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Bieberbach conjecture

In 1915 – 1916 Ludwig Bieberbach (1886 – 1982) studied the so-called
class S which is formed by univalent holomorphic functions

f : D := {z : |z| < 1} → C

normalized by

f(z) = z +

+∞∑
n=2

anzn, z ∈ D. (1)

Bieberbach obtained the quantitative form of several basic result on
the class S, such as
I sharp upper and lower bounds for |f(z)| (the Growth Theorem)
I and those for |f ′(z)| (the Distortion Theorem).
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Bieberbach conjecture

The key point was the estimate of the second Taylor coefficient.
Namely, he proved that

|a2| ≤ 2 for any f ∈ S,

with the equality only for the rotations of the Koebe function

kθ(z) =
z

(1 − e−iθz)2
= z +

+∞∑
n=2

ne−i(n−1)θzn, θ ∈ R. (2)

Bieberbach conjectured that

Bieberbach Conjecture
For any f ∈ S and any integer n ≥ 2,

|an | ≤ n,

with the equality only for functions (2).
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Bieberbach Conjecture — continued

This was the beginning of a new epoch in Geometric Function
Theory, which finished in 1985 with the proof of the Bieberbach
Conjecture given by Louis de Branges.

The first step on the way to this proof was
done by the Czech – German mathematician
Karel Löwner (1893 – 1968) known also as
Charles Loewner in his paper
Untersuchungen über schlichte konforme
Abbildungen des Einheitskreises,
Math. Ann. 89 (1923), 103–121.
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Loewner’s Method

Loewner proved the Bieberbach conjecture for n = 3. What is more
important, he introduced the first powerful method for systematic
study of univalent functions. In particular, Loewner’s method is also
the cornerstone in de Branges’ proof.

The main merit of Loewner is that with his method he introduced a
dynamic viewpoint in Geometric Function Theory.

I would like to present a more modern form of Loewner’s method,
which is mainly due to contributions of another two prominent
mathematicians:
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Loewner’s Method — continued

Pavel Parfen’evich Kufarev
Tomsk (1909 – 1968)

Christian Pommerenke
(Copenhagen, 17 December 1933)
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Parametric representation of univalent
functions

Theorem A.1 (Pommerenke, and independently
V.Ya. Gutlyanskiı̆)
Let f ∈ S. Then there exists a family (ft )t≥0 of holomorphic functions
in D such that f0 = f and the following conditions hold:

LC1. for each t ≥ 0, ft : D→ C is univalent in D;
LC2. for each s ≥ 0 and t ≥ s, fs(D) ⊂ ft (D);
LC3. for each t ≥ 0,

ft (z) = etz + a2(t)z2 + . . . (3)

Definition
A family (ft )t≥0 of holomorphic functions in D satisfying the above
conditions LC1, LC2, and LC3

is said to be a classical Loewner chain.
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Parametric representation — continued

Definition
A function p : D × [0,+∞)→ C is said to be

a classical Herglotz function if:

HF1. for each t ≥ 0, p(·, t) is a Carathéodory function, i.e. it is
holomorphic in D with Re p(·, t) > 0 and p(0, t) = 1;

HF2. for each z ∈ D, the function p(z, ·) is measurable on [0,+∞).

Theorem A.2
Let (ft ) be a classical Loewner chain. Then there exists essentially
unique classical Herglotz function p such that (ft ) satisfies the
Loewner – Kufarev PDE

∂ft (z)

∂t
= z

∂ft (z)

∂z
p(z, t), z ∈ D, t ≥ 0. (4)
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Parametric representation — continued

Theorem A.2 — continued
Moreover, for any s ≥ 0,

fs = lim
t→+∞

etϕs,t , (5)

where t 7→ ϕs,t (z) for each fixed z ∈ D and s ≥ 0 is the unique
solution to

dw(t)/dt = −w(t)p
(
w(t), t

)
, t ≥ s; w(s) = z. (6)

Equation (6) is called the Loewner – Kufarev ODE. Note that it is the
characteristic ODE of the Loewner – Kufarev PDE. Hence each ϕs,t ,
t ≥ s ≥ 0, is a holomorphic self-map of D and

fs = ft ◦ ϕs,t for any s ≥ 0 and any t ≥ s. (7)
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Parametric representation — continued

The converse theorem also holds:

Theorem A.3
Let p be a classical Herglotz function. Then for any s ≥ 0 and z ∈ D
following IVP

dw(t)

dt
= −w(t)p

(
w(t), t

)
, t ≥ s; w(s) = z. (6)

has a unique solution wz,s defined for all t ≥ s and the functions

ϕs,t (z) = wz,s(t), z ∈ D, t ≥ s ≥ 0, (8)

are holomorphic univalent self-maps of D.
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Parametric representation — continued

Theorem A.3 — continued
Moreover, the formula

fs = lim
t→+∞

etϕs,t , s ≥ 0, (5)

defines a classical Loewner chain (ft ), which satisfies the relation

fs = ft ◦ ϕs,t for any s ≥ 0 and any t ≥ s (7)

and the Loewner – Kufarev PDE

∂ft (z)

∂t
= z

∂ft (z)

∂z
p(z, t), z ∈ D, t ≥ 0. (4)
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Parametric representation — continued

Some conclusions
I The Loewner – Kufarev equations establish 1-to-1

correspondence between classical Loewner chains and classical
Herglotz functions.

I The set of the initial elements of all classical Loewner chains
coincides with the class S.

I Therefore, any extremal problem for the class S can be
reformulated as an Optimal Control problem, where the "control"
is a classical Herglotz function;

I Note that the class S has no natural linear structure, while the
set of all classical Herglotz functions is a (real) convex cone.

This representation of the class S by means of classical Herglotz
functions is called the Parametric Representation of normalized
univalent functions.
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Chordal Loewner Equation

P. P. Kufarev and his students constructed similar parametric
representation for univalent holomorphic self-maps f of the upper
half-planeH := {z : Im z > 0} satisfying the so-called hydrodynamic
normalization:

lim
z→∞

f(z) − z = 0, lim
z→∞

z
(
f(z) − z

)
, ∞. (9)

This normalization make sense, for example,
ifH \ f(H) is a bounded set in C.

To extend the normalization to a larger class of functions one has to
consider angular limits instead of unrestricted ones.
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Chordal Loewner Equation — continued

The role of the Loewner – Kufarev equation is played in this case by
the so-called chordal Loewner equation, which can be written in its
general form as

Chordal Loewner Equation
dζ(t)

dt
= ip

(
ζ(t), t

)
, (10)

where p(·, t) is a holomorphic function inH with Re p > 0.

Rewritten in the unit disk D this equation take the form

Chordal Loewner Equation in D
dw
dt

=
(
1 − w(t)

)2
p
(
w(t), t

)
, (11)

where p(·, t) is again holomorphic function in D with Re p > 0.
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Chordal Loewner Equation and SLE

I P. P. Kufarev, 1946: a special case of chordal Loewner equation
mentioned for the first time;

I N. V. Popova, 1954;
I P. P. Kufarev, V. V. Sobolev, and L. V. Sporysheva, 1968:

parametric representation of slit mappings with hydrodynamic
normalization;

I I. A. Aleksandrov, S. T. Aleksandrov and V. V. Sobolev: 1979,
1983: the general form of the chordal Loewner equation;

I V. V. Goryainov and I. Ba, 1992: similar results.

Unfortunately, these works did not draw a wide response.
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Chordal Loewner Equation and SLE —
continued

Schramm’s Stochastic Loewner evolution
O. Schramm, 2000: Stochastic chordal Loewner equation

dζ(t)

dt
= ip

(
ζ(t), t

)
, p(ζ, t) :=

2i
ζ −
√
κBt

, (12)

where κ > 0 is a parameter and (Bt ) is the standard Browning motion.

NB: In Schramm’s version there is "−" in front of the r.h.s. of (12).

This invention of Schramm proved to be extremely useful in Statistical
Physics, because it describes the continuous scale limit of several
classical 2D lattice models. (Two Fields Medals: Wendelin Werner in
2006 and Stanislav Smirnov in 2010.)
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One-parameter semigroups

Definition
A one-parameter semigroup of holomorphic functions in D is a
continuous homomorphism from

(
R≥0,+

)
to

(
Hol(D,D), ◦

)
. In other

words, a one-parameter semigroup is a family (φt )t≥0 ⊂ Hol(D,D)
such that
(i) φ0 = idD;
(ii) φt+s = φt ◦ φs = φs ◦ φt for any t , s ≥ 0;
(iii) φt (z)→ z as t → +0 for any z ∈ D.

One-parameter semigroups appear, e.g. in:
I iteration theory in D as fractional iterates;
I operator theory in connection with composition operators;
I embedding problem for time-homogeneous stochastic branching

processes.
A bit of history 17/42



Infinitesimal generators

Theorem B.1
For any one-parameter semigroup (φt ) the limit

G(z) := lim
t→+0

φt (z) − z
t

, z ∈ D, (13)

exists. Moreover, G is a holomorphic function in D of the form

G(z) = (τ − z)(1 − τz)p(z), (14)

where τ ∈ D and p ∈ Hol(D,C) with Re p(z) ≥ 0 for all z ∈ D.

Definition
The function G above is called the infinitesimal generator of (φt ).
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Infinitesimal generators — continued

Theorem B.2
Any holomorphic function G of the form (14) from Theorem B.1,

G(z) = (τ − z)(1 − τz)p(z), (14)

where τ ∈ D and p ∈ Hol(D,C) with Re p(z) ≥ 0 for all z ∈ D, is the
infinitesimal generator of some one-parameter semigroup (φt ).
Moreover, this one-parameter semigroup (φt ) is the unique solution to

dφt

dt
= G ◦ φt , φo = idD. (15)

Formula (14) is known as the Berkson – Porta Representation.
The point τ is called the Denjoy – Wolff point of the semigroup (φt ).
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The three ODEs

Using the Berkson – Porta formula, equation (15) from Theorem B.2
can be written for w := φt (z) as

ODE for 1-parameter semigroups
dw
dt

= (τ − w)(1 − τw)p(w). (16)

Classical Loewner – Kufarev ODE (τ = 0)
dw
dt

= −wp(w, t),

Chordal Loewner ODE (τ = 1)
dw
dt

= (1 − w)2p(w, t).
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The new approach

In 2008 (to appear in J. Reine Angew. Math.; ArXiv 0807.1594)

Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal

suggested a new approach in Loewner Theory, according to which
the three ODEs on the previous slide are special cases of a

generalized Loewner ODE
dw
dt

= G(w, t), t ≥ s, w(s) = z ∈ D, (17)

where G : D × [0,+∞) is the so-called Herglotz vector field, a kind of
locally integrable family of infinitesimal generators.
The family of functions formed by the integrals to (17) is a non-
autonomous analogue of one-parameter semigroups,

the so-called evolution family.
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Definitions

In what follows
d ∈ [1,+∞] is a constant parameter in the time-regularity conditions.

Definition — evolution family
A family (ϕs,t ), 0 ≤ s ≤ t < +∞, in Hol(D,D) is an evolution family of
order d if
EF1 ϕs,s = idD for all s ≥ 0;
EF2 ϕs,t = ϕu,t ◦ ϕs,u whenever 0 ≤ s ≤ u ≤ t < +∞;
EF3 for any z ∈ D and T > 0 there exists kz,T ∈ Ld([0,T ],R) such

that

|ϕs,u(z) − ϕs,t (z)| ≤

∫ t

u
kz,T (ξ)dξ, 0 ≤ s ≤ u ≤ t ≤ T . (18)
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Example

An example
Let (φt ) ⊂ Hol(D,D) be a one-parameter semigroup.
Then (ϕs,t ) defined by the formula

ϕs,t = φt−s , 0 ≤ s ≤ t < +∞, (19)

is an evolution family of order d = +∞.

Thus the notion of an evolution family generalizes that of
one-parameter semigroup.
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Definitions — continued

The notion of a Herglotz vector field can be introduced in the
following way.

Definition — Herglotz vector field
A Herglotz vector field of order d is a function G : D × [0,+∞)→ C
of the form

G(z, t) =
(
τ(t) − z

)(
1 − τ(t)z

)
p(z, t), (20)

where
(i) τ : [0,+∞)→ D is measurable;
(ii) p(·, t) is holomorphic in D with Re p(·, t) ≥ 0 for any t ≥ 0;
(iii) p(z, ·) is measurable on [0,+∞) for any z ∈ D;
(iv) p(0, ·) is of class Ld

loc on [0,+∞).
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Herglotz vect. fields→ Evolution Families

Theorem C.1 (Bracci, Contreras, Díaz-Madrigal 2008)
Let G be a Herglotz vector field of order d.
Then for any z ∈ D and s ≥ 0 the IVP

dw(t)

dt
= G

(
w(t), t

)
, t ≥ s, w(s) = z, (21)

has a unique solution wz,s : [s,+∞)→ D. Moreover, the formula

ϕs,t (z) := wz,s(t), z ∈ D, 0 ≤ s ≤ t < +∞, (22)

defines an evolution family (ϕs,t ) of the same order d.
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Evolution Families→ Herglotz vect. fields

The converse theorem also holds.

Theorem C.2 (Bracci, Contreras, Díaz-Madrigal 2008)
For any evolution family (ϕs,t ) of order d there exists an essentially
unique Herglotz vector field G of the same order d such that for any
z ∈ D and s ≥ 0 the function wz,s : [s,+∞)→ D defined by

wz,s(t) := ϕs,t (z), z ∈ D, 0 ≤ s ≤ t < +∞, (23)

is the unique solution to IVP

dw(t)

dt
= G

(
w(t), t

)
, t ≥ s, w(s) = z. (21)

Theorems C.1 and C.2 establish a 1-to-1 correspondence between
evolution families and Herglotz vector fields.
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Loewner Chains

In 2010 M. D. Contreras, S. Díaz-Madrigal, and P.G. (Revista
Matemática Iberoamericana 26 (2010), 975–1012) introduced

Definition — Loewner chains
A family (ft )0≤t<+∞ of holomorphic function in D is called a
(generalized) Loewner chain of order d if
LC1 each function ft : D→ C is univalent,
LC2 fs(D) ⊂ ft (D) whenever 0 ≤ s < t < +∞,

LC3 for any compact set K ⊂ D and all T > 0 there exists
kK ,T ∈ Ld([0,T ],R) such that

sup
z∈K
|fs(z) − ft (z)| ≤

∫ t

s
kK ,T (ξ)dξ, 0 ≤ s ≤ t ≤ T . (24)

Remark: classical Loewner chains satisfy this definition with d = +∞.
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Loewner chains→ evolution families

Recall that every classical Loewner chain (ft ) satisfies the
Loewner – Kufarev PDE and that the corresponding
Loewner – Kufarev ODE generates a family (ϕs,t ) ⊂ Hol(D,D) related
to the Loewner chain (ft ) by the formula

ϕs,t := f−1
t ◦ fs , 0 ≤ s ≤ t < +∞. (25)

Similar statement holds for generalized Loewner chains.

Theorem C.3 ( Contreras, Díaz-Madrigal, P.G. 2010)
I For any generalized Loewner chain (ft ) of order d formula (25)

defines an evolution family (ϕs,t ) of the same order d.
I Moreover, if G is the Herglotz vector field of (ϕs,t ), then (ft )

satisfies the generalized Loewner PDE
∂ft (z)

∂z
= −

∂ft (z)

∂z
G(z, t), t ≥ 0. (26)
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Evolution Families→ Loewner chains

The converse Theorem is also true. A generalized Loewner
chain (ft ) is said to be associated with an evolution family (ϕs,t ) if

ϕs,t := f−1
t ◦ fs , 0 ≤ s ≤ t < +∞. (25)

Theorem C.4 ( Contreras, Díaz-Madrigal, P.G. 2010)
I For any evolution family (ϕs,t ) of order d there exists a

generalized Loewner chain (ft ) of order d associated with (ϕs,t ).
I If F : Ω→ C, Ω := ∪t≥0ft (D), is a holomorphic univalent function,

then gt := F ◦ ft , t ≥ 0, form another generalized Loewner
chain (gt ) of order d associated with (ϕs,t ).

I Conversely, if (gt ) is any generalized Loewner chain associated
with (ϕs,t ), then there exists a univalent holomorphic function
F : Ω→ C such that gt = F ◦ ft for all t ≥ 0.
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The essence of the new approach

According to the new approach by Bracci – Contreras – Díaz-Madrigal
the essence of the Loewner Theory resides in the interplay between
the three basic notions:

I (generalized) Loewner Chains
I Evolution Families
I Herglotz vector fields

The results presented above were generalized to complex manifolds:

I F. Bracci, M.D. Contreras, and S. Díaz-Madrigal, Evolution
Families and the Loewner Equation II: complex hyperbolic
manifolds, Math. Ann. 344 (2009), 947–962.

I L. Arosio, F. Bracci, H. Hamada, G. Kohr, Loewner’s theory on
complex manifolds, to appear in J. Anal. Math.; ArXiv:1002.4262
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Interplay between the three notions

Loewner Chains (ft) Evolution Families (ϕs,t)

Herglotz Vector Fields G(w , t)

Generalized Loewner
PDE

∂ft(z)
∂t

= −G(z, t)
∂ft(z)
∂z ,

t ≥ 0.

ϕs,t = f−1
t ◦ fs

Generalized Loewner
ODE

dw
dt

= G(w , t),

w = w(t ; s, z), t ≥ s,

w |t=s = z.
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Boundary behaviour — some definitions

Let us recall some basic notions.
Let F : D→ C be a holomorphic function and σ ∈ T := ∂D.

I The point a ∈ C is said to be the angular limit of F at σ if

F(z)→ a as S 3 z → σ

for any Stolz angle S with vertex at σ.
I Assume that the angular limit a of F exists and finite. Then the

angular limit of

F1(z) :=
F(z) − a

z − σ
(27)

at σ is called, if it exists, the angular derivative of F at σ.

In what follows we will denote the angular limit and angular derivative
by ∠F(σ) and ∠F ′(σ), respectively.
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Some definitions

Definition
Let ϕ ∈ Hol(D,D). A point σ ∈ T is said to be a boundary fixed point
(BFP) if ∠ϕ(σ) exists and coincides with σ.

It is known that if σ is a BFP of ϕ ∈ Hol(D,D), then ∠ϕ′(σ) exists and
belong to (0,+∞) ∪ {∞}.

Definition
A boundary fixed point σ of ϕ ∈ Hol(D,D) is said to be regular
(RBFP) if ∠ϕ′(σ) , ∞.

DW-point
Let ϕ ∈ Hol(D,D) \ {idD}. It is known that there exists a unique point
τ ∈ D that is a (boundary) fixed point of ϕ with |(∠)ϕ′(τ)| ≤ 1. This
point is the Denjoy – Wolff point of ϕ.
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Common DW-point

Theorem D.1 (Bracci, Contreras, Díaz-Madrigal 2008)
All elements of an evolution family (ϕs,t ) different from idD share the
same DW-point τ0 ∈ D if and only if in the Berkson – Porta type
representation

G(z, t) =
(
τ(t) − z

)(
1 − τ(t)z

)
p(z, t)

for the Herglotz vector field G of (ϕs,t ),

τ(t) = τ0 for a.e. t ≥ 0.

For τ0 ∈ D, a simple calculation yields

ϕ′s,t (τ0) = exp
∫ t

s
G′(τ0, t ′) dt ′. (28)
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Common DW-point — continued

Similar relation holds for the boundary DW-point.

Theorem D.2 (Bracci, Contreras, Díaz-Madrigal 2008)
Let (ϕs,t ) be an evolution family of order d and G its Herglotz vector
field. Suppose that all elements of (ϕs,t ) different from idD share the
same DW-point τ0 ∈ T. Then
(i) for a.e. t ≥ 0,

∃∠G(τ0, t) = 0, ∃∠G′(τ0, t) =: λ(t) ∈ (−∞,0];

(ii) the function λ is of class Ld
loc on [0,+∞);

(iii) ∠ϕ′s,t (τ0) = exp
∫ t

s λ(t ′) dt ′, whenever 0 ≤ s ≤ t < +∞.
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The case of 1-param. semigroups

The unit disk can contain at most one fixed point. If exists, it is the
DW-point. However, on the unit circle T there can be even infinitely
many RBFPs. Does there exists an analogue of Theorem D.2 for
common RBFPs of evolution families?
The answer "YES" was known before for one-parameter semigroups.

Theorem D.3 (Contreras, Díaz-Madrigal, Pommerenke 2006)
Let (φt ) ⊂ Hol(D,D) be a 1-parameter semigroup, G its infinitesimal
generator, and σ ∈ T. Then the following conditions are "⇐⇒":
(A) σ is a RBFP of (φt );
(B) ∃∠G(σ) = 0 and ∃∠G′(σ) , ∞ (i.e. G has a RBNP at σ).
Moreover, if (A) or (B) holds, then
(C) ∠G′(σ) ∈ R;

(D) ∠φ′t (σ) = exp
(
t∠G′(σ)

)
.
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Regular boundary null-points

We are able to generalize Theorem D.3 to the non-autonomous case.

Definition
A point σ ∈ T is a regular boundary null-point (RBNP) of an infinit.
generator G if condition (B) holds, i.e. if ∃∠G(σ) = 0 and ∃∠G′(σ) , ∞.

Theorem D.4 (Bracci, Contreras, Díaz-Madrigal 2008)
A holomorphic function G : D→ C is an infinitesimal generator with a
RBNP σ ∈ T if and only if it admits the following representation

G(z) = (σ − z)(1 − σz)
(
p(z) − λp0(σz)

)
, z ∈ D, (29)

where p0(z) := (1 + z)/(1 − z), λ := ∠G′(σ) ∈ R, and p : D→ C is

a holomorphic function such that

∀z ∈ D Re p(z) ≥ 0 and ∠ lim
z→σ

(z − σ)p(z) = 0. (30)
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RBFP←→ RBNP + L1
loc

Theorem D.5 (Bracci, Contreras, Díaz-Madrigal, P.G. 2012)
Let (ϕs,t ) be an evolution family, G its Herglotz vector field and σ ∈ T.
Then the following two assertions are "⇐⇒":
(A) σ is a RBFP of ϕs,t for each s ≥ 0 and t ≥ s;
(B) the following two conditions hold:

(B.1) for a.e. t ≥ 0, G(·, t) has a RBNP at σ;
(B.2) λ(t) := ∠G′(σ, t) is of class L1

loc on [0,+∞).
Moreover, if (A) or (B) holds, then

∠ϕ′s,t (σ0) = exp
∫ t

s
λ(t ′) dt ′ whenever 0 ≤ s ≤ t < +∞. (31)
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Remarks

I Asymmetry in Theorem D.5:

σ is a RBFP of all ϕs,t ’s ⇒ ∠ϕ′s,t (σ) is loc. abs-ly continuous in s and t

σ is a RBNP of G(·, t) ; t 7→ ∠G′(σ, t) is loc. integrable
for a.e. t ≥ 0

I Comparison with Theorem D.2:

if σ is the DW-point of every ϕs,t , then t 7→ ∠G′(σ, t) is of class Ld
loc,

while for the common RBFP σ, we only have L1
loc.
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Remarks — continued

I If only condition (B.1) holds, then (ϕs,t ) does not need to have
common BFP at σ (even non-regular one).

I Assume that ϕs,t ’s share common BFP (not necessarily regular)
at σ ∈ T. What can be said about G? Open question even for
one parameter semigroups?

Assume that a one-parameter semigroup (φt ) has
a boundary fixed point σ.

Does this imply that
the infinitesimal generator G of (φt ) satisfies ∃∠G(σ) = 0?
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One element of the proof

Let (ψt )t≥0 ⊂ Hol(D,D) be a one-parameter family (not necessary a
semigroup!) with ψ0 = idD.
Suppose it is differentiable at t = 0 in the following sense:

∃ lim
t→+0

ψt (z) − z
t

=: G(z) ∈ C for any z ∈ D. (32)

It is known that in this case G is an infinitesimal generator.

Theorem (S. Reich, D. Shoikhet 1998)
Under the above conditions the one-parameter semigroup (φt )
generated by G is given by

φt = lim
n→+∞

(
ψt/n

)◦n
for any t ≥ 0. (33)
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Last frame!!!

THANK YOU!!!
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