FLERE OPPGAVETEKSTER FRA KAD. 6

- **6.10** The simple harmonic oscillator in one dimension can also be solved by the method of ladder operators. This solution is simpler and more elegant than the one in Chapter 4.
 - (a) For a particle of mass m in a one-dimensional simple harmonic oscillator potential $V(x) = \frac{1}{2}Kx^2$, the Hamiltonian operator is

$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{1}{2} K x^2$$

Define the ladder operators a_- and a_+ to be given by

$$a_{+} = \sqrt{\frac{K}{2}}x - \frac{\hbar}{\sqrt{2m}}\frac{\partial}{\partial x}$$

and

$$a_{-} = \sqrt{\frac{K}{2}}x + \frac{\hbar}{\sqrt{2m}}\frac{\partial}{\partial x}$$

Show that

$$[H, a_+] = \hbar \omega a_+$$

and

$$[H, a_{-}] = -\hbar\omega a_{-}$$

where $\omega = \sqrt{K/m}$.

- (b) Suppose that $\psi(x)$ is a solution of the time-independent Schrödinger equation for the harmonic oscillator with energy E. Show that $a_+\psi(x)$ is also a solution of the time-independent Schrödinger equation for the harmonic oscillator with energy $E + \hbar \omega$. Show that $a_-\psi(x)$ is a solution with energy $E \hbar \omega$.
- (c) Show that $a_+a_-=H-\hbar\omega/2$.
- (d) There is no upper bound on the possible values for E, but there is a lower bound; the energy cannot be negative. This means that if $\psi_0(x)$ is the ground state wave function, then $a_-\psi_0(x)=0$. Using the relation derived in part (c), show that the ground state wave function has energy $\hbar\omega/2$.
- (e) Write out the equation $a_-\psi_0(x)=0$ as a differential equation and solve it to find the ground-state wave function.
- **6.14** The "radius of the hydrogen atom" is often taken to be on the order of about 10^{-10} m. If a measurement is made to determine the location of the electron for hydrogen in its ground state, what is the probability of finding the electron within 10^{-10} m of the nucleus?
- **6.15** (a) The electron in a hydrogen atom is in the l = 1 state having the lowest possible energy and the highest possible value for m_l . What are the n, l, and m_l quantum numbers?
 - (b) A particle is moving in an unknown central potential. The wave function of the particle is spherically symmetric. What are the values of l and m_l ?