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Classical Loewner Theory TR eren

The starting point of Loewner Theory is the seminal paper by
e |

Czech—-German mathematician

Karel Lowner (1893 —1968) known also as
Charles Loewner

Untersuchungen lber schlichte konforme
Abbildungen des Einheitskreises,
Math. Ann. 89 (1923), 103—121.

In this paper Loewner introduced a new method to study the famous
Bieberbach Conjecture concerning the so-called class S.
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Bieberbach’s Conjecture TOR VERGATA

Ludwig Bieberbach, 1916: analytic properties of conformal mappings
f-DM, ¢, D:i={z:|z]<1}, f(0)=0, F(0)=1.

Class S
By S we denote the class of all holomorphic univalent functions

—+oo
f(z):z+Zanz”, zeD. (1)
n=2

the famous Bieberbach Conjecture (1916)
VfeS Y¥n=2,3,... lanl < n 2)

Bieberbach (1916): n = 2; Loewner (1923): n=3; ...
de Branges (1984): all n > 2 — using Loewner’s method
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Elementary properties of class S. TOR VERGATA

— there is no natural linear structure in the class S;

— theclass S is not even a convex set in Hol(ID, C);

+ theclass S is compact w.r.t. local uniform convergence in D;
+ Unip(D,D) :=
{(p € Hol(ID, D) : ¢ is univalent and ¢(0) =0, ¢’(0) > 0}

is a topological semigroup w.r.t. the composition operation
(p, ) — 1 o @ and the topology of locally uniform convergence.
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Loewner’s construction 1 TOR VERGATA

Loewner considered the dense subclass S’ ¢ S of all slit mappings,
S = {f € S: f(D) =C\T,whereT is Figure 1
a Jordan arc extending to oo}.

Loewner’s construction 2
» Consider fe 8" and let T :=C\ f(DD). I

» Choose a parametrization y : [0, +o0] — T, y(+c0) = co.
> Consider the domains Q; := C \ y([t, +]), t > 0.
» By Riem. Mapping Th’m Vt > 0 3! conformal mapping

A ()
f: D% Q, £(0)=0, f(0)> 0. /
|
]
» Note that | fo =f|.
y
» Reparameterizing I: ¥t >0 |f/(0) =e'|. 7(0)

y v
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Loewner’s construction 2 TOR VERGATA

Loewner’s Theorem
»  The family (f;) is of class C' w.r.t. t (even if I' is NOT smooth!)
»  Moreover, 1! continuous function & : [0, +00) —» T :=JD

(the Loewner PDE) oh(z) = zf;(z)ﬂ
1-¢&(t)z

, zeD, t>0.
ot
» The following IVP (for the classical Loewner ODE)

)1 + &(t) w(t)

dt 1— &) w(t)

dw(t)

— — —w(t

¥s>0VzeD has aunique solution w = w,s : [S, +c0) — D.

» Foralls >0, fs(z) = “T etw,s(t).

t—

3)

(4)

(%)

y
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Loewner’s construction 3 TOR VERGATA

As a corollary

Every f € S’ is generated by some (uniquely defined)
continuous function & : [0, +00) — T.

Namely f(z) = tIiT etw,o(t), (6)
where w = w; is the solution to the IVP
=
W) _ iy EOWD o w0y =2 )
el 1—&(t)w(t)

Answer (the converse Loewner Theorem)

Yes: for any continuous ¢ : [0, +c0) —» T
relations (6) (7) define a function f € S.
But: f € §’? — NOT necessarily! [Kufarev 1947]
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Loewner’s construction 4 TOR VERGATA

Conclusion
A dense subclass of S is represented by a linear space:

C([O,+oo),]R) Su b &) =ellt) W f e 05

equations

Remark
For any simply connected domain 0 € B ¢ C,
a dense subclass (L{g > Uy of

Ug = {f € Hol(ID, B) : fis univalentin D, f(0) =0, f(0) > 1}

can be represented in a similar way.

def

fely f e Up, f(D) = B\ [aslit].

Classical Loewner Theory
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Loewner’s construction 5 TOR VERGATA
Representation of U
A dense subclass leg C Ug is represented by the formula
f(2) = F(wzo(T)) (8)
where:
»  F:D 2", B conformally with F(0) = 0, F’(0) > 0;
> T:=log (F'(0)/f(0));
» W is the solution to
1+ &(t) w(t
MO _ iy OV 01, wo) =2 (9)
at 1-&(t)w(t)
and & : [0, T] — T is continuous.
Classical Loewner Theory 10/41



Chordal Loewner Equation 1 TOR VERGATA

Previously we considered the conformal mappings

normalized at the internal point z = 0.
For applications it is important to consider also
normalization at a boundary point.

[H:={C:Im( >0}

P. P. Kufarev, V. V. Sobolev, and L. V. Sporysheva, 1968,
considered the following class

R = {f € Hol(H,H) : fis univalentin H, and satisfies (10)}.

Hydrodynamic normalization: lim {f(z) - z} =0. (10)

H>z—o

If H \ f(IH) is bounded, then f extends meromorphically to O(co) and
the hydrodynamic normalization is equivalent to

f(z)=z-C6(f)/z+co/2? +C3/2° +... (11)
Note that {(f) > 0, with £{(f) =0 < f=idn.
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Chordal Loewner Equation 2 TOR VERGATA

7a 0=~ 4 o(170) (12)
- fi asH>C—>
W(T) H\)([t, 1)
~ ’ )=l f(f)c— ot
+0(1/0) (13)
H as H > C — oo.
’ €(f) =2(T - 1), T:=()/2]
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Chordal Loewner equation 3 TOR VERGATA

The analogue of
classical Loewner ODE — aka radial Loewner equation
aw(t) 1+ E(Hw(t)

T = —W(t)m, W(O) =ZE D,

in the case of the class R considered by Kufarev et al is

Kufarev’s ODE — aka chordal Loewner equation
aw(t) 2 B
a ~ an-wp WO=CeH

where A : [0, T] — R is a continuous function.
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General form of radial Loewner equation 1 :5xiticun

Pavel Parfen’evich Kufarev Christian Pommerenke
Tomsk (1909 —1968) (Copenhagen, 17 December 1933)
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General form of radial Loewner equation 2 ;- itcxn

The radial Loewner equation can be thought as a special case of a
more general equation. J

dw(t) _ _win)| +E(Dw(t)
&l 1 E(t)w(t)
p(w(1),1)

Note that:

CHF1. p(,,t) € HoI(]D,C) and Rep(-,t) > 0fora.e.t > 0;
CHF2. p(0,t) =1 fora.e.t > 0;

CHF3. p(z,-) is measurable on [0, +) for all z € D.

Definition
A function p : ID X [0, +o0) — C is said to be
a classical Herglotz function if it satisfies CHF1 —-CHF3.
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General form of radial Loewner equation 3 :5xitcnn

Loewner—Kufarev equation
dw(t)
Cdt
where p is a classical Herglotz function, i.e.

= —Wp(W(l’), t), t>0, w(0) = zeD, (14)

CHF1. p(,,t) € HoI(]D,C) and Rep(:,t) >0fora.e. t>0;
CHF2. p(0,t) =1 fora.e. t > 0;
CHF3. p(z,-) is measurable on [0, o) for all z € D.

S = {f € Hol(ID,C) : fis univalent, f(0)=f'(0)—-1= O}.
Generates the whole class S

f(z) = lim_ e'w,o(t), zeD. (15)
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Applications to univalent functions TORVERGATA

Here we mention some important applications of the classical
Loewner Theory to the problems for univalent functions.

The class S:
+o0
f: ID — C univalent holomorphic normalized by f(z) = z + Z anz".
n=2

This class is compact, so for any continuous map
J:S§—->R (16)
there exists Jmax := maxycs J(f).
Extremal Problem:

is the problem to find Jmax and all the
functions f. € S such that J(f.) = Jmax (extremal functions).

Coefficient functionals: J(f) := J(a, ..., an).
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Coefficient functionals o
J(f) :=J(ay,...,an), f(z) = t IiT elw,(t) J

dw(t) Wit 1+ &(t)w(t)
o 1 - Ew()’
where u : [0, +o0) — R is continuous
except for a finite number of jump discontinuities.

+o0 00
e'w = e'w,o(t)= e'z + Z an()z" = f(z2)=z+ Z an(+00)2",
n=2 n=2

&(t):=eYM, w(0)=zeD, (17)

System of ODE for a;’s

(d/dt)as(t) = -—2eteiuld), a»(0)
(d/dt)as(t) = -2etell® (et + 2a,(1)), a3(0)

4

0
0,

Some interesting results and applications 18/41



Examples of Extremal Problems TORVERGATA
=¥ [as| <3 (Loewner, 1923);
5 |ap| < n, forall n> 2, — the Bieberbach Conjecture

(< Milin’s Conjecture proved by de Branges, 1984);
fl
5 |f(20)l, If'(20)l, 2of"(20) (zo € D\ {0} arbitrary);

f(20)
f
I arg @, arg f'(zp), arg
0

20f'(z0) o 25t (20)
f(zo) ° [f(2)]?
(Rotation Theorem) 4 arcsin |zo|, if |zo] < 1/ V2,

|arg f’(zo)' <

(Goluzin, 1936);

it 1/ V2 < |zo| < 1.

|0l
T+ Iog 2P
15 coefficients of the inverse map |

T(w)=w+ Z baw" (Loewner, 1923).
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"o"-condition for univalence TOR VERGATA

Theorem (Pommerenke)
Let f € Hol(ID, C), f(0) = f/(0) -1 = 0.
ThenfeS iff there exists (f;)io C Hol(ID,C) with fy = f s.t.:
- 3Ky > 0s.t [fi(2)| < Koel forall t > 0, all |2] < ¢;
> (z,t) - fi(z2) is locally absolutely continuous solution in
D X [0, 4+0) to the Loewner—Kufarev PDE

J
% = zf{(2)p(z, 1),

where p : D X [0, +o0) — C is a classical Herglotz function.

CHF1. p(,,t) € HoI(]D,C) and Rep(-,t) >0fora.e.t > 0;
CHF2. p(0,t) =1 fora.e. t > 0;
CHF3. p(z,-) is measurable on [0, o) for all z € D.

Some interesting results and applications 20/41
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More applications TOR VERGATA

1 sufficient conditions for univalence
i sufficient conditions for quasiconformal extendability

Applications aside Complex Analysis:
1> Stochastic Loewner Equation (SLE)
dw(t
Schramm, 2000: d O (18)
dt VEB; — w(t)

where « > 0, and (5;) is a (standard 1-dimensional) Brownian motion.

I Very IMPORTANT applications in Statistical Physics;
! FIELDS MEDALS: W. Werner (2006), S. Smirnov (2010);
® "stochastic" =(usually)= "more complicated"
® in a certain sense, the equation is still deterministic
¢, Why is there a minus?
The whole story here is about random planar curves.
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Growing slit (chordal case) 1 TOR VERGATA

A version of the Kufarev—Sporysheva — Sobolev Theorem

Let:
- [ be a Jordan arc s.t. one of the end-points a € R,
the otheris b =0, and M\ {a,b} c H := {C: ImC > 0};
> y:[0,+o0] — I a parametrization of I
with y(0) = a and y(+o0) = b = oo;
= foreacht >0, g; is the conformal mapping
of Hr :=H\ y([O, t]) onto H with the
hydrodynamic normalization g;(C) — C — 0 as { — oo.
- Under a suitable parametrization y of the Jordan arc ',
2t Co

gr(C)=C+E+C—2+... (C = o).

(19)

4

Some interesting results and applications
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Growing slit (chordal case) 2 TORVERGATA
Hi == H\ ([0, 1]) H
Ot
Wi T ——
7(0)
77 g ’
Theorem
There exists a continuous function A : [0, +0) — R s.t.
dgs(C) 2
= , S > 0, = Lo 20

For each t > 0 the set H; := H \ (][0, t]) coincides with
the set of all C € H for which the solution to (20)
exists on [0,t + ¢) for some ¢ >

0.

Some interesting results and applications
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GrOWing slit (Chordal Case) 3 TOR VERGATA

The converse theorem
Let A : [0, +c0) — R continuous. Then the initial value problem

ds —  A(s)-gs(Q)’

defines a family of holomorphic functions

90s(5) 2 s30, Q=0  (20)

P )
g:(0) =C+ C +C2

each mapping its domain H; conformally onto H.

+... (C— ),

Remark
Unfortunately, H \ H; is NOT always a Jordan curve.

Some interesting results and applications
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Random planar curves (SLE) 1 TOR VERGATA

Assumption
For simplicity, we will consider the case 0 < k < 4. }

Recall that by definition of a stochastic process

B:(Q,F,P)x [0,+00) — R; (w,1) - Bi(w).

Consider A(t) := VkBi(w), where w € Q is fixed. Then:

i A\ is almost surely continuous (by def. of the Brownian motion);
== moreover, the sets H \ H; are almost surely Jordan arcs;

= Hence one gets a random Jordan arc in H

[=(w):= UlH\Ht
t>0
joininga =By =0and b = co.

Some interesting results and applications 25/41
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Random planar curves (SLE) 2 TOR VERGATA

O. Schramm, 2000

If a random planar curve I satisfies

= conformal invariance, and
= the domain Markov property,
then it must be (chordal) SLE, i.e.

y

there exists x > 0 s.t. I is the set of all C € H for which the solution to

aw(t) B 2 B
R A

explodes at a finite time fp(C) < +oo.

Some interesting results and applications 26/41
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Conditions for slit dynamics 1 TOR VERGATA

i P.P. Kufarev, 1946: if £ : [0, T] — T is differentiable and &’ is
bounded, then

dw(t) Wit 1 —i—cf(t)w(t),

at - - Enw(t)
generates conformal maps of ID onto ID minus a C'-slit I LJD.

e
\_/

i P.P. Kufarev, 1947: example of non-slit maps generated by (21):
3
) =(et+iVi-e), &()>wast—+0. (22

Oecean (S
\_/

Some interesting results and applications 27/41
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Conditions for slit dynamics 2 TOR VERGATA

Universita’ di Roma

iz C. Earle and A. Epstein, 2001:

=> if (21) generates a C"-slit I', n > 2, then & must be of class C"'.
=> if [ is real-analytic, then & must be real-analytic.
D. Marshall and S. Rohde, 2005:

=+ if I'is a quasislit, then & must be of class Lip(3);
= dCp>0s.t.if ”‘gllup(l) < Cp, then (21) generates a quasislit.
2

the above results by Marshal and Rohde extend to the case of
the chordal Loewner equation
dw(t) 2
& = T —wny WO=te (23)
J.Lind, 2005: the best constant Cy; = 4.
D. Prokhorov and A. Vasil’ev, 2009: Cp = Cy.

Many others ...

Some interesting results and applications 28/41



Topics to mention TOR VERGATA

Universita’ di Roma

Modern Loewner Theory turns out to be related to many topics, e.g. ]

=

Hele-Shaw 2D hydrodynamical problem
P.P. Kufarev, Yu.P. Vinogradov, 1948;

DLA (diffusion limited aggregation)
L. Carleson, N. Makarov, 2001;

Integrable Systems
D. Prokhorov, A. Vasil’ev, 2006;

Contour dynamics and image recognition.. ..

Some interesting results and applications 29/41
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Semigroup approach 1 TOR VERGATA

Loewner—Kufarev ODE

C(’j_‘?’ — —w(t)p(w(t),) t>0, w(0)=zeD, (x)

where p : D x [0,+o0) — C is a classical Herglotz function:

CHF1. p(,,t) e HoI(]D, C) and Rep(,t) >0fora.e. t>0;
CHF2. p(0,t) =1 fora.e. t > 0;
CHF3. p(z,-) is measurable on [0, +) for all z € D.

Unig(ID, D) = {¢ € Hol(ID, D) : ¢ is univalent and (0) = 0, ¢’(0) > 0}
Theorem

¢ € Unip(ID, D) if and only if ¢(2) = w,o( — log ¢(0)), where
W = W, is the solution to (*) with some classical Herglotz function p.

New approach 30/41
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Semigroup approach 2 TOR VERGATA

Other semigroups of conformal mappings have similar description. )

For example:
15 Unie(H, H) = {¢ € Hol(H, H) : ¢ is univalent
and oo is its DW-point (& ¢°" — c0oas n — —|—oo)}
dw(t)/dt = ip(w(t), t), (24)
where p(-, t) € Hol(H,C) and Rep > 0.

i the general version of the chordal Loewner ODE
(chordal "Loewner —Kufarev") represents
a subsemigroup Unipygro(H, H) € Unie (H, H).

iz V.V.Goryainov, 1986, '89, '91, '93, '96, 98, 2000

New approach 31/41



Universita’ di Roma

Semigroup approach 3 TOR VERGATA

What'’s about the whole semigroup

Uni(D, D) := {(p € Hol(ID,D) : ¢ is univalent}?

Possible way of representation: — not intrinsic

Write ¢ € Uni(ID, D) as ¢ = £ o @y,
where ¢ € Aut(ID), ¢o € Unip(ID, D).

Intrinsic way to represent Uni(ID, D) comes from a new approach in
Loewner Theory by F. Bracci, M. D. Contreras and S. Diaz-Madrigal:

N Journal fiir die reine und angewandte Mathematik
(Crelle’s Journal), issue 672 (Nov 2012), 1-37

N Mathematische Annalen, 344 (2009), 947 — 962
(generalization to complex manifolds)
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1-parameter semigroups in D, 1 TOR VERGATA

Definition
A one-parameter semigroup in D is a continuous semigroup
homomorphism [0, +o0) > t - ¢; € Hol(ID, D).
In other words, a family (¢;) c Hol(ID, D)
is a one-parameter semigroup if:

S1. qbo = id]D;

S2. ¢t o s = Ps o Pt = Prys;
S3. ¢i(z) > zast— +0forany ze D.

Example
Let G € Hol(ID, C). Suppose that for any z € D the IVP
dw(t)/dt = G(w(1)), w(0) =z, (25)
has a unique solution w = w;(t) defined for all t > 0.
Then the functions ¢:(z) := w;(t) form a one-parameter semigroup.
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1-paramete|’ SemlgrOUpS |n D, 2 TOR VERGATA

Theorem

Any one-parameter semigroup (¢;) comes from solution to (25).
In particular, functions ¢; are univalent.
The vector field G is uniquely defined by the formula

G(z) = Jim &2_2 zeD. (26)

The function G is called the (infinitesimal) generator of (¢;).
A naive analogy with Lie groups would suggest that:

NOT true

For every ¢ € Uni(ID, D)
is contained in some one-parameter semigroup.
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Evolution families 1 o

Return to the classical Loewner—Kufarev ODE
dw/dt = —w(t)p(w(t),t), t>s>0, w(s)=zeD. (27)}

Let w = w; s(t) be the unique solution to the above IVP. Denote

| ps1(2) = Wy s(t).
Then (@s,t)s>t=0 € Hol(ID, D) and:
EF1. ¢ss =idp forany s > 0O;
EF2. if u e [s, t], then pst = @yt o pus;
EF3. stronger version of local absolute continuity for t — ¢@s t(2).

Definition (Bracci, Contreras and Diaz-Madrigal)

A family (¢st)i=s=0 € Hol(ID, D) satisfying EF1—EF3 is called
an evolution family.

New approach 35/41
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Evolution families 2 TOR VERGATA

i Evolution families generalize one-parameter semigroups:
if (¢¢) is one-parameter semigroup,
then (gs,t := ¢i—s) an evolution family.

1 Any ¢ € Uni(ID, D) (& ¢ € Hol(ID, D) and injective)
is contained in some evolution family.

i Each evolution family satisfies a certain ODE.

Again the classical Loewner—Kufarev ODE!!! J
dw(t
MO [ w(t) p(w(t) 1

G(-, t) — an infinitesimal generator

New approach 36/41
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Infinitesimal generators TOR VERGATA

Infinitesimal generator with G(0) = 0.
G(w) = -wp(w), Rep>0. (28)

Arbitrary generators (Berkson and Porta, 1978)
G(w) = (t - w)(1 —Tw)p(w), Rep>0, 7eD. (29)

Bracci, Contreras and Diaz-Madrigal suggested:

Equation for evolution families (generalized Loewner ODE)

dnggt) = G(w(t), t) = (z(t) = w(t))(1 - e(t)w(t)) p(w(t), 1) (30)

New approach 37/41
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HergIOtZ vector field TOR VERGATA

Definition (essentially from Carathéodory’s theory of ODES)

A function G : ID X [0, +0) is said to be
a weak holomorphic vector field, if:
WHVF1. G(-, t) is holomorphic in D for a.e. t > 0;
WHVF2. G(z,-) is measurable on [0, +c0) for all z € D;
WHVF3. given K € DD, there exists kk of class L _s.t.

SUP,ek |G(2,1)| < kk(1), ae.t>0. (31)

= local existence and uniqueness for dw/dt = G(w, t).

Definition (Bracci, Contreras and Diaz-Madrigal)

A weak holomorphic vector field G : ID x [0, +0) is said to be
a Herglotz vector field
if for a.e. t > 0, G(-, t) is an infinitesimal generator.

New approach 38/41



EF and Herglotz VF TOR VERGATA

Theorem (Bracci, Contreras and Diaz-Madrigal)

A family (¢st)i=ss0 € Hol(ID, D) is an evolution family iff there
exists a Herglotz vector field G s.t. forany s > 0 and any z € D
the function w = w;, s(t) := @s,1(2) solves the IVP

dw(t)/dt = G(w(t),t), t>s,  w(s)=z (32)

y

"General recipe": suppose we wish to obtain the representation
for a subsemigroup U c Uni(ID, D).
1 Consider all one-parameter semigroups (¢:) c U.
1> Characterize their infinitesimal generators — Gen(U).
i HVF(U) :={G: G(- 1) € Gen(U) ae. t > 0}.
1 Now equation (32) gives a 1-to-1 correspondence
between HVF(U) and evolution families (¢s:) c U.
1 NB: every ¢ € U is contained in some evolution family (¢s:) c U. )

New approach 39/41
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ExampleS TOR VERGATA

Previously known cases

Representations of previously studied subsemigroups are recovered:
Unig (D, D), Unie (H, H), Unipyero(IH, H),. . .in this way.

A new case (Bracci, Contreras, Diaz-Madrigal, Gumenyuk,
in preparation)
Representation of the semigroup consisting of all
injective ¢ € Hol(ID, ID) with a regular boundary fixed point at a = 1,
which means:
P(z) -1

Az1limo(z) =1, 3 finite £ lim ————.
z—>1¢() nite z—»1 z—1

New approach  40/41
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New approach
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