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The starting point of Loewner Theory is the seminal paper by

Czech – German mathematician

Karel Löwner (1893 – 1968) known also as
Charles Loewner

Untersuchungen über schlichte konforme
Abbildungen des Einheitskreises,
Math. Ann. 89 (1923), 103–121.

In this paper Loewner introduced a new method to study the famous
Bieberbach Conjecture concerning the so-called class S.

Classical Loewner Theory 3/41



Universita’ di Roma
TOR VERGATABieberbach’s Conjecture

Ludwig Bieberbach, 1916: analytic properties of conformal mappings

f : D
into
−−−→ C, D := {z : |z| < 1}, f(0) = 0, f ′(0) = 1.

Class S
By S we denote the class of all holomorphic univalent functions

f(z) = z +

+∞∑
n=2

anzn, z ∈ D. (1)

the famous Bieberbach Conjecture (1916)
|an | 6 n∀f ∈ S ∀n = 2,3, . . . (2)

Bieberbach (1916): n = 2; Loewner (1923): n = 3; . . .
de Branges (1984): all n > 2 — using Loewner’s method
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– there is no natural linear structure in the class S;

– the class S is not even a convex set in Hol(D,C);

+ the class S is compact w.r.t. local uniform convergence in D;

+ Uni0(D,D) :={
ϕ ∈ Hol(D,D) : ϕ is univalent and ϕ(0) = 0, ϕ′(0) > 0

}
is a topological semigroup w.r.t. the composition operation
(ϕ,ψ) 7→ ψ ◦ ϕ and the topology of locally uniform convergence.
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Loewner considered the dense subclass S′ ⊂ S of all slit mappings,

S′ :=
{
f ∈ S: f(D) = C \ Γ, where Γ is

a Jordan arc extending to ∞
}
.

Loewner’s construction 2
I Consider f ∈ S′ and let Γ := C \ f(D).

I Choose a parametrization γ : [0,+∞]→ Γ, γ(+∞) = ∞.

I Consider the domains Ωt := C \ γ
(
[t ,+∞]

)
, t > 0.

I By Riem. Mapping Th’m ∀t > 0 ∃! conformal mapping

ft : D
onto
−−−→ Ωt , ft (0) = 0, f ′t (0) > 0.

I Note that f0 = f .

I Reparameterizing Γ: ∀ t > 0 f ′t (0) = et .

Figure 1
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Loewner’s Theorem
I The family (ft ) is of class C1 w.r.t. t (even if Γ is NOT smooth!)
I Moreover, ∃! continuous function ξ : [0,+∞)→ T := ∂D

∂ft (z)

∂t
= zf ′t (z)

1 + ξ(t) z

1 − ξ(t) z
, z ∈ D, t > 0.(the Loewner PDE) (3)

I The following IVP (for the classical Loewner ODE)

dw(t)

dt
= −w(t)

1 + ξ(t) w(t)

1 − ξ(t) w(t)

, t > s > 0, w(s) = z,

(4)

∀ s > 0 ∀ z ∈ D has a unique solution w = wz,s : [s,+∞)→ D.

I fs(z) = lim
t→+∞

etwz,s(t).For all s > 0, (5)
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As a corollary
Every f ∈ S′ is generated by some (uniquely defined)

continuous function ξ : [0,+∞)→ T.

f(z) = lim
t→+∞

etwz,0(t),Namely (6)

where w = wz,0 is the solution to the IVP

dw(t)

dt
= −w(t)

1 + ξ(t) w(t)

1 − ξ(t) w(t)
, t > 0, w(0) = z. (7)

Answer (the converse Loewner Theorem)
Yes: for any continuous ξ : [0,+∞)→ T

relations (6) (7) define a function f ∈ S.
But: f ∈ S′? — NOT necessarily! [Kufarev 1947]
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Conclusion
A dense subclass of S is represented by a linear space:

C
(
[0,+∞),R

)
3 u 7→ ξ(t) := e iu(t) Loewner

7−−−−−−−→
equations

f ∈ S0
⊃ S

′

Remark
For any simply connected domain 0 ∈ B ( C,

a dense subclass U0
B ⊃ U

′

B of

UB :=
{
f ∈ Hol(D,B) : f is univalent inD, f(0) = 0, f ′(0) > 1

}
can be represented in a similar way.

f ∈ U′B
def

⇐====⇒ f ∈ UB , f(D) = B \ [a slit].

Classical Loewner Theory 9/41



Universita’ di Roma
TOR VERGATALoewner’s construction 5

Representation ofUB

A dense subclassU0
B ⊂ UB is represented by the formula

f(z) = F
(
wz,0(T)

)
(8)

where:
I F : D

onto
−−−→ B conformally with F(0) = 0, F ′(0) > 0;

I T := log
(
F ′(0)/f ′(0)

)
;

I wz,0 is the solution to

dw(t)

dt
= −w(t)

1 + ξ(t) w(t)

1 − ξ(t) w(t)
, t ∈ [0,T ], w(0) = z, (9)

and ξ : [0,T ]→ T is continuous.
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Previously we considered the conformal mappings
normalized at the internal point z = 0.

For applications it is important to consider also
normalization at a boundary point.

H := {ζ : Im ζ > 0}

P. P. Kufarev, V. V. Sobolev, and L. V. Sporysheva, 1968,
considered the following class

R :=
{
f ∈ Hol(H,H) : f is univalent inH, and satisfies (10)

}
.

lim
H3z→∞

{
f(z) − z

}
= 0.Hydrodynamic normalization: (10)

IfH \ f(H) is bounded, then f extends meromorphically to O(∞) and
the hydrodynamic normalization is equivalent to

f(z) = z − `(f)/z + c2/z2 + c3/z3 + . . . (11)
Note that `(f) > 0, with `(f) = 0 ⇐⇒ f = idH.

Classical Loewner Theory 11/41



Universita’ di Roma
TOR VERGATAChordal Loewner Equation 2

f(ζ) = ζ −
`(f)

ζ
+ o(1/ζ) (12)

asH 3 ζ→∞;

ft (ζ) = ζ −
`(f) − 2t

ζ

+ o(1/ζ) (13)

asH 3 ζ→∞.

`(ft ) = 2(T − t), T := `(f)/2
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The analogue of

classical Loewner ODE — aka radial Loewner equation

dw(t)

dt
= −w(t)

1 + ξ(t)w(t)

1 − ξ(t)w(t)
, w(0) = z ∈ D,

in the case of the class R considered by Kufarev et al is

Kufarev’s ODE — aka chordal Loewner equation
dw(t)

dt
=

2
λ(t) − w(t)

, w(0) = ζ ∈H,

where λ : [0,T ]→ R is a continuous function.

Classical Loewner Theory 13/41



Universita’ di Roma
TOR VERGATAGeneral form of radial Loewner equation 1

Pavel Parfen’evich Kufarev
Tomsk (1909 – 1968)

Christian Pommerenke
(Copenhagen, 17 December 1933)
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The radial Loewner equation can be thought as a special case of a
more general equation.

dw(t)

dt
= −w(t)

1 + ξ(t)w(t)

1 − ξ(t)w(t)︸            ︷︷            ︸
p
(
w(t), t

)
Note that:
CHF1. p(·, t) ∈ Hol

(
D,C

)
and Re p(·, t) > 0 for a.e. t > 0;

CHF2. p(0, t) = 1 for a.e. t > 0;
CHF3. p(z, ·) is measurable on [0,+∞) for all z ∈ D.

Definition
A function p : D × [0,+∞)→ C is said to be

a classical Herglotz function if it satisfies CHF1 – CHF3.
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Loewner – Kufarev equation
dw(t)

dt
= −wp

(
w(t), t

)
, t > 0, w(0) = z ∈ D, (14)

where p is a classical Herglotz function, i.e.

CHF1. p(·, t) ∈ Hol
(
D,C

)
and Re p(·, t) > 0 for a.e. t > 0;

CHF2. p(0, t) = 1 for a.e. t > 0;
CHF3. p(z, ·) is measurable on [0,+∞) for all z ∈ D.

S :=
{
f ∈ Hol(D,C) : f is univalent, f(0) = f ′(0) − 1 = 0

}
.

Generates the whole class S

f(z) = lim
t→+∞

etwz,0(t), z ∈ D. (15)
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Here we mention some important applications of the classical
Loewner Theory to the problems for univalent functions.

The class S:

f : D→ C univalent holomorphic normalized by f(z) = z +

+∞∑
n=2

anzn.

This class is compact, so for any continuous map
J : S → R (16)

there exists Jmax := maxf∈S J(f).

Extremal Problem:
is the problem to find Jmax and all the

functions f∗ ∈ S such that J(f∗) = Jmax (extremal functions).

Coefficient functionals: J(f) := J(a2, . . . ,an).
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J(f) := J(a2, . . . ,an), f(z) = lim
t→+∞

etwz,0(t)

dw(t)

dt
= −w(t)

1 + ξ(t)w(t)

1 − ξ(t)w(t)
, ξ(t) := e iu(t), w(0) = z ∈ D, (17)

where u : [0,+∞)→ R is continuous
except for a finite number of jump discontinuities.

etw = etwz,0(t)= etz +

+∞∑
n=2

an(t)zn
⇒ f(z) = z +

+∞∑
n=2

an(+∞)zn,

System of ODE for aj ’s
(d/dt) a2(t) = −2e−te iu(t), a2(0) = 0,

(d/dt) a3(t) = −2e−te iu(t)
(
e−te iu(t) + 2a2(t)

)
, a3(0) = 0,

· · ·
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Z |a3| 6 3 (Loewner, 1923);
Z |an | 6 n, for all n > 2, — the Bieberbach Conjecture

(⇐ Milin’s Conjecture proved by de Branges, 1984);

Z |f(z0)|, |f ′(z0)|,
∣∣∣∣∣z0f ′(z0)

f(z0)

∣∣∣∣∣ (z0 ∈ D \ {0} arbitrary);

Z arg
f(z0)

z0
, arg f ′(z0), arg

z0f ′(z0)

f(z0)
, arg

z2
0 f ′(z0)

[f(z)]2
(Goluzin, 1936);

(Rotation Theorem)∣∣∣arg f ′(z0)
∣∣∣ 6


4 arcsin |z0|, if |z0| 6 1/

√
2,

π+ log
|z0|

1 − |z0|
2
, if 1/

√
2 6 |z0| < 1.

Z coefficients of the inverse map

f−1(w) = w +

+∞∑
n=2

bnwn (Loewner, 1923).
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Theorem (Pommerenke)
Let f ∈ Hol(D,C), f(0) = f ′(0) − 1 = 0.

Then f ∈ S iff there exists (ft )t>0 ⊂ Hol(D,C) with f0 = f s.t.:

: ∃K0 > 0 s.t. |ft (z)| 6 K0et for all t > 0, all |z| < ε;
: (z, t) 7→ ft (z) is locally absolutely continuous solution in
D × [0,+∞) to the Loewner – Kufarev PDE

∂ft (z)

∂t
= zf ′t (z)p(z, t),

where p : D × [0,+∞)→ C is a classical Herglotz function.

CHF1. p(·, t) ∈ Hol
(
D,C

)
and Re p(·, t) > 0 for a.e. t > 0;

CHF2. p(0, t) = 1 for a.e. t > 0;
CHF3. p(z, ·) is measurable on [0,+∞) for all z ∈ D.
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Z sufficient conditions for univalence
Z sufficient conditions for quasiconformal extendability
Applications aside Complex Analysis:

Z Stochastic Loewner Equation (SLE)
dw(t)

dt
= −

2
√
κBt − w(t)

,Schramm, 2000: (18)

where κ > 0, and (Bt ) is a (standard 1-dimensional) Brownian motion.

! Very IMPORTANT applications in Statistical Physics;
! FIELDS MEDALS: W. Werner (2006), S. Smirnov (2010);
/ "stochastic" =(usually)= "more complicated"
, in a certain sense, the equation is still deterministic
¿ Why is there a minus?
The whole story here is about random planar curves.
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A version of the Kufarev – Sporysheva – Sobolev Theorem
Let:
: Γ be a Jordan arc s.t. one of the end-points a ∈ R,

the other is b = ∞, and Γ \ {a,b} ⊂H := {ζ : Im ζ > 0};
: γ : [0,+∞]→ Γ a parametrization of Γ

with γ(0) = a and γ(+∞) = b = ∞;
: for each t > 0, gt is the conformal mapping

of Ht :=H \ γ
(
[0, t ]

)
ontoH with the

hydrodynamic normalization gt (ζ) − ζ→ 0 as ζ→∞.
: Under a suitable parametrization γ of the Jordan arc Γ,

gt (ζ) = ζ+
2t
ζ

+
c2

ζ2
+ . . . (ζ→∞). (19)
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Theorem
There exists a continuous function λ : [0,+∞)→ R s.t.

dgs(ζ)

ds
= −

2
λ(s) − gs(ζ)

, s > 0, g0(ζ) = ζ. (20)

For each t > 0 the set Ht :=H \ γ([0, t ]) coincides with
the set of all ζ ∈H for which the solution to (20)

exists on [0, t + ε) for some ε > 0.
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The converse theorem
Let λ : [0,+∞)→ R continuous. Then the initial value problem

dgs(ζ)

ds
= −

2
λ(s) − gs(ζ)

, s > 0, g0(ζ) = ζ. (20)

defines a family of holomorphic functions

gt (ζ) = ζ+
2t
ζ

+
c2

ζ2
+ . . . (ζ→∞),

each mapping its domain Ht conformally ontoH.

Remark
Unfortunately,H \ Ht is NOT always a Jordan curve.
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Assumption
For simplicity, we will consider the case 0 < κ < 4.

Recall that by definition of a stochastic process

B :
(
Ω,F ,P

)
× [0,+∞) −→ R; (ω, t) 7→ Bt (ω).

Consider λ(t) :=
√
κBt (ω), where ω ∈ Ω is fixed. Then:

Z λ is almost surely continuous (by def. of the Brownian motion);
Z moreover, the setsH \ Ht are almost surely Jordan arcs;
Z Hence one gets a random Jordan arc inH

Γ = Γ(ω) :=
⋃
t>0

H \ Ht

joining a = B0 = 0 and b = ∞.
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O. Schramm, 2000
If a random planar curve Γ satisfies
Z conformal invariance, and
Z the domain Markov property,
then it must be (chordal) SLE, i.e.

there exists κ > 0 s.t. Γ is the set of all ζ ∈H for which the solution to

dw(t)

dt
= −

2
√
κBt − w(t)

, w(0) = ζ,

explodes at a finite time t0(ζ) < +∞.

Some interesting results and applications 26/41



Universita’ di Roma
TOR VERGATAConditions for slit dynamics 1

Z P.P. Kufarev, 1946: if ξ : [0,T ]→ T is differentiable and ξ′ is
bounded, then

dw(t)

dt
= −w(t)

1 + ξ(t)w(t)

1 − ξ(t)w(t)
, w(0) = z ∈ D, (21)

generates conformal maps of D onto D minus a C1-slit Γ⊥∂D.

Z P.P. Kufarev, 1947: example of non-slit maps generated by (21):

ξ(t) :=
(
e−t + i

√

1 − e−2t
)3
, ξ′(t)→∞ as t → +0. (22)
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Z C. Earle and A. Epstein, 2001:
ú if (21) generates a Cn-slit Γ, n > 2, then ξ must be of class Cn−1.
ú if Γ is real-analytic, then ξ must be real-analytic.

Z D. Marshall and S. Rohde, 2005:

ú if Γ is a quasislit, then ξ must be of class Lip( 1
2 );

ú ∃ CD > 0 s.t. if ‖ξ‖
Lip( 1

2 )
< CD, then (21) generates a quasislit.

Z the above results by Marshal and Rohde extend to the case of
the chordal Loewner equation

dw(t)

dt
=

2
λ(t) − w(t)

, w(0) = ζ ∈H. (23)

Z J. Lind, 2005: the best constant CH = 4.
Z D. Prokhorov and A. Vasil’ev, 2009: CD = CH.
Z Many others . . .
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Modern Loewner Theory turns out to be related to many topics, e.g.

Z Hele-Shaw 2D hydrodynamical problem
P.P. Kufarev, Yu.P. Vinogradov, 1948;

Z DLA (diffusion limited aggregation)
L. Carleson, N. Makarov, 2001;

Z Integrable Systems
D. Prokhorov, A. Vasil’ev, 2006;

Z Contour dynamics and image recognition . . .
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Loewner – Kufarev ODE

dw
dt

= −w(t) p
(
w(t), t

)
, t > 0, w(0) = z ∈ D, (∗)

where p : D × [0,+∞)→ C is a classical Herglotz function:

CHF1. p(·, t) ∈ Hol
(
D,C

)
and Re p(·, t) > 0 for a.e. t > 0;

CHF2. p(0, t) = 1 for a.e. t > 0;
CHF3. p(z, ·) is measurable on [0,+∞) for all z ∈ D.

Uni0(D,D) =
{
ϕ ∈ Hol(D,D) : ϕ is univalent and ϕ(0) = 0, ϕ′(0) > 0

}
Theorem

ϕ ∈ Uni0(D,D) if and only if ϕ(z) = wz,0

(
− logϕ′(0)

)
, where

w = wz,0 is the solution to (∗) with some classical Herglotz function p.
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Other semigroups of conformal mappings have similar description.

For example:
Z Uni∞(H,H) =

{
ϕ ∈ Hol(H,H) : ϕ is univalent

and ∞ is its DW-point (⇔ ϕ◦n →∞ as n→ +∞)
}

dw(t)/dt = ip
(
w(t), t

)
, (24)

where p(·, t) ∈ Hol(H,C) and Re p > 0.

Z the general version of the chordal Loewner ODE
(chordal "Loewner – Kufarev") represents

a subsemigroup Unihydro(H,H) ⊂ Uni∞(H,H).

Z V.V. Goryainov, 1986, ’89, ’91, ’93, ’96, ’98, 2000
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What’s about the whole semigroup

Uni(D,D) :=
{
ϕ ∈ Hol(D,D) : ϕ is univalent

}
?

Possible way of representation: — not intrinsic
Write ϕ ∈ Uni(D,D) as ϕ = ` ◦ ϕ0,

where ` ∈ Aut(D), ϕ0 ∈ Uni0(D,D).

Intrinsic way to represent Uni(D,D) comes from a new approach in
Loewner Theory by F. Bracci, M. D. Contreras and S. Díaz-Madrigal:
. Journal für die reine und angewandte Mathematik

(Crelle’s Journal), issue 672 (Nov 2012), 1 – 37
. Mathematische Annalen, 344 (2009), 947 – 962

(generalization to complex manifolds)

New approach 32/41



Universita’ di Roma
TOR VERGATA1-parameter semigroups in D, 1

Definition
A one-parameter semigroup in D is a continuous semigroup
homomorphism [0,+∞) 3 t 7→ φt ∈ Hol(D,D).
In other words, a family (φt ) ⊂ Hol(D,D)

is a one-parameter semigroup if:

S1. φ0 = idD;
S2. φt ◦ φs = φs ◦ φt = φt+s ;
S3. φt (z)→ z as t → +0 for any z ∈ D.

Example
Let G ∈ Hol(D,C). Suppose that for any z ∈ D the IVP

dw(t)/dt = G
(
w(t)

)
, w(0) = z, (25)

has a unique solution w = wz(t) defined for all t > 0.
Then the functions φt (z) := wz(t) form a one-parameter semigroup.
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Theorem
Any one-parameter semigroup (φt ) comes from solution to (25).
In particular, functions φt are univalent.
The vector field G is uniquely defined by the formula

G(z) = lim
t→+0

φt (z) − z
t

, z ∈ D. (26)

The function G is called the (infinitesimal) generator of (φt ).

A naive analogy with Lie groups would suggest that:

NOT true
For every φ ∈ Uni(D,D)

is contained in some one-parameter semigroup.
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Return to the classical Loewner – Kufarev ODE

dw/dt = −w(t) p
(
w(t), t

)
, t > s > 0, w(s) = z ∈ D. (27)

Let w = wz,s(t) be the unique solution to the above IVP. Denote

ϕs,t (z) := wz,s(t).

Then (ϕs,t )s>t>0 ⊂ Hol(D,D) and:
EF1. ϕs,s = idD for any s > 0;
EF2. if u ∈ [s, t ], then ϕs,t = ϕu,t ◦ ϕu,s ;
EF3.

ϕs,t (0) = 0 and ϕ′s,t (0) = es−t .

stronger version of local absolute continuity for t 7→ ϕs,t (z).

Definition (Bracci, Contreras and Díaz-Madrigal)
A family (ϕs,t )t>s>0 ⊂ Hol(D,D) satisfying EF1 – EF3 is called

an evolution family.
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Z Evolution families generalize one-parameter semigroups:
if (φt ) is one-parameter semigroup,

then (ϕs,t := φt−s) an evolution family.

Z Any φ ∈ Uni(D,D) (⇔ φ ∈ Hol(D,D) and injective)
is contained in some evolution family.

Z Each evolution family satisfies a certain ODE.

Again the classical Loewner – Kufarev ODE!!!

dw(t)

dt
= −w(t) p

(
w(t), t

)
︸                ︷︷                ︸

G(·, t) — an infinitesimal generator
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Infinitesimal generator with G(0) = 0.
G(w) = −wp(w), Re p > 0. (28)

Arbitrary generators (Berkson and Porta, 1978)

G(w) = (τ − w)(1 − τw)p(w), Re p > 0, τ ∈ D. (29)

Bracci, Contreras and Díaz-Madrigal suggested:

Equation for evolution families (generalized Loewner ODE)
dw(t)

dt
= G

(
w(t), t

)
=

(
τ(t) − w(t)

)(
1 − τ(t)w(t)

)
p
(
w(t), t

)
(30)

New approach 37/41



Universita’ di Roma
TOR VERGATAHerglotz vector field

Definition (essentially from Carathéodory’s theory of ODEs)
A function G : D × [0,+∞) is said to be

a weak holomorphic vector field, if:

WHVF1. G(·, t) is holomorphic in D for a.e. t > 0;
WHVF2. G(z, ·) is measurable on [0,+∞) for all z ∈ D;
WHVF3. given K b D, there exists kK of class L1

loc s.t.

supz∈K

∣∣∣G(z, t)
∣∣∣ 6 kK (t), a.e. t > 0. (31)

⇒ local existence and uniqueness for dw/dt = G(w, t).

Definition (Bracci, Contreras and Díaz-Madrigal)
A weak holomorphic vector field G : D × [0,+∞) is said to be
a Herglotz vector field

if for a.e. t > 0, G(·, t) is an infinitesimal generator.
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Theorem (Bracci, Contreras and Díaz-Madrigal)
A family (ϕs,t )t>s>0 ⊂ Hol(D,D) is an evolution family iff there
exists a Herglotz vector field G s.t. for any s > 0 and any z ∈ D
the function w = wz,s(t) := ϕs,t (z) solves the IVP

dw(t)/dt = G
(
w(t), t

)
, t > s, w(s) = z. (32)

"General recipe": suppose we wish to obtain the representation

for a subsemigroup U ⊂ Uni(D,D).
Z Consider all one-parameter semigroups (φt ) ⊂ U.
Z Characterize their infinitesimal generators — Gen(U).

Z HVF(U) :=
{
G : G(·, t) ∈ Gen(U) a.e. t > 0

}
.

Z Now equation (32) gives a 1-to-1 correspondence
between HVF(U) and evolution families (ϕs,t ) ⊂ U.

Z NB: every φ ∈ U is contained in some evolution family (ϕs,t ) ⊂ U.
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Previously known cases
Representations of previously studied subsemigroups are recovered:
Uni0(D,D), Uni∞(H,H), Unihydro(H,H),. . . in this way.

A new case (Bracci, Contreras, Díaz-Madrigal, Gumenyuk,
in preparation)

Representation of the semigroup consisting of all
injective φ ∈ Hol(D,D) with a regular boundary fixed point at a = 1,
which means:

∃ ∠ lim
z→1

φ(z) = 1, ∃ finite ∠ lim
z→1

φ(z) − 1
z − 1

.
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