The 3rd International Conference on Applied Mathematics and Informatics

Dedicated to memory of Alexander Vasil'ev

Value regions of univalent self-maps with two boundary fixed points

Pavel Gumenyuk
(University of Stavanger, Norway)

San Andrés – COLOMBIA, 26/11 - 1/12/2017

Introduction

Consider a holomorphic self-map $\varphi : \mathbb{D} \to \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$

Definition

A point $\sigma \in \partial \mathbb{D}$ is called a *boundary regular fixed point* (BRFP) of φ if $\angle \lim_{z \to \sigma} \varphi(z)$ exists and equals σ , and if the *angular derivative* of φ at σ ,

$$\varphi'(\sigma) := \angle \lim_{z \to \sigma} \frac{\varphi(z) - \sigma}{z - \sigma} \quad \text{is finite}.$$

REMARK: for every BRFP σ , $\varphi'(\sigma) > 0$.

Denjoy – Wolff point

- If $\varphi \neq \mathrm{id}_{\mathbb{D}}$ has a (unique) fixed point $\tau \in \mathbb{D}$, then we call τ the $\operatorname{Denjoy}-\operatorname{Wolff}$ point (DW-point).
- If φ has no fixed point in $\mathbb D$, then by the Denjoy Wolff Theorem, $\exists !$ BRFP $\tau \in \partial \mathbb D$ with $\varphi'(\tau) \leqslant 1$, called the DW-point of φ .

Introduction 2

Dynamical meaning of the DW-point

If $\varphi \neq \operatorname{id}_{\mathbb{D}}$ and it is not an elliptic automorphism of \mathbb{D} , then τ is the attracting fixed point, i.e. $\varphi^{\circ n} := \varphi \circ \ldots \circ \varphi$ (n times) $\to \tau$ as $n \to +\infty$.

All BRFPs $\sigma \in \partial \mathbb{D} \setminus \{\tau\}$ are repelling, i.e. $\varphi'(\sigma) > 1$.

We mostly will consider **univalent** (= holomorphic + injective) $\varphi: \mathbb{D} \to \mathbb{D} \text{ with given BRFPs.}$

- → H. Unkelbach, 1938, 1940
- C.C. Cowen and Chr. Pommerenke, 1982
- Chr. Pommerenke and A. Vasil'ev, 2001, 2002
- ◆ A. Vasil'ev, 2002
- M.D. Contreras, S. Díaz-Madrigal, and A. Vasil'ev, 2007
- J.M. Anderson and A. Vasil'ev, 2008
- A. Frolova, M. Levenshtein, D. Shoikhet, and A. Vasil'ev, 2014
- ◆ V. Goryainov, 1991, 2015, 2017

Main results

Conf. map
$$\ell: \mathbb{D} \to \mathbb{S} := \{\zeta\colon -\pi/2 < \operatorname{Im} \zeta < \pi/2\}; \ z \mapsto \log \frac{1+z}{1-z}; \ \pm 1 \mapsto \pm \infty.$$

Joint work with Prof. Dmitri Prokhorov:

Theorem (to appear in Ann. Acad. Sci. Fenn. Math. 43 (2018))

Fix T > 0, $z_0 \in \mathbb{D}$. The value region $\mathcal{V}(z_0, T)$ of $\varphi \mapsto \varphi(z_0)$ over the class of all univalent self-maps $\varphi : \mathbb{D} \to \mathbb{D}$ having:

- (i) the DW-point $\tau = 1$ and (ii) a BRFP $\sigma = -1$ with $\varphi'(\sigma) = e^T$, is a closed Jordan domain with the boundary point z_0 excluded.
- ✓ More precisely, $\ell(\mathcal{V}(z_0, T) \cup \{z_0\}) =$

$$\left\{x+iy\in\mathbb{S}\colon y_T^1\leqslant y\leqslant y_T^2, \left|x-\frac{T}{2}-\operatorname{Re}\ell(z_0)\right|\leqslant F_T(y)
ight\},$$

where y_T^1 , y_T^2 , and $F_T(\cdot)$ are given explicitly.

✓ Furthermore, every boundary point $ω ∈ ∂V(z_0, T) \setminus \{z_0\}$ is delivered by a unique $φ = φ_ω$, which is a hyperbolic automorphism if $ω = ℓ^{-1}(ℓ(z_0) + T)$ and a parabolic one-slit map otherwise.

Main results 2

On the left: $z_0 := i/2$, $T \in \{\log 2, \log 4, \log 6\}$. On the right: $z_0 := 0$, $T := \log 6$, (and the value region without taking into account univalence).

Main results 3 — Methods

Corollary (Theorem 6 in [Frolova, Levenshtein, Shoikhet, Vasil'ev, 2014])

For any univalent self-map $\varphi : \mathbb{D} \to \mathbb{D}$ with BRFPs at ± 1 ,

$$\sqrt{\varphi'(-1)\varphi'(1)} \geqslant \Phi(\operatorname{Im} \ell(z_0), \operatorname{Im} \ell(\varphi(z_0))), \tag{1}$$

where $\Phi(\alpha, \beta) := \max\left\{\frac{1+\sin\alpha}{1+\sin\beta}, \frac{1-\sin\alpha}{1-\sin\beta}\right\}$. Estimate (1) is sharp.

Methods

- ✓ Cowen Pommerenke inequalities for univalent self-maps: Grunsky-type inequalities;
- ✓ A. Vasil'ev: (a specific form of the) Extremal Length Method;
- ✓ V. Goryanov: a Loewner-type Parametric Representation (for the case of $\tau=0$ and one BRFP).

Parametric Method

Loewner-type Parametric Representation

Embed φ into a family $\varphi_t : \mathbb{D} \to \mathbb{D}$, $t \in [0, 1]$, $\varphi_0 = \mathrm{id}_{\mathbb{D}}$, $\varphi_1 = \varphi$, s.t.

$$d\varphi_t(z)/dt = \left(\tau - \varphi_t(z)\right)\left(1 - \overline{\tau}\varphi_t(z)\right)p(\varphi_t(z), t), \tag{LK}$$

where $Re p \ge 0$ plus some other conditions.

PGum, 2017, 2018: Loewner-type Parametric Representation for φ 's with *any finite* number of BRFPs and any position of the DW-point.

This gives a new proof of a classical Cowen – Pommerenke inequality [joint work in progress with M.D. Contreras and S. Díaz-Madrigal]:

The value region of $\log \varphi'(0)$ over all univalent $\varphi : \mathbb{D} \to \mathbb{D}$, $\varphi(0) = 0$, with BRFPs $\sigma_j, \ldots, \sigma_n$ with prescribed values of $\varphi'(\sigma_j)$'s is described

by the inequality
$$\operatorname{Re}\left(-\frac{1}{\log \varphi'(0)}\right) \geqslant \frac{1}{2} \sum_{j=1}^{n} \frac{1}{\log \varphi'(\sigma_{j})}$$
. (CP)