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My talk is devoted to some problems in One Complex Variable.

(I) PRELIMINARIES
1◦ Quasiconformal mappings
2◦ Classical Loewner Theory
3◦ Application of the classical Loewner Theory to quasiconformal

extensions of holomorphic functions
4◦ Chordal variant of the Loewner Theory

(II) NEW RESULTS (joint work with Ikkei HOTTA)
1◦ Quasiconformal extensions via the chordal Loewner equation
2◦ Sufficient conditions for quasiconformal extendibility of

holomorphic functions in the half-plane
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Definition (a simple one)
Let K > 1 be a constant and D ⊂ C a domain. A sense-preserving
C1-homeomorphism f : D into

−−−→ C is said to be a K-quasiconformal
mapping if for any z ∈ D the differential df(z) maps circles onto
ellipses with the ration of the major semiaxis to the minor one

not exceeding K.

For K = 1 we recover the conformal mappings.
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If f : D into
−−−→ C is a K -quasiconformal mapping of class C1,

then it satisfies the Beltrami PDE

∂̄f = µf (z)∂f , (1)

∂f := 1
2

(
df
dx − i df

dy

)
, ∂̄f := 1

2

(
df
dx + i df

dy

)
, z = x + iy ,where

the Beltrami coefficient µf satisfies |µf (z)| 6 k < 1 for all z ∈ D
and k := (K − 1)/(K + 1).

Definition (the general one)
A mapping f : D into

−−−→ C is said to be K-quasiconformal if:
(i) f is a sense-preserving homeomorphism of D onto f(D);
(ii) f is ACL in D;
(iii) ∂̄f = µf (z)∂f for a. e. z ∈ D

with some measurable µf s.t. ess sup |µf (z)| 6 k := (K − 1)/(K + 1).
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SOME REMARKS:

Z Again, a 1-quasiconformal mapping is the same
as a conformal mapping.

Z "Quasiconformal" is usually abbreviated as "q.c."
Z By a q.c.-mapping one means a K -q.c. mapping with some

(unspecified) K > 1.
Z Quite often, abusing the language, one specifies k < 1, i.e. the

upper bound for the Beltrami coefficient, instead of K > 1.
So by a k -q.c. mapping one means K -q.c. mapping

with K := (1 + k )/(1 − k ).
In what follows, we will use the "k -small" notation.

Z The definition of quasiconformality extends naturally to mappings
between Riemann surfaces. In particular, we will be interested in
q.c.-mappings of C onto itself, i.e. q.c.-automorphisms of C.
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Why q.c.-mappings are interesting?
4 Q.c.-mappings generalize conformal maps.
4 They are more flexible. In particular, the notion of a q.c.-mapping

extends naturally to Rn, n > 2. In higher dimensions conformal
mappings are trivial, while q.c.-mappings form a large class.

4 Q.c.-mappings inherit many fundamental properties of conformal
mappings, such as removability of isolated singularities,
compactness principles, boundary behaviour,

(Measurable) Riemann Mapping Theorem, etc.
4 Q.c.-mappings appear naturally in many parts of Complex

Analysis such as Holomorphic Dynamics, Univalent Functions,
Riemann Surfaces, Kleinian Groups, etc.

4 Q.c.-mappings can be seen as deformations of the complex
structure. This role is played by q.c.-mappings in Teichmüller’s
theory of Riemann surfaces.
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Notation: D := {z ∈ C : |z| < 1}

Definition
A function f : D→ C is said to be q.c.-extendible if there exists a
q.c.-automorphism F : C→ C s.t. F(∞) = ∞ and F |D = f .

Clearly, q.c.-extendible functions are
univalent (= injective + holomorphic) in D.

Definition (Normalized univalent functions)
By class S we mean the set of all univalent function f : D→ C

normalized by f(0) = 0, f ′(0) = 1.

S(k ) := {f ∈ S : ∃ a k -q.c. map F : C→ C s.t. F(∞) = ∞ and F |D = f}.

The union
⋃

k∈[0,1)S(k ) =
{
f ∈ S : f is q.c.-extendible

}
is one of

the models of the Teichmüller universal space.
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The class S of all normalized univalent (= injective + holomorphic)
functions f : D→ C, f(0) = 0, f ′(0) = 1, on its own

is a classical object of study in Geometric Function Theory.

+ The class S is compact (w.r.t. the locally uniform convergence),
so it make sense to pose Extremal Problems for continuous
functionals on S.

– However, S has no natural linear structure,
and it is NOT convex in Hol(D,C).

– As a result, the standard variational technique does not apply to
the extremal problems in the class S.

Bieberbach’s Problem, 1916

|an | → max over all f(z) = z +

+∞∑
n=2

anzn from S
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Bieberbach’s Problem, 1916

|an | → max over all f(z) = z +

+∞∑
n=2

anzn from S

Z Bieberbach, 1916, proved that maxS |a2| = 2 and conjectured
that maxS |an | = n for all n > 2 — the Bieberbach Conjecture.

Z This conjecture was a major problem in Complex Analysis for a
long time. Certain progress was achieved by:

n = 3: Löwner (=Loewner), 1923; |an | 6 en: Littlewood, 1925;
n = 4: Garabedian and Schiffer, 1955;
lim sup |an |/n 6 1: Hayman, 1955; |an | 6 (1.243)n: Milin, 1965;
n = 6: Pederson, 1968; Ozawa, 1969;
n = 5: Pederson and Schiffer, 1972;
|an | 6 (1.081)n: FitzGerald, 1972; |an | 6 (1.07)n: Horowitz, 1978
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Z de Branges, 1984, completely proved the Bieberbach Conjecture.

Z The cornerstone of his proof is essentially the same method as
the one introduced by Charles Loewner (=Karel/Karl Löwner)
in 1923, known as (Loewner’s) Parametric Representation.

Definition
A classical Herglotz function is a function p : D × [0,+∞)→ C s.t.:
(M) p(z, ·) is measurable for all z ∈ D;
(H) p(·, t) is holomorphic for all t > 0;
(Re) Re p > 0 and p(0, t) = 1 for all t > 0.

Given a classical Herglotz function p,
the (classical radial) Loewner – Kufarev ODE

d
dt

w(z, t) = −w(z, t) p
(
w(z, t), t

)
,

(
∀ z ∈ D

)
w(z,0) = z, (3)

has a unique solution w = wp : D × [0,+∞)→ D.
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Again, for a classical Herglotz function p,
we denote by wp the unique solution to the (I.V.P. for the)

(classical radial) Loewner – Kufarev ODE
d
dt

w(z, t) = −w(z, t) p
(
w(z, t), t

)
,

(
∀ z ∈ D

)
w(z,0) = z, (4)

Theorem (Pommerenke, 1965-75; Gutlyanskii, 1970)
(I) A function f : D→ C belongs to S if and only if
∃ a classical Herglotz function p s.t.

f(z) = lim
t→+∞

etwp(z, t) for all z ∈ D. (5)

(II) ∀ classical Herglotz function p the limit (5) exists and
it is attained locally uniformly in D.

In other words, formula (5) defines a surjective mapping p 7→ f of the
convex cone of all classical Herglotz functions onto the class S.
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Z Parametric Representation had been introduced and used as an
effective instrument to solve Extremal Problems in the class S.

, in 1972 Becker found a construction that allows one
to apply the Loewner – Kufarev equations

to obtain q.c.-extensions of holomorphic functions in D.
Z In this way he was able to deduce several sufficient conditions for

q.c.-extendibility:

Let f ∈ Hol(D,C) and k ∈ [0,1). Each of the following conditions
is sufficient for f to be k -q.c. extendible:

(a) |1 − f ′(z)| 6 k for all z ∈ D;

(b)
∣∣∣zf ′′(z)/f ′(z)

∣∣∣ 6 k
1−|z|2 for all z ∈ D;

(c) |Sf(z)| 6 2k
(1−|z|2)2 for all z ∈ D, where Sf(z) :=

( f ′′(z)
f ′(z)

)′
−

1
2

( f ′′(z)
f ′(z)

)2

=
f ′′′(z)
f ′(z) −

3
2

( f ′′(z)
f ′(z)

)2
is the Schwarzian derivative.
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Consider the characteristic PDE of the Loewner – Kufarev ODE:

Loewner – Kufarev PDE
∂ft (z)

∂t
= z

∂ft (z)

∂z
p(z, t), z ∈ D, t > 0. (6)

The unique solution (z, t) 7→ ft (z) to (6) that is:

4 well-defined and univalent in D for all t > 0;
4 normalized by f0(0) = 0, f ′0(0) = 1,

is given by the formula

fs(z) = lim
t→+∞

etwp(z; s, t), (7)

where t 7→ wp(z; s, t) is the unique solution to the Loewner – Kufarev
ODE dw/dt = −w p(w, t) with the I.C. wp(z; s, s) = z for all z ∈ D.

NOTE: The initial condition is now given at t = s.
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Theorem (Pommerenke, 1965)

fs(z) = lim
t→+∞

etwp(z; s, t),The formula (8)

where t 7→ wp(z; s, t) solves the (I.V.P. for the) Loewner – Kufarev

dw/dt = −w p(w, t), wp(z; s, s) = z for all z ∈ D,ODE (9)

est’shes a 1-to-1 relation between the classical Herglotz functions p
and the (so-called) classical radial Loewner chains (ft ).

Definition (Pommerenke’s book “Univalent functions”)

A family (ft )t>0 ⊂ Hol(D,C) is said to be
a classical radial Loewner chain if the following conditions hold:

I all ft ’s are univalent in D;
I fs(D) ⊂ ft (D) for all t > s > 0;
I ft (0) = 0 and f ′t (0) = et (⇐⇒ e−t ft ∈ S) for all t > 0.
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Becker’s construction of q.c.-extensions is given in the following thrm.

Theorem (Becker, 1972 (J. Reine Angew. Math.))
Fix k ∈ [0,1) and let (ft ) be a classical radial Loewner chain. If the
associated classical Herglotz function p satisfies

p(z, t) ∈ U(k ) :=
{
ζ ∈ C :

∣∣∣∣∣ ζ − 1
ζ+ 1

∣∣∣∣∣ ≤ k
}

(∀ z ∈ D and a.e. t > 0), (10)

then:
(A) All ft ’s extend continuously to ∂D. (B) The function

f̃(z) :=


f0(z), z ∈ D,
flog |z| (z/|z|) , z ∈ C\D,
∞, z = ∞,

(11)

is a k-q.c. automorphism of C. In particular, f0 ∈ S(k ),
i.e. f0 is k -q.c. extendible.
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Z The vector field G(w, t) := −w p(w, t) in the r.h.s of the
Loewner – Kufarev ODE has a zero at w = 0.

Z Correspondingly the solutions w(·; s, t) ∈ Hol(D,D) have an
attracting fixed point at z = 0.

Z The chordal Loewner equation is an analogue of the (classical
radial) Loewner – Kufarev equation for the case of a boundary
attracting fixed point ( = boundary Denjoy – Wolff point).

Z A particular case of the chordal Loewner ODE seems to be
known since 1946 (Kufarev), but we will use the general form
due to Bracci, Contreras and Díaz-Madrigal, 2012

(J. Reine Angew. Math.).

, Let us pass toH := {z : Re z > 0}.
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Chordal Loewner ODE
dw(z, t)

dt
= p

(
w(z, t), t

)
, t > 0, (12)

where p :H × [0,+∞)→ C is a Herglotz function inH.

Definition
A Herglotz function inH is a function p :H × [0,+∞)→ C s.t.:
(M) p(z, ·) is measurable for all z ∈H;
(H) p(·, t) is holomorphic for all t > 0;
(Re) Re p > 0; and
(
∫

) t 7→ p(z0, t) is locally integrable on [0,+∞)
for some (and hence all) z0 ∈H.
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Definition
A chordal Loewner chain (ft )t>0 associated with a Herglotz function
p :H × [0,+∞)→ C is a solution to the chordal Loewner PDE

∂ft (z)

∂t
= −

∂ft (z)

∂t
p(z, t), (13)

s.t. ft is well-defined and univalent inH for all t > 0.

Remark
It is known that, given a Herglotz function p inH,

, the associated chordal Loewner chain exists,

/ but it does NOT need to be unique.
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Proposition (P. Gum., Ikkei HOTTA)
Let p :H × [0,+∞)→ C be a Herglotz function inH. Suppose that
there exists a locally

∫
-ble function M : [0,+∞)→ [0,+∞) s.t.

(i)
∫
[0,+∞)

M(t) dt = +∞, and

(ii) C1M(t) 6 Re p(z, t) 6 C2M(t) for a.e. t > 0 and all z ∈H,

where C1,C2 > 0 are some constants.
Then ⋃

t>0
ft (H) = C

for any chordal Loewner chain (ft ) associated with p, and hence
the associated chordal Loewner chain (ft ) is unique up to affine maps,
i.e. if (gt ) is another chordal Loewner chain associated with p,

then gt = aft + b, t > 0, for some a ∈ C \ {0}, b ∈ C.
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Theorem (P. Gum., Ikkei HOTTA)
Fix k ∈ [0,1) and let (ft ) be a chordal Loewner chain

associated to a Herglotz function p :H × [0,+∞)→ C.

If
p(z, t) ∈ U(k ) :=

{
ζ ∈ C :

∣∣∣ ζ−1
ζ+1

∣∣∣ ≤ k
}

(∀ z ∈H and a.e. t > 0), (15)

then:

(A) All ft ’s extend continuously to ∂H. (B) The function

f̃(z) :=


f0(z), z ∈H,
f−Re z (i Im z) , z ∈ C\H,
∞, z = ∞,

(16)

is a k-quasiconformal extension of f0 to C.
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Hyperbolic (Poincaré) distance inH is given by

disthyp,H(z1, z2) :=
1
2

log
1 + ρH(z1, z2)

1 − ρH(z1, z2)
,

where ρH(z1, z2) :=
|z1 − z2|

|z1 + z2|
for all z1, z2 ∈H. (17)

Theorem (P. Gum., Ikkei HOTTA)
Fix k ∈ [0,1) and let K := (1 + k )/(1 − k ). Let D ⊂H be a closed
hyperbolic disk of radius 1

2 log K. Finally, let f ∈ Hol(H,C). Each of
the following conditions is sufficient for f to be k-q.c. extendible:

(a)
∣∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣∣ 6 k
2Re z

for all z ∈H [Becker & Pommerenke, 1984]

(b) f ′(H) ⊂ D;
(c) [f ′(z)]−1(f(z) + a) − z ∈ D for all z ∈H and some a ∈ C.
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From part (b) of the previous theorem we obtained
a corollary for functions in D.

Corollary (P. Gum., Ikkei HOTTA)
Fix k ∈ [0,1) and let K := (1 + k )/(1 − k ). Let D ⊂H be a closed
hyperbolic disk of radius 1

2 log K . If f ∈ Hol(D,C) satisfies

zf ′(z)

f(z)
∈ D for all z ∈ D \ {0}, (18)

then f is k -q.c. extendible.

This corollary extends a classical result, in which D := U(k ).
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