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Synopsis

My talk is devoted to some problems in One Complex Variable.

(I) PRELIMINARIES

1° Quasiconformal mappings

2° Classical Loewner Theory

3° Application of the classical Loewner Theory to quasiconformal
extensions of holomorphic functions

4° Chordal variant of the Loewner Theory

(1) NEW RESULTS (joint work with |kkei HOTTA)

1° Quasiconformal extensions via the chordal Loewner equation

2° Sufficient conditions for quasiconformal extendibility of
holomorphic functions in the half-plane
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Quasiconformal mappings TORVERGATA

Definition (a simple one)

Let K > 1 be a constant and D c C a domain. A sense-preserving
C'-homeomorphism f: D o, € is said to be a K-quasiconformal
mapping if for any z € D the differential df(z) maps circles onto
ellipses with the ration of the major semiaxis to the minor one

not exceeding K.

4

For K = 1 we recover the conformal mappings.
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Quasiconformal mappings 2 TORVERGATA
If f: D™ Cisa K-quasiconformal mapping of class C',
then it satisfies the Beltrami PDE

of = us(z)of, (1)
where  of := %(% - ig—}f,), of .= %(% + idd—;), Z=X+Iy,
the Beltrami coefficient uy satisfies |us(z)| < k <1forallze D

and k .= (K—-1)/(K+1).

Definition (the general one)

A mapping f: D o, ¢ is said to be K-quasiconformal if:

(i) fis a sense-preserving homeomorphism of D onto f(D);
(i) fis ACL in D;
(iii) of = ui(z)of  fora.e.zeD

with some measurable iy s.t. esssup|us(z)| < k = (K-1)/(K+ 1)

v
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Quasiconformal mappings 3 TOR VERGATA
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SOME REMARKS:

=

=
=

Again, a 1-quasiconformal mapping is the same
as a conformal mapping.

"Quasiconformal” is usually abbreviated as "qg.c."
By a g.c.-mapping one means a K-g.c. mapping with some
(unspecified) K > 1.
Quite often, abusing the language, one specifies k < 1, i.e. the
upper bound for the Beltrami coefficient, instead of K > 1.
So by a k-g.c. mapping one means K-g.c. mapping

with K .= (1 + k)/(1 = k).
In what follows, we will use the "k-small" notation.

The definition of quasiconformality extends naturally to mappings
between Riemann surfaces. In particular, we will be interested in
q.c.-mappings of C onto itself, i.e. q.c.-automorphisms of C.

Preliminaries 5/23



Universita’ di Roma

Quasiconformal mappings 4 TOR VERGATA

Why q.c.-mappings are interesting?

v Q.c.-mappings generalize conformal maps.

v They are more flexible. In particular, the notion of a g.c.-mapping
extends naturally to R”, n > 2. In higher dimensions conformal
mappings are trivial, while g.c.-mappings form a large class.

v Q.c.-mappings inherit many fundamental properties of conformal
mappings, such as removability of isolated singularities,
compactness principles, boundary behaviour,

(Measurable) Riemann Mapping Theorem, etc.

v Q.c.-mappings appear naturally in many parts of Complex
Analysis such as Holomorphic Dynamics, Univalent Functions,
Riemann Surfaces, Kleinian Groups, etc.

v Q.c.-mappings can be seen as deformations of the complex
structure. This role is played by g.c.-mappings in Teichmller’s
theory of Riemann surfaces.

4
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Quasiconformal extensions TOR VERGATA

Notation: ID .= {z e C: |z| < 1}

Definition
A function f: ID — C is said to be g.c.-extendible if there exists a
g.c.-automorphism F: C — C s.t. F(c0) = co and Flp = f.

Clearly, g.c.-extendible functions are
univalent (= injective + holomorphic) in D.
Definition (Normalized univalent functions)

By class S we mean the set of all univalent function f : ID — C
normalized by f(0) = 0, f(0) = 1.

S(k):={feS: Jak-gc.map F:C — Cs.t. F(c0) = co and Flp = f}.

The union Ugero 1) S(k) = {f € S: fis g.c.-extendible} is one of
[0,1)
the models of the Teichmdller universal space.
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Extremal Problems for Univ. Functions TOR VERGATA

The class S of all normalized univalent (= injective + holomorphic)
functions f: ID — C, f(0) =0, (0) = 1, on its own
is a classical object of study in Geometric Function Theory.
+ The class S is compact (w.r.t. the locally uniform convergence),
so it make sense to pose Extremal Problems for continuous
functionals on S.
— However, S has no natural linear structure,
and itis NOT convex in Hol(D, C).
— As aresult, the standard variational technique does not apply to
the extremal problems in the class S.

Bieberbach’s Problem, 1916

—+o00
lan| > max overall f(z)=z+ Z anz" from S
n=2
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Extremal Problems 2 TOR VERGATA

Bieberbach’s Problem, 1916

la| = max overall f(z)=z+ Z apz" from S

i Bieberbach, 1916, proved that maxgs|as| = 2 and conjectured
that maxgs|an| = n for all n > 2 — the Bieberbach Conjecture.

1 This conjecture was a major problem in Complex Analysis for a
long time. Certain progress was achieved by:

n = 3: Léwner (=Loewner), 1923; |a,| < en: Littlewood, 1925;

n = 4: Garabedian and Schiffer, 1955;

limsuplapl/n < 1: Hayman, 1955; |a,| < (1.243)n: Milin, 1965;
n = 6: Pederson, 1968; Ozawa, 1969;

n =5: Pederson and Schiffer, 1972;

lan| < (1.081)n: FitzGerald, 1972; |a,| < (1.07)n: Horowitz, 1978
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Parametric Method TOR VERGATA

i de Branges, 1984, completely proved the Bieberbach Conjecture.

1 The cornerstone of his proof is essentially the same method as
the one introduced by Charles Loewner (=Karel/Karl Léwner)
in 1923, known as (Loewner’s) Parametric Representation.

Definition

A classical Herglotz function is a function p : ID X [0, +00) — C s.1.:

(M) p(z,-) is measurable for all z € D;

(H) p(-,t) is holomorphic for all t > 0;

(Re) Rep>0andp(0,t) =1forallt > 0.

Given a classical Herglotz function p,
the (classical radial) Loewner—Kufarev ODE

—w(z,t) =-w(z, t)p(w(z, t), t), (V ze ]D) w(z,0) =2z, (3)

has a unique solution w = wy: ID x [0, +00) — D.
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Parametric Method 2 TOR VERGATA

Again, for a classical Herglotz function p,
we denote by wj, the unique solution to the (I.V.P. for the)

(classical radial) Loewner— Kufarev ODE

%W(Z, t) =-w(z,1t) p(W(z, t), t), (\7’ zZe ]D) w(z,0) =2z (4)

Theorem (Pommerenke, 1965-75; Gutlyanskii, 1970)

(I) A function f: ID — C belongs to S if and only if
1 a classical Herglotz function p s.t.

4

f(z) = tﬂrroo e'wp(z,t) forall zeD. (5)

(I) V classical Herglotz function p the limit (5) exists and
it is attained locally uniformly in ID.

In other words, formula (5) defines a surjective mapping p + f of the
convex cone of all classical Herglotz functions onto the class S.

y

Preliminaries 11/23



Universita’ di Roma

COﬂdItIOnS fOI’ CIC-eXtendlbI“ty TOR VERGATA

i Parametric Representation had been introduced and used as an
effective instrument to solve Extremal Problems in the class S.
® in 1972 Becker found a construction that allows one
to apply the Loewner—Kufarev equations
to obtain g.c.-extensions of holomorphic functions in D.
i In this way he was able to deduce several sufficient conditions for
g.c.-extendibility:

Let f € Hol(ID,C) and k € [0, 1). Each of the following conditions
is sufficient for f to be k-g.c. extendible:
(@ N -f(z)<kforall zeD;

(b) |zf"(2)/f'(2)| < £ for all z € ID;

1|22

2 ’ 4 2
(©) IS(2)| < 72z for all z € D, where Sf(2) := (7)1 (7a)

ua 1’ 2
= % - %(ff((zz))) is the Schwarzian derivative.

w

Preliminaries 12/23




Loewner chains
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TOR VERGATA

Consider the characteristic PDE of the Loewner—Kufarev ODE:

Loewner—Kufarev PDE

afi(2) B Zc?ft(z)
at = oz

p(z,1), zeD,

t>0. (6)

The unique solution (z,t) - f;(z) to (6) that is:

v well-defined and univalent in ID for all t > 0;
v normalized by f,(0) = 0, f{(0) =1,

is given by the formula

fs(z) = lim e'wy(z;s,1),

t——+o0

(7)

where t — wp(z; s, t) is the unique solution to the Loewner —Kufarev
ODE dw/dt = -wp(w,t) withthe l.C. wy(z;s,s) =z forall z€ D.

NOTE: The initial condition is now given at t = s.
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Loewner chains TOR VERGATA

Theorem (Pommerenke, 1965)

The formula fs(2) :t”T e'wp(z; s, t), (8)
where t — wp(z; s, t) solves the (I.V.P. for the) Loewner— Kufarev
ODE dw/dt = -wp(w,t), wp(z;s,s)=2z forallzeD, (9)

est’'shes a 1-to-1 relation between the classical Herglotz functions p
and the (so-called) classical radial Loewner chains (f;).

Definition (Pommerenke’s book “Univalent functions”)
A family (f;)i=0 € Hol(ID, C) is said to be
a classical radial Loewner chain if the following conditions hold:
» all fi’s are univalent in ID;
» f(D)cfy(ID)forallt>s>0;
» f(0)=0andf/(0)=e' (= e 'feS)forallt>0.

4
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Becker’s g.c.-extension TOR VERGATA

Becker’s construction of g.c.-extensions is given in the following thrm.

Theorem (Becker, 1972 (J. Reine Angew. Math.))

Fix k € [0,1) and let (f;) be a classical radial Loewner chain. If the
associated classical Herglotz function p satisfies

c—1
C+1

p(z,1) € Uk) = {c eC:

then:
(A) All f;’s extend continuously to JD. (B) The function

< k} (VzeDanda.e. t>0), (10)

) fo(2), ze,
f(Z) = { flOngI (Z/lZl), ZA(S 0:\HD/ (11)

OO, Z:OO,

is a k-q.c. automorphism of C. In particular, f € S(k),
i.e. fy is k-q.c. extendible.

v
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Chordal Loewner Equation TORVERGATA

The vector field G(w, t) := —w p(w, t) in the r.h.s of the
Loewner—Kufarev ODE has a zero at w = 0.

Correspondingly the solutions w(-; s, t) € Hol(ID, D) have an
attracting fixed point at z = 0.

The chordal Loewner equation is an analogue of the (classical
radial) Loewner —Kufarev equation for the case of a boundary
attracting fixed point (=boundary Denjoy —Wolff point).

A particular case of the chordal Loewner ODE seems to be
known since 1946 (Kufarev), but we will use the general form
due to Bracci, Contreras and Diaz-Madrigal, 2012

(J. Reine Angew. Math.).

Let us passto H := {z: Rez > 0}.
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Chordal Loewner Equation 2 TORVERGATA

Chordal Loewner ODE
dw(z,t)

dt
where p : H X [0, +o0) — C is a Herglotz function in H.

=p(w(z,1),t), t>0, (1

Definition

A Herglotz function in H is a function p : H X [0, +o0) — C s.t.:
(M) p(z,-) is measurable for all z € H;

(H) p(-,t) is holomorphic for all t > 0;

(Re) Rep > 0; and

([) t+ p(zo,1)is locally integrable on [0, +co)

for some (and hence all) zo € H.
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Chordal Loewner Equation 3 TOR VERGATA

Definition
A chordal Loewner chain (f;)=o associated with a Herglotz function
p: HX[0,+o0) — Cis a solution to the chordal Loewner PDE

dfi(2) —aft(z)p(z, ), (13)

at ot

s.t. f; is well-defined and univalent in IH for all t > 0.

Remark
It is known that, given a Herglotz function p in H,

© the associated chordal Loewner chain exists,
® butit does NOT need to be unique.

Preliminaries
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Uni’ness of chordal Loewner chains TOR VERGATA

Proposition (P. Gum., Ikkei HOTTA)
Let p: H % [0, +o0) — C be a Herglotz function in H. Suppose that
there exists a locally f—ble function M : [0, +o0) — [0, +0) s.t.
(i) M(t)dt = +oo, and
[0,4c0)
(i) CiM(t) <Rep(z,t) < CoM(t)fora.e. t >0andall z € H,
where Cq, C> > 0 are some constants.

Ut>0 ey =L

for any chordal Loewner chain (f;) associated with p, and hence
the associated chordal Loewner chain (f;) is unique up to affine maps,
i.e. if (g¢) is another chordal Loewner chain associated with p,

then g; = af; + b, t > 0, for some a € C\ {0}, b € C.

Then
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"Chordal" q.C.'eXtenSionS TOR VERGATA

Theorem (P. Gum., Ikkei HOTTA)
Fix k € [0,1) and let (f;) be a chordal Loewner chain
associated to a Herglotz function p : H X [0, +o0) — C.

If
p(z,t) e Uk) ={CeC: |5 <k} (vzeHandae. t>0), (15)

then:

(A) All f;’s extend continuously to JH. (B) The function

y fo(2), zeH,
f(z) :={ fRez(ilmz), zeC\H, (16)
OO, zZ= OO,

is a k-quasiconformal extension of f to C.

v
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Suff. conditions for g.c.-extendibility TORVERGATA
Hyperbolic (Poincaré) distance in H is given by

_ 1. 1+ pu(z1,20)
distyp(21,22) = 5100 T T
|21 — 25|

where pi(z1, 22) = m forall zy,zo e H. (17)

v

Theorem (P. Gum., Ikkei HOTTA)

Fixk €[0,1) and let K := (1 + k)/(1 — k). Let D c H be a closed
hyperbolic disk of radius % log K. Finally, let f € Hol(IH,C). Each of
the following conditions is sufficient for f to be k-q.c. extendible:

o bl
(b) f(H)c

(c) [f'(2)]7'(f(z) +a)—z € D forall ze H and some a € C.

for all z € H [Becker & Pommerenke, 1984]

!

4
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Suff. conditions for g.c.-extendibility TOR VERGATA

From part (b) of the previous theorem we obtained

a corollary for functions in ID.

Corollary (P. Gum., Ikkei HOTTA)
Fix k €[0,1) and let K := (1 + k)/(1 — k). Let D c H be a closed

hyperbolic disk of radius % log K. If f € Hol(ID, C) satisfies
zf’(z)
f(z)

then f is k-g.c. extendible.

eD forallzeD)\ {0}, (18)

This corollary extends a classical result, in which D := U(k).
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The E nd TOR VERGATA

Gragzie mille
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