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Complex Networks
The Challenge of Interaction Topology

Zoltán Toroczkai 

The roadways of Portland, Oregon.

Networks have recently become a paradigmatic way of representing complex 
systems in which the pattern of interactions between a system’s constituent parts
is itself complex and is evolving together with the system’s dynamics. Transport 
is the main function of these dynamic networks. It is therefore crucial that we
understand the coupling between the network structure and the efficiency and
robustness of the transport processes on the structure. Such understanding will
have a huge impact, allowing us to control signaling processes in the cell and to
design robust information and energy-transmission infrastructures, such as the
Internet or the power grid. However, achieving this type of understanding is rather 
challenging, because of the discrete and random nature of network topology. 
This article reports on some of our results that connect network dynamics and
transport efficiency. It also illustrates the power behind the ability to control the
topology of the interactions in the design of scalable computer networks.

      



Systems of many interacting par-
ticles typically exhibit complex
behavior. In most well-known

complex systems, the topology of the
interactions between particles can be
described by simple structures, such
as regular crystalline lattices or a con-
tinuum, and the complex behavior
arises from nonlinearity and nonlocal-
ity, which describe the nature of the
interactions themselves. There is,
however, a large class of systems
called complex networks, in which the
interactions are mediated not by a
continuum (or a simple regular struc-
ture) but by a complex graph, whose
structure may evolve as part of the
dynamics of the interactions.

Familiar systems in almost every
area of life form such complex net-
works. Here are a few examples:
transport and transportation infrastruc-
tures (electric power grids, water-
ways, natural gas pipelines, roadways,

airlines, and others) social interactions
(acquaintance networks, scientific col-
laboration networks, terrorist net-
works, sex webs, and others), commu-
nications networks (the World Wide
Web, the Internet, microwave back-
bone, and telephone networks), bio-
logical networks (metabolic networks,
gene regulatory networks, protein
interaction networks), and networks in
ecology (food webs). Although these
systems have been known for a while,
their complexity has been explored
only recently because the large data-
bases and the immense computational
power required to analyze network
data were almost nonexistent two
decades ago.

Even a cursory “look” at the struc-
ture of real-world networks creates a
breathtaking impression: These are
large objects containing thousands, or
sometimes, even hundreds of mil-
lions, of nodes with an intricate mesh

of connections among them. For the
last decade, the science of complex
networks has focused on describing
the structural complexity of real-
world network topologies. By looking
at the three images on these opening
pages, one can easily surmise, that
statistical and probabilistic methods
are essential to that description.
Today, the focus has expanded
beyond network structure to an
understanding of the relationship
between structure and dynamics and
the implications of that relationship
for network design. The first half of
this article traces the main ideas in
graph theory over the past two cen-
turies, which are at the basis of the
mathematical approach to networks,
and the second half is devoted to
some very recent developments: 
computer network design and the
connection between network 
dynamics and structure.
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The metabolic pathway. (Gerhard Michal:
Biochemical Pathways,1999 © Elsevier GmbH,
Spektrum Akademischer Verlag, Heidelberg.)

Macroscopic snapshot of Internet
connectivity (skitter data) with
selected backbone Internet service
providers. (This photo is courtesy of the
Lumeta Corporation.)

    



The Problem of the 
Königsberg Bridges

Network images can be quite strik-
ing. But one might question whether
thinking about complex systems in
terms of networks leads to more than
pretty pictures. Ironically, the funda-
mentals of the theory of network
structures were introduced by a blind
mathematician.

It all began with the puzzle of
seven bridges, an entertaining brain-
teaser for people who strolled through
Königsberg, the Prussian city at the
Baltic Sea, in the 18th century. The
river Pregel divides the city into four
land areas connected by seven
bridges. The burghers of Königsberg
wondered if one could visit all the
four areas by crossing each bridge
exactly once (see Figure 1).

The puzzle was solved in 1736 by
Leonhard Euler, who at the time, was
a mathematics professor in St.
Petersburg. The power of Euler’s
solution lies not in the answer itself
(which is negative) but in the way it
was derived. Euler’s revolutionary
idea was to represent the pieces of
land separated by bridges as the nodes
(dots) A, B, C, and D and to represent
the bridges as the edges (line seg-
ments) a, b, c, d, e, f, and g, connect-
ing the nodes (see Figure 2). The
structure formed by the set of nodes
and edges, called a graph, is a simpli-
fied representation of the puzzle,
encoding the relationships between
the pieces of land and the paths of
access between them (see Figure 2
inset). In this representation, the prob-
lem translates into the following one:
Find a path that visits all nodes but
passes through all edges exactly once.
Obviously, the intermediate nodes
must have an even number of incident
edges (if one visits an intermediate
node, one must also leave it).

Because the Königsberg puzzle has
4 (>2) nodes, all with an odd number
of edges, there can be no such path.
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Figure 1. The Königsberg Puzzle
This woodcut shows the ancient Prussian city of Königsberg (now known as
Kaliningrad) with its seven bridges across the river Pregel. The possibility of
strolling across the city by crossing each bridge once only became the object of a
famous brainteaser.

Figure 2. Euler’s Solution to the Königsberg Puzzle
A simple representation of the problem by a graph helps realize that there is no
such path that visits all nodes and passes through all seven edges exactly once.

                           



Euler’s representation of the relation-
ships between a discrete set of entities
as a graph led to the development of a
particular type of mathematical
nomenclature and ultimately to a new
field of discrete mathematics called
graph theory.

A Hard Problem: The
Ramsey Numbers

For nearly 200 years, graph theory
was concerned with topological
and/or geometrical properties of small
structures, or regular structures (such
as a lattice). Then, the 1951 seminal
paper by Ron Solomonoff and Anatol
Rapoport (1951) and the 1959–1960
series of papers by Pál Erdo″s and
Alfréd Rényi caused the rebirth of
graph theory. These papers introduced
the notion of a random graph and,
more important, that of graph ensem-
bles, which are sets of graphs that
share a given property Q. To under-
stand this notion, let us look briefly at
the famous Party Problem and the
Ramsey numbers. This problem,
inspired from social interactions, is
stated very simply:

What is the minimum number of
guests, R, one should invite to a party
that would surely have k people who
all know each other or k who do not
know each other (at all)?

For k = 3, it is easy to prove that
R(3) = 6. We will use Euler’s method:
Let us denote the six people by the
nodes A, B, C, D, E, and F. Let us
represent the fact that two people
know each other by drawing a red
link (or edge) between them and use a
blue edge to link two people who do
not know each other. Since pairs of
people either know each other or do
not, the graph obtained is complete,
which means that all possible edges
are drawn—see Figure 3(a).
Specifically, a complete graph with n
nodes, denoted here by Kn, always has
n(n – 1)/2 edges. The graph theoretic

version of the Party Problem is thus to
determine the minimum number of
nodes n, such that a complete graph
with n nodes and with edges of two
color always has at least one complete
subgraph of k nodes with all edges of
the same color. For k = 3, a complete
subgraph is a monochromatic triangle.

If there are n = 5 people present, one
can easily color a complete graph
with no such triangle present, ruling
out n = 5 by inspection.

For n = 6, however, there is always
at least one such triangle. To prove
this statement, let us assume the oppo-
site, namely, that there can be no such
triangles. Since for every node there
are n – 1 = 5 incident edges but only
two colors, there must be 3 edges of
the same color incident on the node.
For example, consider the edges AC,
AD, and AE in Figure 3(b) to be the
same color, for example, blue. Since
the triangles ACE, ACD, and ADE
cannot have all three of their edges of
the same color, CE, CD, and DE must
be red. Then CDE is a triangle all
with the same color edges (red), a
contradiction. Hence, R(3) = 6.

For k = 4, the answer is R(4) = 18,
which is hard to prove. For k = 5 and
higher, the answers are not known;
only some bounds exist. Although we
have no proof for k = 5, one might
think that we would surely be able to
use today’s supercomputers to find the
value of R(5). However, as Bollobás,
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Leonhard Euler
Leonhard Euler, the most prolific mathe-
matician of all times, was born in
Switzerland in 1707 and spent his life in
Berlin and St. Petersburg. Opera Omnia
is an incomplete collection of his works
that has 73 volumes, each over 600
pages in length.

Figure 3. The Party Problem for k = 3
Six is the minimum number of people that always contains a group of three, all of
whom either know each other (red links) or do not know each other (blue links). (a)
A complete graph for six people is shown. Note that it contains the complete sub-
graph CDE. (b) This figure demonstrates that there is no way to draw a complete
graph without constructing a complete single-color three-node subgraph within it.
Suppose that blue links indicate that A does not know C, D, or E. In that case, CD,
DE, and EC must be red links so that a complete blue subgraph should not be
formed. But then, as shown in (b), those three red links form a complete subgraph,
which means that C, D, and E know each other.

                                                                                      



an eminent graph theoretician, has
stated (1998) “…a head-on attack by
computers for R(5) is doomed to fail-
ure . . . .” This failure is largely due to
the combinatorial explosion in the
number of ways we can draw a com-
plete graph with n nodes using two
colors for the edges: On the face of it,
a computer would have to search a
total of 2n(n–1)/2 such graphs for com-
plete subgraphs with k nodes. For k =
3, when n = R(3) = 6, there are 215 =
32,768 complete graphs, for k = 4, the
analytic solution gives n = 18, which
means that there are 2153, or approxi-
mately 1.46 × 1046 graphs. For k = 5,
the best known bounds are 43 ≤ R(5)
≤ 49, which would mean approxi-
mately 2903 to 21176 graphs (or on the
order of 10301 graphs). For k = 5 and
n = 43, the “ultimate laptop” of Seth
Lloyd (2000), which operates at the
physical limit of computation (as
determined by the speed of light, the
Planck constant, and the gravitational
constant), performing f = 5.4258 ×
1050 operations per second, would
have to work for at least 2.693 ×
10213 years, a mighty long time (the
age of the universe is estimated to
be between 1.1 × 109 and 2 × 109

years).
So, can we hope ever to solve the

Party Problem? The key idea is to
understand how different colorings of
Kn relate to one another via transfor-
mations, which would allow us to par-
tition the set of two colorings of Kn
into a smaller number of classes and,
in the absence of a full mathematical
theory, to program the computer to
search for the monochromatic com-
plete subgraphs on the set of classes
instead of the full set. Although still
unsolved, intense activity in this area
led to a number of generalizations of
this problem and to the development
of a huge branch of mathematics, the
Ramsey theory (Graham et al. 1990).
That theory has a number of very
deep results that go well beyond
graph theory, affecting set theory in

the form of partition calculus, combi-
natorics, ergodic theory, logic, analy-
sis, algebra, geometry and computer
science. 

Ultimately, the Party Problem sug-
gests that, if we partition a set into a
fixed number of classes, order must
emerge for large enough sets. This
principle is also illustrated by van der
Waerden’s theorem (Bollobás 1998),
which states that, for a given k and p,
if we partition the first w integers into
k classes, we will always find a class
that contains an arithmetic progres-
sion with p terms for large enough w.
Problems like the Party Problem lead
to a simple conclusion: In order to
understand properties of graphs, one
has to think in terms of ensembles of
graphs that share a certain property, Q.

A Revolutionary Idea

The Hungarian mathematician Pál
Erdo″s was one of the main pioneers of
the ensemble approach. His complete
disregard for the notion of possession

and ownership and his habit of living
out of a suitcase and visiting one
mathematician friend after the next
were symptoms, perhaps, of his total
dedication to mathematics. Erdo″s is
considered by many to be the second
most productive mathematician of all
times, after Euler. Possibly the great-
est contribution of Erdo″s is his intro-
duction of the probabilistic method
in discrete mathematics. For graph
theory, this means that, instead of
asking for detailed properties of all
graphs in an ensemble, we are asking
for average properties, or the proba-
bility that a graph from an ensemble
has the property Q. The probabilistic
method was definitely not new when
Erdo″s introduced it to discrete math-
ematics: By the end of the 19th cen-
tury, Boltzmann, Gibbs, and others
had laid down the foundations of
equilibrium statistical mechanics,
which is based on applying the prob-
abilistic method to ensembles of
microstates and characterizing
macroscopic properties of the system
by the properties of the “typical”
microstates. This natural connection
between statistical mechanics and
graph theory is currently being
exploited by some research groups
worldwide, including the Statistical
Physics of Infrastructure Networks
team at Los Alamos. Besides the
combinatorial explosion in the num-
ber of possible graphs (or states),
there is a second strong reason that
calls for the use of the probabilistic
method: incomplete information.
Real-world networks, as we will see
from the following sections, are in
many cases very dynamic, with new
edges and nodes appearing and old
ones disappearing as a result of sto-
chastic processes. In addition, in
some cases, it is hard, or even impos-
sible, to identify precisely the graph
structure at a given moment. Again, a
good example is supplied by a prob-
lem related to social networks, name-
ly, the Gossip Problem:
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Pál Erdo″s (1913–1996)
Pál Erdo″s, who introduced the notion of
random graphs, is probably the second
most prolific mathematician of all times,
having produced over 1500 publications
with 507 coauthors.

                                                                              



Suppose that person A in a set of N
people has a very interesting piece of
information or gossip. On average,
how many acquaintances must every
person in N have such that the gossip
becomes known to all?

Since we do not know who knows
whom, we determine the answer by
considering all graphs of N people
with the nodes representing the indi-
viduals and the edges representing the
acquaintanceships, or social links, for
transmitting gossip. In other words, if
persons A and B are linked and one of
them knows the gossip, we can
assume the other knows it too. The
answer to the Gossip Problem must
be probabilistic in nature: It is the
class of graphs having nodes with a
certain average number of links and
characterized by the property that
everyone knows the gossip in the
end. Erdo″s and Rényi came up with a
rather surprising solution: Once a
node has on average one link, the
gossip becomes known to all! In the
jargon of social scientists, the set of
people represented by that graph
forms a society. The class of graphs
that Erdo″s and Rényi introduced and
that helped give the answer is called
random graphs, a subject with a huge
mathematical literature. For a review,
see the book by Bollobás (2001).

The Binomial Random Graph.
Because we need it for later discussion,
we introduce the binomial random
graph G(N,p) and present some of its
properties. G(N,p) is a class of graphs
with N vertices, whose edges are
drawn at random and independently,
according to a uniform distribution
with probability p. Therefore, the
average number of links incident on a
node is λ = p(N – 1), or for large
graphs, it is approximately λ = pN.
Thus, according to the answer for the
Gossip Problem, when λ = 1, or the
probability for a node to have an edge
is p = pc = 1/N, a giant cluster, or
giant component, emerges that con-

tains most of the nodes, and the prob-
ability for a node not to belong to this
cluster decreases exponentially fast for
p > pc. Physicists call this phenome-
non percolation. Passing through pc
(by the process of increasing the aver-
age number of incident edges), the
network suffers a drastic change,
which is called a phase transition in
the language of physics.

We now introduce one of the most
important characteristics of random
graphs, namely, their degree distribu-
tion. The degree of a node x is the
number k(x) of incident edges on that
node. The degree distribution of the
binomial random graph G(N,p) is the
probability that the number of nodes
Xk with degree k is y. In a G(N,p), the
probability of a node being connected
to k specific other nodes and not con-
nected to the rest of N – 1 – k nodes is
pk(1 – p)N–1–k. Because the number of
ways to connect those k nodes is
equal to the binomial coefficient 

the probability of a node having
exactly k incident edges in G(N,p)
becomes

(1)

Note that, as edges are drawn inci-
dent to a node, that node will influ-
ence the number of edges around the
other nodes, and thus, in principle, the
distribution of Xk will not be exactly
the same as if all the nodes were inde-
pendent, and the calculation of the
exact form of the degree distribution
becomes a hard task. It was Bollobás
(2001) who showed that, for large
enough N, the nodes can be treated as
if they were independent, and thus,
with good approximation, the degree
distribution of G(N,p) is described by

the binomial distribution in Equation
(1). In the limit of N → ∞ and p → 0
such that λ = pN = constant, the bino-
mial goes into the Poisson distribu-
tion:

(2)

Figure 4 shows a comparison
between the formula in (2) and the
measured degree distribution for a
binomial graph of N = 20,000 nodes
and a link probability p = 20/N =
0.001. It shows that, indeed, the
approximation is good. The Poisson
distribution P(k) has a “bell curve”
shape, with a peak at λ = pN, and fast
decaying tails. The degree of a node
characterizes how a node “sees” its
immediate neighborhood in the net-
work. According to the formula in (2),
if we keep λ = pN a constant, while
increasing the size of the network, 
the distribution of edges in the 
immediate neighborhood of a node
becomes independent of N for large N.
However, keeping λ = pN a constant,
means scaling the link probability p
with N – 1. The average node degree is

and the standard deviation of the dis-
tribution around the average is

This result shows that the binomial
graph has a characteristic scale
defined by λ.

Real-World Networks

The latest revolution in networks
science happened toward the end of
the 1990s, when powerful computers
made it possible to gather and analyze
data for systems containing a large
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number of components: from the
World Wide Web and the Internet,
phone call networks, networks of
movie actors, large-company boards of
directors, scientific collaboration net-
works, language networks, crime
webs, epidemic networks, and the sex
web to biological networks such as the
metabolic network, protein interaction
networks, cell-signaling, and food
webs. The first important observation
is that most of these networks are very
different from the random graphs of
Erdo″s and Rényi. In hindsight, this
departure is not unexpected: In the
random graphs of Erdo″s and Rényi,
the edges are assumed to exist com-
pletely independently from each other,
whereas in real-world networks, the
existence of edges is typically condi-
tioned by nonindependent processes,
or constraints, such as spatial embed-
ding and interaction range depend-
ency. The real surprise is that, in spite
of their diversity, real-world networks
can be classified into a small number
of different classes of graphs, each
characterized by certain structural
properties of the interaction topology

in these systems. The most useful
properties for this purpose are degree
distributions, clustering, assortativity,
and shortest paths.
Instead of listing the classes of these
networks and enumerating their prop-
erties, we will discuss one ubiquitous
class, the so-called scale-free 
networks, originally introduced by
Albert-László Barabási. These net-
works have power-law degree distri-
butions (see Figure 5), as opposed to
the Gaussian or Poisson degree distri-
butions of random graphs (for exam-
ple, Figure 4). These real-world,
scale-free networks include the net-
work of movie actors, scientific col-
laboration networks, the sex web, the
metabolic network in the cell (on all
three levels of life—archaea, bacteria,
and eukaryotes), the protein interac-
tions network, the language network
defined by synonyms (in which case,
the nodes are the words, and the edges
connect the synonyms), and virtually
all large-scale information networks:
the Internet (router and also
autonomous domain level), the World
Wide Web, some e-mail networks and

phone call networks. Why do these
real-world networks have similar
degree distributions? Is there a univer-
sal mechanism that generates these
structures? The first crucial observa-
tion is that, in most cases, these struc-
tures result from dynamic processes
with a strong stochastic component,
just like the random graph model of
Erdo″s and Rényi. However, to deviate
from the random graph model, the
network evolution process must
include stochastic dependency and
bias. The question is then, “What sto-
chastic processes will generate scale-
free networks?” 

Most current models generating
scale-free networks identify a mecha-
nism for network growth and evolu-
tion. Among the notable ones are the
preferential attachment model of
Albert and Barabási (2002), in which
a newly arriving node connects to a
node in the existing network with
probability proportional to the current
degree of the node in the network; the
fitness-based network growth model
of Caldarelli et al. (2002); the Chung-
Lu model of power-law random
graphs (2002); the model of the World
Wide Web by Menczer (2002); the
initial attractiveness model of
Dorogovtsev et al. (2000); and others.
Although these models produce
graphs that have power-law degree
distributions, they either have been
built for a specific type of network
(for example, the model by Menczer)
or are mathematical abstractions in
which the stochastic network-growth
process has little to do with the actual,
often quite complicated, evolution
mechanism of the real-world network.
The stochastic dynamics for the
appearance and disappearance of
Internet routers, which has many
unknown factors, is another example.
Most real-world networks are also
strongly coupled to other networks or
other large-scale complex systems,
and thus, in order to identify the net-
work evolution mechanism, one can-
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Figure 4. The Degree Distribution of the Binomial Random Graph
The red circles show the degree distribution, or Xk/N, the fraction of nodes with k
links vs k, for a single instance of the binomial random graph G(N,p) with the num-
ber of nodes N = 2 ×× 104 and the probability for a link to exist between two nodes
being p = 10–3. The continuous black line is a plot of the Poisson distribution P(k) in
formula (2) with λλ = pN = 20. Note the similarity between the two distributions.

                                            



not study these networks in isolation.
To add to the complexity of the prob-
lem, the evolution of the network
structure can depend on the dynamics
or flow on the network. Most studies
of complex networks have been static
and structural as they try to identify
their graph-theoretic properties. It has
become clear, however, that, to solve
even this problem, we must look at
the full dynamics of the complex net-
work, that is, at the flow on these

structures and the coupling of the
flow to the structural evolution.

The Problem of Epidemics.
Before presenting some recent results
that take into account the coupling
between structure and dynamics, I
will briefly mention an interesting and
important real-world problem that is
complex in the sense mentioned
above. I am referring to epidemics, or
disease propagation in living popula-

tions, a topic heavily studied at Los
Alamos in the past decade. The usual,
classic approach to epidemics imposes
a number of assumptions that make
analytic and numerical treatment rela-
tively straightforward; however, at
least in some cases, that approach
may cause a departure from reality.
One such assumption is uniform mix-
ing, whereby the individuals of a pop-
ulation are assumed to come in con-
tact with equal probability, independ-
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Figure 5. Degree Distribution of Various Scale-Free Networks
(a) Shown here is the cumulative degree distribution for citation networks (after Redner 1998); (b) the sex web (after Liljeros et
al. 2001); (c) the Internet at the router level (after Faloutsos et al. 1999); (d) the in-link and (e) out-link degree distributions for the
World Wide Web (after Albert et al. 1999); and (f) the metabolic networks for three species (after Jeong et al. 2000). [Plot (a) is courtesy

of the European Physical Journal B. Plot (c) is courtesy of Computer Communication Review, ACM Publications 1999. Plots (b), (d), (e), (f), (g), and (h) are courtesy of Nature.]
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ent of their locations. In order to relax
this assumption, we observe that con-
tact processes, such as disease trans-
mission, are well localized in space
and require that the two or more indi-
viduals be no farther apart than some
typical distance characteristic of the
disease transmission process. In heav-
ily populated urban areas, disease is
usually transmitted within such loca-
tions as buildings and mass transit
areas (waiting areas and mass transit
cars). Using census data and mobility
diaries that specify the times of
entrance and exit to and from a loca-
tion for all locations that a specific
person visited during the day, one
obtains a graph that has the desired
detailed resolution for contact patterns
between people moving around in an
urban area. This movement is largely
constrained by the roadway network
and the traffic on it. Since the road-
way network is itself a complex net-
work, the disease transmission prob-
lem is that of coupled complex
dynamic networks (see Figure 6).

In this network, there are two
types of nodes: people and locations,
and an edge is drawn between a per-

son and a location if that person vis-
ited that location during the day. The
edge has a weight associated with it,
called “timestamp,” which is the
union of time intervals during which
the person was at that location. What
can we learn, analyzing such a net-
work, pertinent to disease outbreaks
in a city? How can knowledge about
this network be exploited to design
effective vaccination and quarantine
strategies? Conclusions for the spe-
cific case of Portland, Oregon, with
approximately 1.6 million people and
181,000 locations can be found in
Eubank et al. (2004).

Scale-Free Networks:
Coincidence or Universality?

This section presents a different
approach to understanding the emer-
gence of the scale-free property for
real-world networks. As mentioned
previously, so far no one has found an
obvious universal mechanism leading
to power-law degree distributions for
real-world networks. We actually sug-
gest that, for a large class of networks

(to be specified below), there is no
universal evolutionary mechanism.
Instead, the network structure evolves
according to a selection principle that
promotes the global efficiency of
transport and flow processing through
these structures (Toroczkai and
Bassler 2004). In other words, regard-
less of the specific evolutionary
mechanism, that mechanism works
within the constraints of the selection
principle. And the operation of the
selection principle on evolution often
results in scale-free networks.

Most real-world networks (except
those that are defined by artificial
associations) serve as transport sub-
strates for various entities such as
information, energy, material, and
forces. Some networks have evolved
spontaneously (without global
design), and it makes sense to enquire
whether their dynamics obey a selec-
tion principle toward some kind of
optimal or efficient behavior. Such a
principle would be analogous to the
one of natural selection that shapes
both the biological networks at the
cellular level and the food web.

Looking at the Internet, we note
that, if a router receives too much
traffic and causes constant congestion
of the packets, engineers will fix the
problem locally by bringing up more
routers or modifying the routing algo-
rithm. Similarly, in social networks, if
an acquaintance does not satisfy our
expectations about some set of social
norms, that link will “naturally” be
dropped from our own social network.

To explore this trend toward effi-
ciency more formally, we first need to
define a flow process on the network.
Among the most ubiquitous flow
processes in Nature are those generat-
ed by local variations, or gradients, of
scalar quantities. Particle concentra-
tion, temperature, electric or gravita-
tional potential, and pressure are just a
few examples. The gradient-induced
flow processes include granular flow,
fluid flow, electric current, diffusion
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Figure 6. The Roadways of Portland, Oregon 
The roadway network of Portland forms the substrate for a coupled complex dynam-
ic network to simulate movements and disease transmission in this highly populat-
ed urban area. (This image is courtesy of the TRANSIMS Project at Los Alamos.)

      



processes, heat flow, and so on.
Naturally, the same local-gradient
mechanism will generate flows in
complex networks. Two less obvious
local-gradient examples are diffusive
load balancing schemes used in dis-
tributed computation (Rabani et al.
1998), which are also employed in
packet routing on the Internet, and the
reinforcement learning mechanism in
social networks with competitive
dynamics (Anghel et al. 2004).  In the
first example, a computer (or a router)
will ask its neighbors on the network
for their current job load (or packet
load), and the router will balance its
load with the neighbor that has the
minimum number of jobs to run (or
packets to route). In this case, the
scalar is the negative of the number of
jobs, or packets, at nodes, and the
flow will be along the direction of the
gradient of this scalar in the node’s
network neighborhood. In the second
example, a number of agents/players
in the social network play an interac-
tive competition game with limited
information. At every step of the
game, each agent has to decide whose
advice to follow before taking an
action (such as placing a bet), in its
circle of acquaintances (network
neighborhood). Typically, an agent
will try to follow the advice of that
neighbor who in the past proved to be
the most successful in predicting the
game. That neighbor is recognized by
using a scoring mechanism, which is
the simplest form of reinforcement
learning: Every agent has a success
score that changes in time, coupled to
the game’s evolution. An agent will
follow the advice of that agent who
has the highest score in its network
neighborhood at that moment (Anghel
et al. 2004). In this case, the scalar is
the past success score of the agents,
and an agent will act based on the
information received along the link
that is in the direction of the gradient
of this scalar.

To construct a simple and general

model of a transport process, we
assume that there are N nodes and
that the transport takes place on a
fixed substrate network S(V, E),
where V is the node set and E is the
edge set that describes the intercon-
nections of the nodes. Associated
with each node i, there is a scalar hi
that describes the “potential” of the
node. Then a gradient network G can
be constructed as the collection of
directed links that point from each
node to the nearest neighbor on the
substrate network S that has the high-
est potential (see Figure 7). Thus,
only one directed link points away
from each node in G, and G consists
of N directed links. Note that, if the
potential of a node is higher than the
potential of all its nearest neighbor
nodes, the gradient link of that node
is a loop that points back to itself
(“self-loop”). In general, the potential
for each point can evolve in time, and
as a result, the gradient network G

will be time dependent. If we further-
more assume that all links have the
same conductance, or transport prop-
erties, the gradient network will
describe the instantaneous substruc-
ture carrying the maximum flow.
Consequently, we can hope to use
gradient networks as a tool to analyze
the flow efficiency or susceptibility to
jamming on the corresponding sub-
strate networks.

Note that, if there are two or more
nodes in the network neighborhood
of a node i that share the maximum
value, the gradient in i is called
degenerate. If each neighborhood
has only one maximum, it is called
nondegenerate, and is easier to ana-
lyze. In the discussions below, we
will restrict ourselves to the nonde-
generate condition, which is easily
realized if, for example, the scalars
are continuous random variables.
Since every node has exactly one
gradient direction from it (even f it
is a self-loop), G has exactly N
nodes and N edges (and there is at
least one self-loop, corresponding to
maxi{hi}). A simple but very impor-
tant property of nondegenerate gra-
dient networks is that they form
forests, that is, each gradient net-
work is a collection of tree graphs
containing no loops (except for self-
loops). We can therefore hope to
analyze network flow processes
using the techniques of statistical
mechanics that have been well
developed for treelike structures.

Gradient Networks on Random
vs Scale-free Networks. Let us first
consider a gradient network for a ran-
dom graph substrate S. In particular,
we choose for S the binomial random
graph, G(N,p) consisting of N nodes,
each pair of nodes being linked with
probability p. We next assume that the
scalar potentials of the various nodes
are independent random variables
identically distributed according to a
distribution η(h). The distribution of
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Figure 7. Definition of a Gradient
Edge
The gradient edge is a directed link
from node i to that neighbor on the sub-
strate graph that has the largest value
of the scalar in the neighborhood of i. If
i has the largest value, then the gradient
edge is a self-loop.

                                                                        



the number of links l pointing to each
node, the so-called in-degree distribu-
tion R(l) of the gradient network G,
can be exactly calculated, and it yields
the following expression:

(3)

Thus, this in-degree distribution is
independent of the particular form of
the distribution for the scalar poten-
tials η(h). It is possible to show that
in the limit N → ∞ and p → 0 such
that Np = λ = constant >> 1, the
expression in Equation (3) becomes
the power law R(l) ≈ 1/(λl), with a
finite-size cutoff at lc = z; refer to
Figure 8(a). Therefore, in this limit,
gradient networks are scale-free
graphs (up to their cutoff)! This
power-law degree distribution for the
gradient network is a rather surprising
result because, in the same limit, the
substrate graph S is a binomial ran-
dom graph having a Poisson degree
distribution with a well-defined aver-
age degree λ (setting the scale of the
substrate graph), as well as rapidly
decaying tails.1

If, instead, the substrate network S
is a scale-free graph, the gradient
graph will still have a power-law
degree distribution. Figure 8(b) com-
pares degree distributions P(k) for
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1A similar finding was reported by
Lakhina et al. (2003), who repeated on
binomial random graphs the trace-route
measurements used to sample the struc-
ture of the Internet. Lakhina and col-
leagues found that the spanning trees
obtained in this way have a degree distri-
bution that obeys the 1/k law. Later,
Clauset and Moore (2003) have presented
an analytical approach to derive the 1/k
law. This approach suggests the possibil-
ity of mapping between graphs generated
by trace-route sampling and gradient net-
works. Although it is not an exact map-
ping, a close connection can indeed be
made by interpreting trace-route trees as
suitably constructed gradient networks.

Figure 8. Gradient-Graph Degree Distributions for Random and 
Scale-Free Substrate Networks
(a) The in-degree distribution is shown for the substrate binomial random graph
G(N,p), where N = 1000, and p = 0.1 (z = 100). The numerical values are obtained
after averaging over 104 sample runs. (b) The in-degree and degree P(k) distribu-
tions are for the substrate Barabási-Albert scale-free graph with parameter m (m =
1, 3). In this case N = 105, and the average is performed over 103 samples.

                                                                         



scale-free substrate networks, which
we generated by the Barabási-Albert
network with parameter m (minimum
degree, see Albert and Barabási 2002)
with the in-degree distributions for the
corresponding gradient networks. One
immediate conclusion is that the gra-
dient network is the same type of
structure as the substrate. In this case,
it is a scale-free (power-law) graph
with the same exponent.

Flow Properties on Random vs
Scale-Free Networks. Using the
properties of gradient networks, we
can define a transport characteristic
related to congestion or jamming in
the substrate network. In particular,
we compare the average number of
nodes with in-links with the average
number of nodes with out-links. If
Nl

(in) denotes the number of nodes
with l in-links, the total number of
nodes receiving gradient flow will be

The total number of gradient out-links
is simply Nsend = N because every
node has exactly one out-link.
Naturally, the ratio Nreceive/Nsend will
be related to the instantaneous global
congestion in the network. The small-
er the number of nodes receiving the
flow (given the same number of
senders), the more congestion is in the
substrate network at that instant. If the
flow received by a node requires a
nonzero processing time (such as
routing of a packet by the router), a
small ratio of Nreceive/Nsend translates
into large delay times and thus ineffi-
cient flow processing. Let us define
the congestion (or jamming) factor as
follows:

(4)

where 〈 〉n means averaging over the
disorder in the network structure and 
〈 〉h means averaging over the ran-
domness in the scalar field. The value
of J is always between 0 and 1, with J
= 1 corresponding to maximal conges-
tion and J = 0 corresponding to no
congestion. Note that J is a congestion
pressure characteristic generated by
gradients rather than an actual
throughput characteristic. For a bino-
mial random substrate network
G(N,p), we use Equations (3) and (4)
to obtain the corresponding jamming
factor:

(5)

In the scaling limit N → ∞ and p =
constant, the jamming factor assumes
the asymptotic behavior

That is, the random graph becomes
maximally congested. It is easy to
show that, in the other limit, when 
z = Np >> 1 is kept constant while 
N → ∞,

Once again, the random graph asymp-
tomatically becomes maximally con-
gested, or jammed.

For scale-free networks, however,
the conclusion about jamming is
entirely different. We find that the
jamming coefficient J becomes inde-
pendent of N, and it is always a 

constant less than unity for large 
networks. In other words, scale-free
networks are not prone to maximal
congestion. (This is true for all
power-law networks for which the
average degree does not grow with
N.) Figure 9 shows the congestion
factors as a function of network size
for random and scale-free substrate
networks. Many real-world networks
evolve more or less spontaneously
(for example, the Internet or the
World Wide Web), and they can reach
sizes of about 108 nodes. At such
large N, the scaling limit studied
above applies, and random networks
have maximal congestion. Thus, such
substrates are very inefficient for
flow processing. Scale-free networks,
on the other hand, have congestion
that stays bounded away from unity
as the number of nodes grows very
large, and they are therefore much
more efficient substrates for transport
and flow processing. Thus, it appears
that the scale-free property of many
real-world networks is not accidental.
Topology may develop quite naturally
from a selection rule that tends to
maximize the global efficiency of the
flow along the network.

Small-World Magic:
Synchronized Computing

Networks

We have seen that many real-world
interactions are mediated across com-
plex network topologies and that the
structure and dynamics of those com-
plex networks are becoming better
understood. It is therefore natural to
wonder whether network concepts can
be put to practical use. For example,
can those concepts help us design 
systems that exhibit certain desired
properties? In this last section of the
article, I will show how complex net-
work concepts were used to solve a
problem in distributed, or parallel,
computation.
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We consider the class of systems
made of a large number of interacting
elements or individuals, each having a
finite number of attributes, or local
state variables, that can assume a
countable number (typically finite) of
values. The dynamics of the local
state variables are discrete events
occurring in continuous time, and the
interactions between individuals, or
elements, have a finite range. There
are many examples of such systems:
magnetic systems, epidemics, some
financial markets, wireless communi-
cations, queuing systems, and so on.
Virtually all agent-based systems can
be considered to belong to this class
of discrete-event complex systems.
Often, the dynamics of such systems
is inherently stochastic and asynchro-

nous. Simulating the systems is 
nontrivial, and in most cases, the
complexity of the problem requires
the use of distributed computer archi-
tectures. These problems define the
field of parallel discrete-event simu-
lations (PDES). 

Conceptually, the computational
task is divided among N processing
elements (PEs), each of which evolves
the dynamics of the allocated piece of
the system. Because of the interac-
tions among the individual elements
of the real system (spins, atoms, pack-
ets, calls, and so on), the PEs must
coordinate with a subset of other PEs
during the simulation.

At present, large parallel comput-
ers for performing PDES have thou-
sands of nodes and soon will have

tens of thousands: the Nippon Electric
Company’s 5120-node Earth simula-
tor producing 35.86 teraflops, the
8192-node Q-machine at Los Alamos
with 13.88 teraflops, Virginia Tech’s
X machine, which is a 2200-node
apple G5 cluster with 10.28 teraflops,
and so on. IBM is currently building
the Blue Gene/L parallel computer
with 360 teraflops and 65,000 nodes.
Blue Gene/P, the next-generation
computer, is expected to surpass the
petaflop barrier in 2006.

The design of efficient, scalable
update schemes for performing PDES
on these large parallel computers is a
rather challenging problem because
the simulation scheme itself becomes
a complex system whose properties
are hard to deduce using classical
methods of algorithm analysis.
Korniss et al. (2003) introduced a less
conventional approach to analyzing
the efficiency and scalability of paral-
lel discrete-event simulation schemes.
The authors constructed an exact
mapping between the parallel compu-
tational process itself and a nonequi-
librium surface growth model. As a
result, questions about efficiency and
scalability can be mapped into certain
topological properties of this nonequi-
librium surface. Then, using methods
from statistical mechanics, we can
solve the scalability problem of the
computation PDES schemes. We now
briefly sketch the scalability problem
and its solution.

In order to simulate the dynamics
of the underlying system, the PDES
scheme must track the physical-time
variable of the complex system. In
case of asynchronous dynamics on
distributed architectures, each PE gen-
erates its own physical (also called
virtual) time τ, which is the physical
time variable of the particular compu-
tational domain handled by that PE.
Because of the varying complexity of
the computation at different PEs, at a
given wall-clock instant, the simulat-
ed, or virtual, times of the PEs can
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Figure 9. Congestion Factors for Random and Scale-Free Substrate
Networks 
Congestion factors are shown as a function of size for random graphs and scale-
free networks. For random binomial graph substrates, the jamming coefficient tends
to unity with increasing network size, indicating that these networks will become
extremely congested in this limit. For scale-free substrates, however, the congestion
factor becomes independent on the network size, and thus arbitrarily large networks
can be considered without increasing their congestion level.

        



differ, a phenomenon called “time
horizon roughening.” Let us denote
the virtual time at PEi measured at
wall-clock time t by τi(t). The set of
virtual times {τi(t)}

N
i=1 forms the vir-

tual time horizon of the PDES scheme
after t parallel updates. In conserva-
tive PDES schemes, a PE will per-
form its next update only if it can
obtain the correct information from its
neighbors to evolve the local configu-
ration (local state) of the underlying
physical system it simulates without
violating causality. Otherwise, it idles.
Specifically, the PEi can only update
(become “active”) at wall-clock
instant t if

(6)

That is, the PE’s virtual time is a local
minimum among the virtual times of
its neighboring PEs (specified as the
set <i>). Once the PE at site i can
update, it will advance its local simu-

lated time to the new value τi(t + 1),
and the process is repeated for all
active sites, generating the dynamics
of the virtual time horizon {τi(t)}

N
i=1.

The average of the time horizon after
t parallel steps is obviously

Thus, the rate of progress of the time
horizon average, or the average uti-
lization of the PEs 〈u(t)〉 = 〈τ

_
(t + 1)〉

– 〈τ
_

(t)〉 is proportional to the number
of nonidling, or active, PEs. The aver-
age 〈·〉 is taken over the stochastic
event dynamics. The PDES scheme is
computationally scalable if there is a
constant c > 0, such that

(7)

That is, the average rate of progress of
the time horizon does not vanish even

after very long times, as the simulated
system size and, therefore, the number
of PEs are taken to infinity.

We solved this computational scal-
ability problem by drawing an analogy
with the statistical mechanics of non-
equilibrium surface-growth processes.
Thin films are grown on solid sub-
strates by deposition of atoms or mol-
ecules from surrounding vapors.
Because the vapors are fairly hot, the
atoms reaching the solid surface fol-
low a stochastic path until they are
incorporated into the surface, typically
in an irregular fashion. The resulting
thin film has mounds and valleys that
can be described by the fluctuations of
the local height variable h(x,t) of the
film measured from the surface of the
substrate. Using an approach based on
the Langevin equation, physicists have
developed extended theoretical
machinery to describe the statistics of
the fluctuations of the variable h(x,t).
The simulated time variable τi(t) in
the computational scalability problem
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Figure 10. A Fully Scalable Small-World PDES Scheme
The small-world PDES scheme is fully scalable. By introducing more shortcuts into the communication network (increasing p),
the algorithm becomes measurement scalable (a), and it stays computationally scalable (b).

                                                                                      



behaves much like the surface height
variable h(x,t) in that τi(t) evolves
according to the stochastic update
dynamics of the PDES scheme with
the index i of the PE corresponding to
x in the height variable. In many large
complex systems, the dynamics of the
stochastic events can be characterized
by a Poisson distributed stream. This
means that, when simulating such sys-
tems, the updates at individual PEs
correspond to adding height incre-
ments that follow a Poisson distribu-
tion. Using statistical mechanics
methods to analyze the resulting 
surface-growth model, one can show
that the fluctuations of the virtual
time horizon in the continuum limit
can be described by the so-called
Kardar-Parisi-Zhang (KPZ) equation
of surface growth:

(8)

where τ̂ is a coarse-grained form of
the virtual-time variable and η is a
white noise term.2 We then use the
KPZ equation to verify that the uti-
lization of the PEs satisfies Equation
(7). The existence of a constant c > 0,
as in (7), is the result of the slope-
slope correlations of the surface being
short ranged and not scaling with N.
Our numerical evaluation of this con-
stant yields c = 0.2461 ± (7 × 10–6),
which shows that the basic conserva-
tive PDES scheme is indeed computa-
tionally scalable. 

There is, however, a fundamental
problem with the basic PDES update
scheme. The KPZ equation for the
time horizon fluctuations predicts that
the average spread of those fluctua-
tions, w2(N,t), diverges with an
increasing number of processing 

elements N in the long time limit 
(t → ∞). Therefore, if we try to meas-
ure a global property of simulated
system at a given simulated time τ
and wait until all processors have sim-
ulated their local state corresponding
to that time, the waiting period in
wall-clock time would diverge with
the number of processing elements! 
In other words, even though a parallel
computer with infinitely many pro-
cessing elements can simulate the
dynamics of an infinitely large system
at nonzero speed (computational scal-
ability), the basic PDES scheme could
not produce a single measurement of
the global state of the system! The
basic conservative scheme is compu-
tationally scalable but measurement
nonscalable.

How can we surmount this prob-
lem? Can the PDES scheme be modi-
fied such that the new update scheme
is also measurement scalable? The
answer is affirmative, and the key to
the solution is the notion of the small-
world property of complex networks
(Korniss et al 2003).

In order to decorrelate the fluctua-
tions in the time horizon, we modify
the update topology in the following
way: for every node i, we assign a
randomly chosen communication link,
r(i). According to its definition, the
resulting communication topology (a
regular lattice plus random links)
forms a small-world 
network. When a node is allowed to
update—its virtual time satisfies the
condition in (6)—it will make, with
probability p, an extra check for the
condition τi(t) ≤ τr(i)(t) and update if
that condition is satisfied. With proba-
bility 1 – p, it will make this extra
check and thus behave as the basic
PDES scheme. Here p has the role of
a tuning parameter: For p = 0, we
have the basic PDES scheme, whereas
p = 1 corresponds to the fully scalable
small-world PDES scheme. Note that
these extra checks do not affect the
correctness of the simulation, and

causality is preserved in just the same
way. These checks only synchronize
the PEs. Using the same coarse-grain-
ing methods as for the basic PDES
scheme, we now find that the time
horizon fluctuations are described by

(9)

with γ(0) = 0 and γ(p) > 0 for
0 < p ≤ 1. This equation differs from
Equation (8) in the strong damping
term, –γ(p)τ̂ , which is ultimately
responsible for the nondivergence of
the average spread, and thus the new
update scheme is measurement scala-
ble as shown in Figure 10.

Concluding Remarks

The list of problems, challenges, and
applications that I presented above is
rather biased toward my particular
research interests, and it is not, by far,
exhaustive of this area. My goal was to
give the reader a feeling for the type of
complexity one encounters when deal-
ing with networks. I also wanted to
show that this is a novel area with many
interesting and potentially powerful
applications awaiting discovery. n
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