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Notation and definitions

D := {z : ∣z∣ < 1}, T := ∂D, ℍ := {z : Im z > 0},

Hol(D1, D2) is the set of all holomorphic functions f : D1 → D2.

Definition 1. A family ('s,t)0≤s≤t<+∞ ⊂ Hol(D,D) is called

a (generalized) evolution family of order d ∈ [1,+∞] if:

EF1. 's,s = idD,

EF2. 's,t = 'u,t ∘ 's,u whenever 0 ≤ s ≤ u ≤ t < +∞,

EF3. for all z ∈ D and for all T > 0 there exists a non-negative function

kz,T ∈ Ld([0, T ],ℝ) such that

∣'s,u(z)− 's,t(z)∣ ≤
∫ t
u
kz,T (�)d� whenever 0 ≤ s ≤ u ≤ t ≤ T.
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Definition 2. A family (ft)0≤t<+∞ ⊂ Hol(D,ℂ) is called
a (generalized) Loewner chain of order d with d ∈ [1,+∞] if:

LC1. each function ft : D→ ℂ is univalent,

LC2. fs(D) ⊂ ft(D) whenever 0 ≤ s < t < +∞,
LC3. for any compact set K ⊂ D and all T > 0 there exists a non-negative

function kK,T ∈ Ld([0, T ],ℝ) such that

∣fs(z)− ft(z)∣ ≤
∫ t
s
kK,T (�)d�

for all z ∈ K and all s, t ∈ [0, T ], s ⩽ t.

Convention: for shortness we will omit attribute ”generalized ” for
these notions.

Theorem A. Every Loewner chain (ft) of order d generates an evolu-
tion family ('s,t) of the same order, defined by the formula

's,t = f−1
t ∘ fs, t ⩾ s ⩾ 0. (1)
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Furthermore, for each evolution family ('s,t) of order d, there exists a
Loewner chain (ft) of the same order s. t. (1) holds.

In situation of the above Theorem, we will say that

∙ ('s,t) is the evolution family of the Loewner chain (ft) and that

∙ the Loewner chain (ft) is associated with the evolution family ('s,t).

Remark 1. It has been proved by F. Bracci, M. D. Contreras and
S. D́ıaz-Madrigal that evolution families can be thought as solutions
to the generalized Loewner ODE of the form

dw

dt
= G(w, t), w∣t=s = z, (2)

where G(w, t) =
(
�(t)−w

)(
1− �(t)w

)
p(w, t) is a so-called (generalized)

Herglotz vector field in D. Associated Loewner chains (ft) satisfy, in
their turn, the generalized Loewner PDE

∂ft(z)

∂t
= −G(z, t)

∂ft(z)

∂z
. (3)
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A Loewner chain (ft) contains three pieces of information:

∙ Geometry: collection of domains D := {ft(D) : t ∈ [0,+∞)};

∙ Parameterization: an increasing mapping [0,+∞) → D; t 7→ Dt
such that ft(D) = Dt;

∙ Normalization by which the conformal mappings ft : D → Dt are

uniquely chosen.

General problem we discuss is to relate geometry of a Loewner chain

with the properties of the corresponding evolution family.
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We introduce following

Definition 3. Let D be a collection of simply connected domains in
the complex plane. Let us call D an inclusion chain if:

IC1. As an ordered set, D is isomorphic to [0,+∞), i.e. there is a
bijective mapping D : [0,+∞)→ D such that D(t1) ⊊ D(t2) when-
ever t1 < t2;

IC2. Each Ω ∈ D is a connected component of int(Ω+), where int(⋅)
stands for the interior of a set and Ω+ stands for the intersection
of all Ω′ ∈ D ∖ {Ω} which contains Ω;

IC3. Each Ω ∈ D coincides with the union Ω− of all Ω′ ∈ D ∖ {Ω} which
are contained in Ω, provided Ω is not the minimal element in D.

Remark 2. For any Loewner chain (ft) the collection of domains
D[(ft)] := {ft(D) : t ∈ [0,+∞)} is an inclusion chain.

We will call D[(ft)] it the inclusion chain of the Loewner chain (ft).
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Definition 4. Given a holomorphic self-mapping ' ∕= idD of the unit

disk, there exist a unique point � ∈ D s.t. '(�) = � and ∣'′(�)∣ ⩽ 1. This

point is called the Denjoy – Wolff point (DW-point) of the function '.

We will say that an evolution family ('s,t) has a common DW-point � ,

if it is a DW-point for each of the functions 's,t (excluding identity).

Problem 1. Describe the inclusion chains of all those Loewner chains

whose evolution families has a common DW-point on the unit circle,

say � = 1.

Answer for the case of the internal DW-point is: every inclusion chain

is the inclusion chain of some Loewner chain whose evolution fam-

ily ('s,t) satisfy 's,t(0) = 0, '′s,t(0) > 0.

P. P. Kufarev, 1943;

Ch. Pommerenke, 1965.
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”Slit-erasing” inclusion chains: every inclusion

chain obtained by erasing a slit in a simply con-

nected domain, is the inclusion chain of some

Loewner chain whose evolution family has a com-

mon DW-point on the boundary T := ∂D.

Extension of Loewner’s parametric method to univalent functions in

the half-plane with hydrodynamical normalization

I. A. Aleksandrov, V. V. Sobolev, 1970;

V. V. Sobolev, 1970;

O. Schramm, 2000.

Generalization of the chordal Loewner equation

V. V. Goryainov and I. Ba, 1992;

R. O. Bauer, 2005.
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Notation: P(D) is the Carathéodory boundary of a domain D, i. e.
the set of all prime ends of D;

Definition 5. Let G be a simply connected subdomain of D,  : D→ G

a conformal mapping, P ∈ P(G), and �0 :=  −1(P ). We will say that
G is embedded in D conformally at the prime end P if �0 is a regular
contact point of the function  ,i. e., the following conditions hold:

(i) ∃ ∠ lim
�→�0

 (�) := z0 ∈ T;

(ii) ∠ lim
�→�0

 ′(�) ∕=∞.

Definition 5 can be extended to the case of two arbitrary hyperbolic
simply connected domains Ω1 ⊂ Ω2 by means of a conformal map-
ping �2 : Ω2 → D:

Definition 6. A domain Ω1 is said to be embedded in a domain Ω2
conformally at the prime end P1 ∈ P(Ω1) if the domain G := �2(Ω1) is
embedded in D conformally at the prime end P := �2∣Ω1

(P1) ∈ P(G).
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Theorem 1. Let D be an inclusion chain with the minimal element Ω0,

and P0 ∈ P(Ω0). Suppose that Ω0 is embedded in each Ω ∈ D con-

formally at P0. Then there exists a Loewner chain (ft) such that

D[(ft)] = D and the corresponding evolution family 's,t = f−1
t ∘ fs,

t ⩾ 0, s ∈ [0, t], has a common parabolic DW-point at � = 1.

The converse of this theorem is immediate: Let (ft) be a Loewner

chain. If all the functions in its evolution family ('s,t) have regular

boundary fixed point � = 1, then the domain f0(D) is embedded in

each ft(D) conformally at the prime end f0(1).
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It can be interesting to require some extra regularity of an evolution
family at the DW-point. Since we have a distinguished point at the
boundary, it is convenient to change the reference domain and work
with evolution families and Loewner chains in the upper half-plane ℍ
instead of the those in the unit disk, with the DW-point placed at ∞.

Consider the following class of functions

' ∈ ℜ
def⇐⇒ ' : ℍ→ ℍ is holomorphic and univalent

in ℍ := {z : Im z > 0} and there exists C > 0 such that

∣'(z)− z∣ ⩽ C/Im z, z ∈ ℍ. (4)

The class ℜ is a semigroup w.r.t. the operation of composition and
the functional

ℓ(') := min
{
C > 0 : ∣'(z)− z∣ ⩽ C/Im z for all z ∈ ℍ

}
(5)

is additive.
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Our interest to the class ℜ is connected to the generalization of the

chordal Loewner equation for slit mappings with hydrodynamical nor-

malization given by V. V. Goryainov & I. Ba, 1992, and R. O. Bauer, 2005.

The type of evolution families they discuss can be defined as follows.

Definition 7. An evolution family ('s,t) in the half-plane ℍ is said to be

a Goryainov – Ba chordal evolution family if ('s,t) ⊂ ℜ and the function

�(t) := ℓ('0,t) is locally absolute continuous on [0,+∞).

Problem 2. Describe the inclusion chains of those Loewner chains in ℍ
which generate Goryainov – Ba chordal evolution families.
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Definition 8. Let D be a domain. A Jordan curve Γ ⊂ ∂D is called
free Jordan arc if the endpoints of Γ can be joined by a Jordan curve
Γ′ in D such that Γ ∪ Γ′ bounds a subdomain D′ of D.

Further, let P be a reachable point of the domain D. We will say that
the free Jordan arc Γ contains P as an interior point if

(i) the impression of P is an interior point of Γ;

(ii) as an equivalence class of curves, P contains a Jordan curve lying
in D′.
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Remark 3. Consider two domains Ω1 ⊂ Ω2. Let

P be a reachable point of the domain Ω1 and


 ⊂ Ω1 a Jordan curve defining reachable point P .

Suppose that the impression I(P ) of P is a com-

mon boundary point of both domains Ω1 and Ω2.

Then 
 defines also a reachable point for Ω2. This

reachable point does not depend on the choice

of 
 and will be denoted, suppressing the lan-

guage, also by P .

Theorem 2. Let D be an inclusion family with the minimal element Ω0
and P0 a reachable point of ∂Ω0. Suppose that each Ω ∈ D has a free
Jordan arc ΓΩ on the boundary that contains P0 as an interior point
and that ΓΩ is C3,�– smooth for some � > 0 (which can depend on Ω).
If the curves ΓΩ, Ω ∈ D, have second-order contact at the impression
of P0, then there is a Loewner chain (ft) in ℍ such that D[(ft)] = D
and ('s,t) defined by 's,t := f−1

t ∘ fs is a Goryainov – Ba chordal
evolution family.
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Proposition 1. Let (ft) be a Loewner chain in D. Suppose that ∂ft(D)

is locally connected for any t ⩾ 0. Then the functions 's,t := f−1
t ∘ fs

can be extended by continuity to the unit circle T, i.e., ('s,t) ⊂ A,

where

A :=
{
' ∈ Hol(D,ℂ) :

(
∃'̃ ∈ C(D)

)
' = '̃∣D

}
is the disk algebra.

Remark 4. The converse of the above Proposition

is not true: there is an evolution family ('s,t) ⊂ A
such that for any associated Loewner chain (ft) the

image domains ft(D) fail to have locally connected

boundaries.
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The disk algebra A has a natural topology, induced

by the norm

∥'∥ := sup
z∈D
∣f(z)∣.

Obviously,

('s,t) ⊂ A
/
=⇒ (s, t) 7→ 's,t is continuous in A.

Kufarev’s example: discontinuity at s = 0.

Proposition 2. Let ('s,t) be an evolution family in D. Suppose ('s,t) ⊂ A.

Then for any fixed s0 ⩾ 0 the mapping [s0,+∞) ∋ t 7→ 's0,t ∈ A is con-

tinuous.


