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New results in the talk are obtained in collaboration with

Prof. Manuel D. Contreras and

Prof. Santiago Díaz-Madrigal

from Universidad de Sevilla, SPAIN.
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TOR VERGATALoewner Theory in the disk

The classical Loewner Theory in the unit disk is due to:
I K. Löwner (C. Loewner), 1923
I P. P. Kufarev, 1943
I C. Pommerenke, 1965

Modern viewpoint —

three fundamental notions of Loewner Theory:
I Loewner chains (ft )
I Evolution families (ϕs,t )

I Herglotz vector fields G(w, t)
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TOR VERGATALoewner Theory in the disk

Definition
A Loewner chain is a one-parametric family of functions (ft ), t > 0,
such that:
LC1. each ft : D→ C, D := {z : |z| < 1},

is holomorphic and univalent;
LC2. Ωs := fs(D) ⊂ Ωt := ft (D)

whenever t > s > 0;

LC3. (the very classical case)
ft (0) = 0 and f ′t (0) = et for all t > 0.
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TOR VERGATALoewner Theory in the disk

Definition
A family (ϕs,t ), t > s > 0, of holomorphic functions ϕs,t : D→ D is an
evolution family if:
EF1. ϕs,s = idD; EF2. ϕs,t = ϕu,t ◦ ϕs,u whenever t > u > s > 0;
EF3. (the very classical case)

ϕs,t (0) = 0 and ϕ′s,t (0) = es−t whenever t > s > 0.

Introduction 6/32



University of Rome

TOR VERGATALoewner Theory in the disk

One definition form the theory of Carathéodory ODE:

Definition
Let d ∈ [1,+∞]. A function G : D × [0,+∞)→ C is a weak
holomorphic vector field of order d if:
VF1. G(z, t) is holomorphic in z ∈ D for a.e. t > 0;
VF2. G(z, t) is measurable in t ∈ [0,+∞) for all z ∈ D;
VF3. For any compact set K ⊂ D and any T > 0 there exists a

non-negative function kK ,T ∈ Ld([0,T ],R) such that∣∣∣G(z, t)
∣∣∣ 6 kK ,T (t), for any z ∈ K and a.e. t ∈ [0,T ]. (1)

Under the above conditions ∃! solution to the Cauchy problem

ẇ = G(w, t), (2)
w(s) = z, s > 0, z ∈ D. (3)
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Definition (general case)
Let d ∈ [1,+∞]. A function G : D × [0,+∞)→ C is a Herglotz vector
field of order d if:
HVF1. G is a weak holomorphic vector field of order d;
HVF2. For a.e. t > 0, G(·, t) is an infinitesimal generator.

Berkson – Porta, 1978
H ∈ Hol(D,C) is an infinitesimal generator if and only if

H(z) = (τ − z)(1 − τz)p(z), τ ∈ D, p ∈ Hol(D,C), Re p > 0. (4)
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Berkson – Porta, 1978
H ∈ Hol(D,C) is an infinitesimal generator if and only if

H(z) = (τ − z)(1 − τz)p(z), τ ∈ D, p ∈ Hol(D,C), Re p > 0. (4)

Fixing τ = 0 and normalizing p(0) = 1 in (4), we get

Definition (the very classical case)
A classical Herglotz vector field is

G(z, t) = −zp(z, t), z ∈ D, a.e. t > 0, (5)

where p(z, t) is holomorphic in z, measurable in t ,
Re p > 0, and p(0, t) = 1 for a.e. t > 0.
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There is 1-to-1 correspondence between classical Loewner
chains (ft ), evolution families (ϕs,t ) and Herglotz vector fields G(z, t),
given via:

ϕs,t = f−1
t ◦ fs , fs = lim

t→+∞
etϕs,t , (6)

Loewner – Kufarev ODE

d
dt
ϕs,t (z) = G

(
ϕs,t (z), t

)
= −ϕs,t (z)p

(
ϕs,t (z), t

)
, t > s,

ϕs,t (z)|t=s = z, z ∈ D, (7)

Loewner – Kufarev PDE
∂
∂t

ft (z) = −f ′t (z)G(z, t) = zf ′t (z)p(z, t), z ∈ D, t > 0. (8)
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Theorem (Gutljanskiı̆, 1970; Pommerenke, 1973)

For any f ∈ S :=
{
f ∈ Hol(D,C) : f(0) = 0, f ′(0) = 1, and f is 1-to-1

}
there exists a classical Loewner chain (ft ) s.t. f0 = f .

Parametric Representation
This theorem provides a Parametric Representation of the class S

and therefore has important applications in the theory of
univalent functions, especially in Extremal Problems.

p(w, t) 7→ ϕs,t 7→ {ft } 7→ f0 ∈ S

convex cone of driving terms p(w, t)
onto
−→ the class S

extremal problem 7→ problem of optimal control
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Extremal problems in S and SM

New and classical extremal problems for coefficient functionals for
normalized univalent functions (class S) and bounded normalized
univalent functions (SM := {f ∈ S : |f(z)| < M for all z ∈ D}):

Dmitri Valentinovich Prokhorov and his students
1984, 1986, 1990, 1991, 1992, 1993, 1994, 1995, 1997, . . .

I Parametric Representation
I Pontryagin’s Maximum Principle
I Variational technique

I Classical L. Th. also gives a representation of the semigroup
U0 := {ϕ ∈ Hol(D,D) : ϕ is 1-to-1, ϕ(0) = 0, ϕ′(0) > 0}.

I Other sub-semigroups ofU := {ϕ ∈ Hol(D,D) : ϕ is 1-to-1} can
be represented by constructing corresponding versions of
Loewner Evolution (V. V. Goryainov, 1987, 1991, 1992, 1996).
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I Chordal Loewner Evolution
(P. P. Kufarev, V. V. Sobolev and L. V. Sporysheva, 1968) —
the semigroupU1 ⊂ U := {ϕ ∈ Hol(D,D) : ϕ is 1-to-1} of
self-mappings with hydrodynamic normalization

(parabolic DW-point on the boundary + extra regularity).
dw
dt

= p(w, t), w ∈ U := {w : Im w > 0},
p(w, t) :=

∫
R

1
x − w

dµt (x),

where µt is a finite positive Borel measure.
I Chordal Loewner Evolution→ SLE (O. Schramm, 2000):

dµt (x) := δ(x −
√
κBt ) dx ,

where κ > 0 and (Bt ) is a standard Brownian motion.
I SLE: applications in lattice models of Statistical Physics.
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New approach
I F. Bracci, M. D. Contreras and S. Díaz-Madrigal, 2008

a general construction unifying all versions of Loewner Evolution.
I In contrast to the classical theory the whole semigroup
U := {ϕ ∈ Hol(D,D) : ϕ is 1-to-1} is involved (no normalization).

I Arbitrary Hergltoz vector fields are considered.
I M. D. Contreras and S. Díaz-Madrigal, and P.G., 2010

general Loewner chains.

Definition
A (time-dependent) vector field G defined in a set D ⊂ C ×R is said
to be semicomplete if any solution to the equation

ẇ = G(w, t) (9)

can be extended unrestrictedly to the right (to the future).
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Theorem (F. Bracci, M. D. Contreras, S. Díaz-Madrigal)
A weak holomorphic vector field G is semicomplete

if and only if
G is a Herglotz vector field,

i.e. if for a.e. t > 0, G(·, t) is an infinitesimal generator.

This allows us to regard the approach proposed by Bracci et al as the
most general type of Loewner Evolution in D.

Our aim
is to construct analogous general Loewner Theory for doubly
connected domains.
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New feature of Loewner Evolution in the doubly setting
is that instead of static canonical domain (the unit disk D) one has to
consider an extending family (Dt ) of canonical domains (annuli).

Indeed, a continuous monotonic family (Ωt ) of doubly connected
domains cannot consist of conformally equivalent domains.

Y. Komatu, 1943; G. M. Goluzin, 1950
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Evolution families in the Komatu – Goluzin case
EF1. ϕs,s = idDs ; EF2. ϕs,t = ϕu,t ◦ ϕs,u whenever t > u > s > 0;
EF3. ϕs,t (Ds) is Dt minus a slit landing on |w | = etR0 and ϕs,t (1) = 1

whenever t > s > 0.
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Li En Pir, 1953; N. A. Lebedev, 1955

The function t 7→ rt is defined by a differential equation.
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Evolution families in the Li – Lebedev case
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V. Ja. Gutljanskiı̆, 1972
considered a generalization of the Komatu – Goluzin case, when
(what can be called) the Loewner chain (ft ) consists of mappings

ft : {z : 1 < |z| < R0et
}

into
−−−→ {w : |w | > 1}

with
∣∣∣ft (z)

∣∣∣ = 1 when |z| = 1 and ft (1) = 1

(but the other boundary component is not necessary a slit).
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We fix form the very beginning
d ∈ [1,+∞] — the order.

Notation
I Ar := {z : r < |z| < 1}, r ∈ [0,1),
I ACd(X ,Y) :=

{
f : X → Y

∣∣∣ f is locally absolutely continuous,

f ′ ∈ Ld
loc(X ,Y)

}
.

Definition (canonical domains (Dt))
(Dt )t>0 = (Ar(t))t>0 is a canonical domain system of order d, if
(i) 0 6 r(t) < 1 for any t > 0; (ii) t 7→ r(t) is non-increasing;

(iii) ω(t) :=

{
−π/ log r(t), if r(t) ∈ (0,1),
0, if r(t) = 0. is of class ACd .
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Definition (Evolution family)
Let (Dt ) be a canonical domain system of order d. A family (ϕs,t ),
0 6 s 6 t , of holomorphic mappings ϕs,t : Ds → Dt is said to be an
evolution family of order d over (Dt ), if
EF1. ϕs,s = idDs ; EF2. ϕs,t = ϕu,t ◦ ϕs,u whenever t > u > s > 0;

EF3
(
For all I := [S ,T ] ⊂ [0,+∞), z ∈ DS

)
∃ kz,I ∈ Ld

(
I,R

)
s. t.

|ϕs,u(z) − ϕs,t (z)| ≤

∫ t

u
kz,I(ξ)dξ, S ≤ s ≤ u ≤ t ≤ T . (10)

Theorem (M.D. Contreras, S. Díaz-Madrigal, P.G.)
Under EF1 and EF2,

EF3 ⇔ ∃z0 ∈ D0

(
t 7→ ϕ0,t (z0)

)
∈ ACd

(
[0,+∞),C

)
.
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Definition (Loewner chain)
Let (Dt ) be a canonical domain system of order d.
A family (ft )t>0 of holomorphic functions ft : Dt → C is called a
Loewner chain of order d over (Dt ) if:
LC1. each function ft : Dt → C is univalent;
LC2. fs(Ds) ⊂ ft (Dt ) whenever t > s > 0;

LC3. (for any I := [S ,T ] ⊂ [0,+∞), K b DS ) ∃ kK ,I ∈ Ld
(
I,R

)
s.t.

|fs(z) − ft (z)| ≤

∫ t

s
kK ,I(ξ)dξ, z ∈ K , S ≤ s ≤ t ≤ T . (11)
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Similar to simply connected case there exists essentially 1-to-1
correspondence between evolution families and Loewner chains.
We fix now some d ∈ [1,+∞] and some canonical domain system
(Dt ) = (Ar(t)) of order d.

Theorem (M.D. Contreras, S. Díaz-Madrigal, P.G.)
If (ft ) is a Loewner chain of order d over (Dt ), then

ϕs,t := f−1
t ◦ fs , t > s > 0, (12)

is an evolution family of order d over (Dt ).

Definition
If (12) holds we will say

that (ft ) and (ϕs,t ) are associated with each other.
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I general,
there are infinitely many (ft )’s associated with a given (ϕs,t ).

To choose one of them we introduce:

Definition (standard Loewner chain)
A Loewner chain (ft ) over (Dt ) is called standard if:
(i) for any t > 0 and closed curve γ ⊂ Dt , ind(ft ◦ γ,0) = ind(γ,0) ;
(ii) the union of images

Ω :=
⋃

t∈[0,+∞)

ft (Dt )

is either Ar for some r ∈ (0,1), or D∗, or C \D, or C∗ := C \ {0}.
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Theorem (M.D. Contreras, S. Díaz-Madrigal, P.G.)
Up to rotation, for each evolution family (ϕs,t ) of order d over (Dt )
there exists a unique standard Loewner chain (ft ) of order d over (Dt )
associated with (ϕs,t ).
The set of all Loewner chains of order d associated with (ϕs,t ) is
given by the formula

gt = F ◦ ft , t > 0, (13)

where F : Ω→ C is a univalent function.

Ω :=
⋃

t∈[0,+∞)

ft (Dt ).
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I Fix d ∈ [1,+∞] and a canonical domain system (Dt ) = (Ar(t)) of
order d;

I Denote D :=
{
(z, t) : t > 0, z ∈ Dt

}
⊂ C × [0,+∞).

Definition
A function G : D→ C is a weak holomorphic vector field of order d if:
VF1. G(z, t) is holomorphic in z;
VF2. G(z, t) is measurable in t ;
VF3. (For any K b D) ∃ kK ∈ Ld(prR K ,R ∪ {+∞}), prR(z, t) := t ,

such that ∣∣∣G(z, t)
∣∣∣ 6 kK (t), (z, t) ∈ K . (14)

Semicomplete = every solution to ẇ = G(w, t) is unrestrictedly
extendable to the future.
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Theorem (M.D. Contreras, S. Díaz-Madrigal, P.G.)
I Let (ϕs,t ) be an evolution family of order d over (Dt ). Then there

exists an (essentially unique) semicomplete weak holomorphic
vector field G : D→ C of order d s.t. for any s > 0, z ∈ Ds , the
function w(t) := ϕs,t (z) solves the equation

ẇ = G(w, t). (15)

I Let G : D→ C be a semicomplete weak holomorphic vector field
of order d. Then for any s > 0, z ∈ Ds , there exists a unique
solution w(t) = wz,s(t), t > s, to the initial value problem

ẇ = G(w, t), w(s) = z. (16)

The formula ϕs,t (z) := wz,s(t) (17)

defines an evolution family of order d over (Dt ).
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Assume from now
Dt := Ar(t), where r(t) > 0 for all t ∈ [0,+∞).

The Villat kernel, r ∈ (0,1),

Kr (z) :=
1 + z
1 − z

+

+∞∑
ν=1

(
1 + r2νz
1 − r2νz

−
1 + r2ν/z
1 − r2ν/z

)
(18)

Notation
V(r) is the class of holomorphic functions p : Ar → C represented by

p(z) =

∫
T
Kr (z

ξ)dµ1(ξ) +

∫
T

[
1 −Kr ( rξ

z )
]
dµ2(ξ), T := {z : |z| = 1},

(19)
where µ1, µ2 > 0 are Borel measures on T, µ1(T) + µ2(T) = 1.
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Recall:
I We assumed Dt := Ar(t), where r(t) > 0 for all t ∈ [0,+∞).

I D :=
{
(z, t) : t > 0, z ∈ Dt

}
⊂ C × [0,+∞).

Theorem (M.D. Contreras, S. Díaz-Madrigal, P.G.)
A function G : D→ C is a semicomplete weak holomorphic vector
field of order d if and only if it has representation

G(w, t) = w
[
iC(t) +

r ′(t)

r(t)
p(w, t)

]
a.e. t > 0, all w ∈ Dt , (20)

where (i) for each t > 0, p(· , t) ∈ V
(
r(t)

)
;

(ii) p is measurable as a function of t ;
(iii) C ∈ Ld

loc

(
[0,+∞),R

)
.
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For a standard Loewner chain (ft), denote

I Ω :=
⋃

t∈[0,+∞)

ft (Dt ), r∞ := lim
t→+∞

r(t),

I ϕs,t := f−1
t ◦ fs : Ds → Dt , t > s > 0,

I ϕ̃s,t (z) :=
r(t)

ϕs,t
(
r(s)/z

) , t > s > 0, z ∈ Ds , — conjugate of (ϕs,t ).

Theorem (M.D. Contreras, S. Díaz-Madrigal, P.G.)
In the above notation:

Ω = Ar , r ∈ (0,1) ⇔ r∞ > 0 ⇔ ϕ0,t 6→ 0 and ϕ̃0,t 6→ 0
Ω = D∗ ⇔ ϕ0,t 6→ 0 and ϕ̃0,t → 0
Ω = C \D ⇔ ϕ0,t → 0 and ϕ̃0,t 6→ 0
Ω = C∗ ⇔ ϕ0,t → 0 and ϕ̃0,t → 0
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Last words ...
I Similar characterization is established in terms of the

corresponding weak holomorphic vector field G.
I The results presented in the talk are contained in the preprints:

I M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk,
Loewner Theory in annulus I: evolution families and differential
equations. arXiv:1011.4253

I M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk,
Loewner Theory in annulus II: Loewner chains. arXiv:1105.3187

THANK YOU!!!
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