
n=2

anzn : f is univalent in D
}

Recall:

Theorem (Parametric Representation) [Loewner, 1923;
Kufarev, 1943; Pommerenke, 1965-75; Gutlyanski, 1970]

(A) for any classical Herglotz function p, the limit

f(z) := lim
t→+∞

etϕp
0,t (z) (4)

exists for all z ∈ D, and f ∈ S.
(B) For any f ∈ S there exists a classical Herglotz function p

such that f is represented as limit (4).
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In other words, the formula p 7→ f [p] := limt→+∞ etϕp
0,t defines a map

of the convex cone
formed by all classical Herglotz functions p

onto the class S.

A cornerstone of the proof of surjectivity is the possibility
to embed any f ∈ S as an initial element into

a (classical) Loenwer chain, i.e. a family (ft )t>0 ⊂ Hol(D,C) s.t.:

LC1. for each t > 0, ft : D→ C is univalent in D;

LC2. for each s > 0 and t > s, fs(D) ⊂ ft (D)
[the image domain is expending];

LC3. ft (z) = etz + a2(t)z2 + . . . [⇔ e−t ft ∈ S]for each t > 0, (5)
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Loewner considered the dense subclass S′ ⊂ S of all slit mappings,

S
′ :=

{
f ∈ S: f(D) = C \ Γ, where Γ is

a Jordan arc extending to ∞
}
.

Loewner’s construction
I Consider f ∈ S′ and let Γ := C \ f(D).

I Choose a parametrization γ : [0,+∞]→ Γ, γ(+∞) = ∞.

I Consider the domains Ωt := C \ γ
(
[t ,+∞]

)
, t > 0.

I By Riem. Mapping Th’m ∀t > 0 ∃! conformal mapping

ft : D
onto
−−−→ Ωt , ft (0) = 0, f ′t (0) > 0.

I Reparameterizing Γ: ∀ t > 0 f ′t (0) = et .

I Note that (ft ) is a Loewner chain and f0 = f .

Figure 1
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In this case [of a “slit” Loewner chain]:
Z (z, t) 7→ ft (z) satisfies the Loewner PDE

∂ft (z)

∂t
= zf ′t (z) p(z, t), (6)

Z and ϕs,t := f−1
t ◦ fs ∈ Hol(D,D), t > s > 0,

solves the I.V.P. for the Loewner ODE

dϕs,t (z)

dt
= −ϕs,t (z) p

(
ϕs,t (z), t

)
, t > s, ϕs,s = idD. (7)

Z p(z, t) :=
1 + ze−iu(t)

1 − ze−iu(t)
,The function p has the form (8)

where u : [0,+∞)→ R is a continuous function
uniquely defined by the slit Γ.
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Remarks
4 The family (ft ) is C1 although no regularity is assumed for the slit Γ;
4 The “driving function” u(t) encodes the information about the slit,
4 and hence we obtain a kind of

conformally invariant coordinates in the set of all Jordan arcs in C.

This coordinates proved to be very useful for applications.
Consider a similar situation,

but with a growing slit:

dgt (z)

dt
= +gt (z)

1 + e−iu(t)gt (z)

1 − e−iu(t)gt (z)
, g0(z) = z.Loewner ODE: (9)
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Again, all the information about Γ is encoded in the driving f-n u(t).

In 2000, Oded Schramm introduced
the so-called Stochastic Loewner Evolution

u(t) :=
√
κBt ,by plugging

where (Bt ) is the standard Brownian motion and κ = const > 0,
to the Loewner ODE for the decreasing chains,

dgt (z)

dt
= gt (z)

1 + e−iu(t)gt (z)

1 − e−iu(t)gt (z)
, g0(z) = z. (10)

Main contribution of Schramm: he understood that
the Wiener measure over the driving functions u corresponds via (10)
to a measure over the slits Γ, which arises as a

scale limit in many lattice models of Statistical Physics.

! FIELDS MEDALS: W. Werner (2006), S. Smirnov (2010)
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Subtle point: ¿slit or not?
: P.P. Kufarev, 1947: Not every continuous driving function u

corresponds to a slit!

OR

: P.P. Kufarev, 1946: the first sufficient condition
for generation of a slit.

: D.E. Marshall & St. Rohde, 2005; J. Lind, 2005:
‖u‖Lip(1/2) 6 4⇒ slit solutions;

: for SLE: slit solutions a.s. iff κ 6 4;
: interesting: this 4 was a kind of “predicted” by Kufarev in 1946 . . .
: many papers on relation between

regularity of the slit Γ and that of the driving f-n u.
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Small cheating
Z The slits Γ we considered join a point a ∈ ∂D with b = 0.

[RADIAL CASE]
Z In many applications Γ is a cross-cut,

i.e. both end-points a,b ∈ ∂D. [CHORDAL CASE]

The chordal case is usually considered
in the half-planeH := {z : Im z > 0}, with b := ∞.

The chordal Loewner ODE takes the form
dgt (z)

dt
=

2
gt (z) − λ(t)

, g0(z) = z ∈H, (11)

where λ : [0,+∞)→ R is a continuous driving function.

This equation appeared for the 1st time in a paper of 1946 by Kufarev
and was rediscovered in 2000 by Schramm.
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Abstract approach
In 2008 Filippo Bracci, Manuel D. Contreras and Santiago Díaz-Madrigal
suggested an abstract approach,

which includes both radial and chordal versions as very special cases.

What is common in the radial and chordal Loenwer equations in D?

dw/dt = −w p(w, t), w(0) = z,Radial:

dw/dt = (1 − w)2p(w, t), w(0) = z,Chordal:

Re p > 0.where in both cases,
A clear hint is given in the theory of one-parameter semigroups.
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Definition
A one-parameter semigroup (φt ) ⊂ Hol(D,D)

is a continuous semigroup homomorphism
[0,+∞) 3 t 7→ φt ∈ Hol(D,D),

i.e. (i) φ0 = idD, (ii) φt ◦ φs = φs ◦ φt = φt+s for any s, t > 0,

i.e.

(iii) φt (z)→ z as t → 0+.

Theorem (E. Berkson, H. Porta, 1978)
(A) Any one-param. semigroup (φt ) is the semiflow of the

holomorphic vector filed G(z) := limt→0+(φt (z) − z)/t ,
called the infinitesimal generator of (φt ).

(B) G ∈ Hol(D,C) is the infinitesimal generator of some one-param.
G(z) = (τ − z)(1 − τz) p(z),semigroup if and only if (12)

where τ ∈ D and p ∈ Hol(D,C) with Re p > 0.
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The Berkson – Porta formula G(z) = (τ − z)(1 − τz) p(z) resembles:
4 radial Loewner – Kufarev equation G(z) = −z p(z) if τ = 0 ∈ D;

4 chordal Loewner equation G(z) = (1 − z)2p(z) if τ = 1 ∈ ∂D.

4 Loewner equation are non-autonomous.

Bracci, Contreras and Díaz-Madrigal studied
non-autonomous analogues of infinitesimal generators G

and one-param. semigroups (φt ) [ArXiv 2008; Crelle’s journal 2012]

Definition (essentially from Carathéodory’s theory of ODEs)
A function G : D × [0,+∞)→ C is said to be a Herglotz vector field if:
HVF1. for a.e. t > 0 fixed, the function G(·, t) is an infinitesimal generator;

HVF2. for each z ∈ D fixed, the function G(z, ·) is measurable on [0,+∞);

HVF3. for each compact set K ⊂ D, t 7→ sup
z∈K
|G(z, t)| is L1

loc.
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Definition (“non-autonomous” semigroups — intrinsic def-tion)
A family (ϕs,t )t>s>0 ⊂ Hol(D,D) is called an evolution family if:
EF1. ϕs,s = idD for all s > 0;
EF2. ϕs,t = ϕu,t ◦ ϕs,u whenever t > u > s > 0;
EF3. for any z ∈ D, the maps [s,+∞) 3 t 7→ ϕs,t (z)

are locally absolutely continuous uniformly w.r.t. s > 0.

Theorem (Bracci, Contreras and Díaz-Madrigal, 2008)
The general Loewner ODE

dϕs,t (z)/dt = G
(
ϕs,t (z), t

)
, t > s > 0, ϕs,s(z) = z, (13)

establishes an (essentially) 1-to-1 correspondence
between Herglotz vector fields G and evolution families (ϕs,t ).

This includes uniqueness and global existence for solutions to (13).
Note: (13) is to be understood as a Carathéodory ODE.
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Definition
A Loewner chain is a family of functions (ft ), t > 0, such that:
LC1. each ft : D→ C is holomorphic and univalent;
LC2. Ωs := fs(D) ⊂ Ωt := ft (D) whenever t > s > 0;
LC3. t 7→ ft (z) is loc. abs. continuous loc. uniformly w.r.t. z ∈ D.

Theorem (M. D. Contreras, S. Díaz-Madrigal and P. Gum., 2010)

(A)For any Loewner chain (ft ), the transition maps ϕs,t := f−1
t ◦ fs ,

t > s > 0, form an evolution family.
(B)Conversely, every evolution family (ϕs,t )

is formed by transition maps of some Loewner chain (ft ),
which is unique up to biholomorphisms of Ω := ∪t>0ft (D).

(C)Every Loewner chain (ft ) satisfies the general Loewner PDE
(∂/∂t)ft (z) = −f ′t (z)G(z, t), (14)

where G is the Herglotz v.f. of the evolution family (ϕs,t ) ∼ (ft ).
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Remarks
Z According to the abstract approach by Bracci et al, the essence

of Loewner Theory resides in the interplay among
I Loewner chains,
I evolution families and
I Herglotz vector fields.

There is essentially 1-to-1 correspondence among them.

Z The generality of this approach might seem to be excessive
from the viewpoint of certain application.

Z BUT: it is intrinsic and extends naturally to complex manifolds.
[Bracci, Contreras and Díaz-Madrigal, Math. An. (2009)]
[Arosio, Bracci, Hamada and Kohr, J. Anal. Math. (2013)]
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In higher dim’s, Loewner chains take values
in some abstract manifold = the so-called abstract basins of attraction
considered by J.E. Fornæss and B. Stensønes, 2004,

in connection with the Bedford Conjecture on stable manifolds.

For an evolution family (ϕs,t ) ⊂ Hol(X ,X), the abstract basin Ω
(aka “tail space”) is formed by

Z all trajectories [s,+∞) 3 t 7→ γz,s(t) := ϕs,t (z) ∈ X
Z modulo: γ1 ∼ γ2 iff γ1 = γ2 on their common domain.

Z the maps fs : X 3 z 7→ [γz,s] ∈ Ω form a Loewner chain ∼ (ϕs,t )

Z Ω is simply connected & non-compact ⇒ in dim = 1, Ω � D orC

L. Arosio, F. Bracci, E. Fornæss Wold, 2013:
X ⊂ Cn starlike [hyperbolic complete] domain ⇒ Ω ↪→ Cn.
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Denote: (φG
t ) the one-param. semigroup ∼ an inf. generator G.

For U ⊂ Hol(D,D) let G[U] : = {inf. generators G : (φG
t ) ⊂ U}.

Analogue of the Lie exponential map

G[U] 3 G 7→ExpLie(G) := φG
1 ∈ U ⊂ Hol(D,D) (subsemigroup)

, For Lie groups, the Exp-map recovers the group (at least locally)
/ However in our case, typically ExpLie

(
G[U]

)
, U ,, OU(idD).

Loewner’s idea: Instead of (φt )’s satisfying the autonomous ODE

dφt (z)/dt = G(φt (z)), t > 0, φ0(t) = z ∈ D, (15)

consider two-parameter families (ϕs,t )t>s>0, generated by its
non-autonomous analogue:

dϕs,t (z)/dt = G
(
ϕs,t (z), t

)
, t > s > 0, ϕs,s(z) = z ∈ D, (16)

where G(·, t) ∈ G[U] for a.e. t > 0.
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I
dϕs,t (z)

dt
= G

(
ϕs,t (z), t

)
, t > s > 0, ϕs,s(z) = z,The ODE (16)

is in fact the general Loewner equation by Bracci et al;
I the functions G : [0,+∞) 3 t 7→ G(·, t) ∈ G[U]

are Herglotz vector fields.
I the families (ϕs,t ) are evolution families.
I G[U] will be called the infinitesimal structure of U.

We would wish to reconstruct the semigroup U from its infinitesimal
structure G[U] using the general Loewner ODE (16):

Definition
We say that a semigroup U ⊂ Hol(D,D) admits a Loewner – type
representation if the union R[U] of all evolution families (ϕs,t )
generated by Herglotz vector fields G

with G(·, t) ∈ G[U] for a.e. t > 0 coincides with U.
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Problem: construct a Loewner – type parametric representation for
semigroups formed by univalent self-maps with given fixed points.

Let F be a finite set of points on T := ∂D.

First family of semigroups

U(D,F ) :=
{
ϕ ∈ U(D) : each σ ∈ F is a BRFP of ϕ

}

“BRFP”=“boundary regular fixed point ”:
A point σ ∈ ∂D is said to be BRFP of ϕ ∈ Hol(D,D) if

∃ ∠ lim
z→σ

ϕ(z) = σ and ∃ ϕ′(σ) := ∠ lim
z→σ

ϕ(z) − σ

z − σ
, ∞.
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Fix additionally τ ∈ D \ F .

Second family of semigroups

Uτ(D,F ) := {idD} ∪
{
ϕ ∈ U(D,F ) \ {idD} : τ is the DW-point of ϕ

}
“DW-point”=“Denjoy – Wolff point" [Denjoy – Wolff Theorem]
For any ϕ ∈ Hol(D,D) \ {idD},

∃! (boundary regular) fixed point τ ∈ D such that |ϕ′(τ)| 6 1.

Moreover, if ϕ is not an elliptic automorphism of D,
then ϕ◦n → τ l.u. in D as n→ +∞.

This point τ is called the Denjoy – Wolff point of ϕ.
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Z Loenwer’s idea potentially can work in the general setting of an
abstract semigroup with “compatible diffeology”.
However, no criteria for such a semigroup

to admit a parametric representation is known.
So it is interesting to study more examples.

Z In Geometric Function Theory there has been
considerable interest to study self-maps with given BRFP’s

H. Unkelbach, 1938, 1940; C. Cowen, Ch. Pommerenke, 1982;

Ch. Pommerenke, A. Vasil’ev, 2000; J.M. Anderson, A. Vasil’ev, 2008;

M. Elin, D. Shoikhet, N. Tarkhanov, 2011;

V.V. Goryainov [talk at Steklov Math. Inst., Moscow, 26/12/2011];
A. Frolova, M. Levenshtein, D. Shoikhet, A.Vasil’ev, ArXiv:1309.3074, 2013.

Z The infinitesimal structure ofU(D,F ) andUτ(D,F ) is well-studied.
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Theorem (P. Gum. — work in progress)

Let F ⊂ T be a finite set, n := Card(F ), and τ ∈ D \ F .
The following semigroups U admit

the Loewner-type parametric representation, i.e. R[U] = U:

4 U =Uτ(D,F ) for τ ∈ D and n = 1; [Unkelbach and Goryainov]

4 U =Uτ(D,F ) for τ ∈ T and n 6 2;
4 U =U(D,F ) for n 6 3.

H. Unkelbach, 1940: an attempt to give
the Loewner-type parametric representation forU0(D, {1});

V.V. Goryainov, approx. 2013 (to appear in Mat. Sb.):
the complete proofs.
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Conjecture [know how to prove]
If τ ∈ D, then the semigroupUτ(D,F ) admits

the Loewner type representation for any finite set F ⊂ T.

Open problem
Given a finite F ⊂ T with Card(F ) = n,
¿ Does the semigroupsUτ(D,F ) admits

the Loewner type representation for τ ∈ T and n > 2?
¿ Does the semigroupsU(D,F ) admits

the Loewner type representation for n > 3?

My conjecture is that the correct answer for both questions is NO.

Last phrase . . .

Tusen takk så mye !!!
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