Chapter 6

Shock analogies

In this chapter we will treat two unrelated wave phenomena, having in common that they
may have large amplitudes and are not covered by the usual linear potential theory for surface
waves in a liquid. The first is the hydraulic jump, which is due to the same fundamental
relations as those which give rise to shock waves in gas dynamics—i.e., an introduction to
gas dynamics in disguise. The other is solitary waves and solitons, where nonlinear terms in
the wave equation give important contributions. We will observe that some types of solitary
waves can be considered to be shock waves in a wider sense.

6.1 The hydraulic jump as a shock wave analogy

Shock waves may occur in supersonic flow of gases. In the rest system of the wave (Figure 6.1))
the gas flow arrives at the standing wave with supersonic velocity, and leaves it at the other

Figure 6.1: Normal shock wave (¢ = speed of sound)

side with subsonic velocity. The two values of ¢ are different in general, due to different
thermodynamic conditions. Across the shock, which has a thickness of a few times the mean
free path for the gas molecules, there will be a jump in temperature and pressure, as well as
an increase in entropy—a fraction of the mechanical energy has been irreversibly transformed
into heat. The shock is normal if the gas flow arrives perpendicular to the standing wave,
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64 CHAPTER 6. SHOCK ANALOGIES

otherwise oblique; the latter is usually the case for the shock wave at the nose of a supersonic
bullet or plane. The existence of shock waves in a gas follows from conservation of mass and
momentum and from the equation of state of the gas.

We will illustrate shock waves in a gas by a quite analogous phenomenon which may occur
in liquid flow with a free surface, the hydraulic jump—a stationary flow pattern where the
liquid’s surface rises abruptly over a short distance with turbulent behavior, so that a fast flow
with a small fluid height over the bottom is replaced by a slower flow with a larger height. This
is indicated in Figure 6.2.1 For flow in a channel with a horisontal bottom, a hydraulic jump

Figure 6.2: Hydraulic jump in horizontal fluid flow

can occur for an ideal liquid, with constant but different depths on the two sides of the jump.
(In practice, the bottom must be slightly sloping for the flow to be stationary.) A hydraulic
jump can therefore be considered to be a wave with large wavelength and an amplitude being
non-negligible compared to the depth, the way shock waves differ from usual sound waves by
a pressure amplitude being non-negligible compared to the equilibrium perssure of the gas.

We will predict the existence of hydraulic jumps by studying a 1D flow of an ideal liquid in
a horizontal channel with a constant rectangular cross section and width . The same relations
hold as for shock waves in a gas:

e Conservation of mass
e Conservation of momentum

e A relation between wave speed and liquid depth (corresponding to the compressibility
of a gas)

The flow will also satisfy the continuity equation (??) and the Euler equation (7?). In the
latter the term (u-V)wu must be kept, since we include the possibility of large amplitudes. For
a flow in the x direction and surface height h over the bottom, with a constant velocity in
the cross section, and a constant atmospheric pressure at the surface independent of h so that
p = pg(h — z), the two equations give:

Oh n O(uh)

ot oz

!The phenomenon can be observed in a faucet with a flat bottom, where a circular hydraulic jump will

often occur at some distance from the point where the water from the faucet tap hits the bottom.

0 (6.1)
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We introduce
p = ph P = /hpdz = Lo = L (6.3)
’ 0 2 2p '
and get two equations which are formally equivalent to those for an adiabatic flow of an ideal
gas with v = 2 (see Eq. (?7)):

dp  Oup) _
En + or 0 (6.4)
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The similarity between these two equations and the corresponding ones for a gas flow, implies
an analogy with the results for a slightly unphysical ideal gas (7 = 2), where the results for
flow without discontinuities can be compared directly:

e Liquid depth in channel flow
=
Gas density in pipe flow with v = 2

The momentum flow density is given by Eq. (??). The mass and momentum flow rates
therefore become:

Jm = pubh (6.6)
h 1
Jp = / (p+ pulbdz = §bpgh2 + bpu*h (6.7)
0
The continuity equation (expressing conservation of mass) and conservation of momentum

between two arbitrarily chosen crosssections normal to the flow, which must hold even of
there are discontinuous jumps in liquid height between the cross sections, then imply:

u1h1 = u2h2 (68)
1 1
uthy + 5gh§ = ulhy + 5ghg (6.9)

Solving these 2 equations with 4 unknowns we may choose for instance (hi, ho) or (hi,u;)
as independenet variables. In the latter case itis useful to introduce the Froude number

F =u/\/gh:
1 h
ul = Sg2(hi+ ho) (6.10)
27 h
1 h
uy = ggh—l(h1+h2) (6.11)
2
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Because of the symmetry of the indices in Egs. (6.8) and (6.9) we would get two equally valid
equations by interchanging the indices 1 and 2 in Egs. (6.12) and (6.13).

We get the mechanical energy flow rate through a cross-section by integrating the energy
flow density of Eq. (?7), with a term added which gives the potential energy:2

" Lo P
Jg = /pu(—u + =+ g2)bdz
0 2 p

1
= Jng(h+ —u? 14
g (h+ 5o0) (6.14)

The difference between the energy flow rates in two different cross-sections becomes:

1
Jeg2 —Jp1 = Jmg(ha —h1 + 5(1@ —u?))
1 (hg — h1)3
= ——J,g—" 6.15
1m0 (6.15)

Expressed in terms of head (energy per unit weight) the energy rate difference becomes:

(hy = )?

Ahp = —
E 4h1ho

(6.16)

We notice that unless h; = he (and thus u; = usy) there is an energy difference between the
two cross-sections, even for an ideal flow and a horizontal bottom! No assumption about the
distance between the cross-sections was made, and Eqgs. (6.8) and (6.9) include the possibility
of an abrupt change (a jump). Since no external energy has been added, and a continuous
change of height would have been governed by Euler’s equation which cannot imply a change
of the total mechanical energy, a jump is the only possible case for this idealized flow.? Quite
analogous to the interpretation in the case of inelastic collisions in elementary point mechanics,
conservation of energy in addition to momentum and mass would imply an overdetermined
system of equations.

Assume now that the indices 1 and 2 indicate an upstream and a downstream cross-section,
respectively. Since an increase in energy is impossible, it follows that ho —hy > 0: Downstream
of the jump the flow will be slower, with a larger surface height over the bottom.

Of course, for a real liquid the difference in height cannot emerge as a discontinuous jump.
Figure 6.3 indicates how the jump may look, based on experimental observation for some
values of the Froude number. In all cases the jump appears as a turbulent zone, with states
of regular flow on both sides. The loss of mechanical energy as heat will equal the energy
difference according to Eq. (6.15). The downstream liquid height must be in accord with
downstream parameters like as for instance the slope. The jump will then take place at such
values of hy and uy that Eq. (6.12) is satisfied.

A small localized disturbance in the surface height can be considered a wave with a large
wavelength compared to the liquid height. Its propagation velocity relative to the liquid will

*In [Landau and Lifshitz 1987] this height level term is not added. That corresponds to referring the
energy’s reference level to the liquid surface. However, then one cannot compare the energy of two different
cross-sections with different fluid heights but the same bottom level, which Landau and Lifshitz actually does.

3Here b = constant, as different from gas flow in a pipe, where a variable pipe diameter makes possible a
continuous variation in gas density on both sides of a shock.
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Figure 6.3: Different types of hydraulic jump in a rectangular channel [Massey 1983|

then be given by Eq. (??) as ¢ = v/gh.* However, the stationarity implies that

C1 Cc2
and since hy > hy for a jump, Egs. (6.10) and (6.11) imply that
Fi1>1 , Fa<1 (6.18)

We thus notice the analogy

e Froude number in liquid channel flow
=
Mach number in gas pipe flow

At the 'water shock’, the disturbances which downstream have been fighting their way up
against the flow’s local ’subwave’ velocity will be stopped, stamping against the flow racing
with ’superwave’ speed from upstream. In the same way as the transition from supersonic to
subsonic velocity in gas flow can only take place at a shock, the hydraulic jump cannot be
replaced by a smooth transition: Figuratively speaking, in both cases it is not possible for
the information about downstream conditions to propagate upstream from the shock, so that
downstream conditions can influence the upstream conditions. In practice, a hydraulic jump
will often emerge near a change of slope in a channel. A change of the downstream slope can
then influence the actual location of the jump, but not influence upstream conditions in toher
ways.

6.1.1 Critical flow

Let us examine more closely the conditions at (an ideal) hydraulic jump. Using Eq. (6.6) we
can rewrite (6.14) as

1 Jm
Jg = Jmgh . hp=ht — (2
E gng E +2g(pb)

“The relation also follows simply from momentum conservation; see [Franzini and Finnemore 2002].

21

= (6.19)
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where hp has dimension length (like the head). By various derivations of the expression for
hg we find:

1/3
m/pb)?
(hhmin = She  for  h=he= (%) (Jyn constant)  (6.20)
2
(Jm)inae = 9(pb)*he  for  h=he=Zhp (hpg constant)  (6.21)
The quantity h. is called critical height (or depth). The corresponding critical flow velocity®
and Froude number are:
I _ (gh®)'?

ue= = = k) s Rl (6.22)

Figure 6.4 illustrates these conditions for flow in a rectangular channel. We observe here still

Figure 6.4: Liquid depth as a function of energy head and mass flow rate [Massey 1983|

another analogy to adiabatic gas flow, critical flow. It corresponds to the behaviour in a sonic
(or critical) nozzle, where the mass flow rate has a maximum if the flow velocity is sonic at
the minimum diameter, and the gas will continue with supersonic velocity until downstream
it will hit a standing shock wave:

e Maximum mass flow rate for a given hp occurs at the height h = h, = %hE, with
F=F. =1

If hg > (hE)min = %hc, the flow will take place in a supercritical (F > 1) or in a subcritical
(F < 1) state, both with the same hp, corresponding to the lower and upper branches of the
curves, respectively. At critical conditions a comparatively large change in liquid depth will
correspond to a comparatively small change in the energy head of the flow. Simultaneously, a
surface disturbance propagating against the flow will become trapped. Thus, standing waves
may be created, and if hgp > %he a hydraulic jump may occur if the flow is supercritical.
Figure 6.5 reminds us that the jump will always bring us to a state with a lower hg.

5A misleading—but common—term. It is unrelated to the critical velocity for transition to turbulence as
well as the critical thermodynamical state.
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Figure 6.5: Liquid depth and energy head at a hydraulic jump [Massey 1983]

After a hydraulic jump has occurred, changes in the flow conditions downstream of the
"shock’ will have no power to influence the upstream flow conditions. The analogy to flow in
a critical nozzle is that between the minimum flow cross section and an eventual downstream
shock wave the flow velocity will be supersonic. Changes in downstream flow conditions for
a given incoming energy head will then have no possibility to communicate their existence to
points upstream of the shock—thus, the maximum mass flow rate for a constant incoming hg
will occur for critical flow in the nozzle.

6.2 Solitary waves, briefly

The equations we have solved so far in these lecure notes, have been linearized versions of
the nonlinear equations of motion. However, some particular solutions of simple nonlinear
versions of the equations are known, and in some cases there are general transformations
which make the equations completely integrable on analytical form [Bender and Orszag 1978].
In particular this applies to wave solutions, where the equation may change from partial to
ordinary form by the transformation

u(z,t) =) , E{=z—ct (6.23)

The Scottish nobleman and physicist J. Scott Russell was among the first to realize that
there are more kinds of waves between heaven and earth than those counted among the
solutions of linearized equations [Hemmer 1994]:

| was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped—not so the mass of water in the channel which it had put
in motion: it accumulated round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. | followed it on horseback, and overtook it
still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase
of one or two miles | lost it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon . ..
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In the meantime there has been considerable progress in the understanding of the properties
of such waves, based on solutions of nonlinear differential equations. We will mention a few
examples to convey a feeling of what it is all about. References like [Hemmer 1994] can be
recommended for those wanting to learn more about those matters.

A common terminology in the classification of waves is:

o A permanent wave is a wave propagating without changing its form
e A solitary wave is a localized permanent wave

e A soliton is a wave which asymptotically conserves its form and velocity in collisions
with other solitary waves

Figure 6.6 shows examples of such waves. We will consider the properties of three nonlinear
differential equations, and see how some of their solutions relate to such waves and to matters
treated previously:

e The free-flow equation

ou ou
- = = .24
T +u g 0 (6.24)
e The Burgers equation
ou ou  0%*u
- = .2
ot +u(9m Ox? (6.25)
e The KdV equation®
ou ou  Ou
el 4 = .2
o or T o Y (6.26)

We recognize the first two as 1D special cases of the Navier-Stokes equation (?7?) for negligible
pressure and field forces, respectively without and with the viscous term kept. The third
emerges when the nonstationary Bernoulli equation on the complete form (?7) is used to
provide a nonlinear basis for the surface boundary condition for waves in liquids, instead of
Eq. (?7?) (in the limit o — 0):

P96 = POUD) o + 5 (VP = 0 (6.27)

The KdV equation then emerges to lowest nontrivial order in simultaneous perturbation ex-
pansions in (h/A\)? and (ner/h [Hemmer 1994]. (As distinct from the flow velocity in the
other two equations, u in Eq. (6.26) denotes the surface displacement.)

Insertion into the equations confirm that the first has a general implicit solution

uge.24) = f (T — u(s.240t) (6.28)

with f an arbitrary function of its argument (to be determined by the initial condition), while
the two others have the particular solutions
2a
1+ ea(§—b)
3c

cosh® [1/2(€ — )

Pe25)(§) = c—a+ (6.29)

©(6.26)(§) (6.30)

5Shorthand of Korteveg—de Vries.
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Figure 6.6: Various wave types [Hemmer 1994]. a) Periodic permanent wave. b) Solitary wave
types (pulse and ’kink’). ¢) Two-soliton solution of a nonlinear differential equation, drawn at
3 instants (t; < ty < t3)
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Figure 6.7: Drawing of the a) Burgers and b) KdV wave solution [Hemmer 1994]

with a, b, ¢ and x( being constants of integration. The latter two solutions represent permanent
waves by definition. Figure 6.7 shows moreover that they are solitary waves, of the ’kink’ and
the pulse type, respectively.

To demonstrate the properties of solutions of the free-flow equation, and to understand
better the properties of the two solitary wave solutions, it will be useful to consider the various
terms more closely.

Nonlinearity: Let Eq. (6.24) denote the velocity field in a 1D jet with average velocity c,
with a weak periodic perturbation superposed which will be assumed to be initially

harmonic:
u=c+ o’
ou’ L ou/
il 2 -0
5 + (c+u) 5

Insertion of u' ~ cos(kz — wt) gives

V:%%c—ku'



6.2. SOLITARY WAVES, BRIEFLY 73

Figure 6.8: Temporal development of velocity field in a free jet [Hemmer 1994]

The phase velocity is seen to vary along the jet. The wave profile will become deformed
with time: Those mass particles which already move faster than the average velocity
(v > 0) will be moving still faster, and those moving slower will increasingly slacken
speed. This has been plotted in Figure 6.8, in a reference system moving with the
average velocity c. The velocity profile will become steeper and steeper. Mathematically,
multivaluedness will occur, as is indicated in the figure.” Which is of course physically
impossible: Shock fronts will occur, as indicated by removal of the shaded parts of the
curves; physically, jumps will develop.

Dissipation: If the second derivative in the Burgers equation (6.25) is neglected, the remain-
ing nonlinearity will produce shocks of the type considered above. The second derivative
will produce the opposite effect; remove instead the nonlinearity and you will obtain a

diffusion equation:
ou  0%u

ot 0x?

Qualitatively, it will make sharp profiles become ’smeared out’ with time,?

as is drawn

"See for instance [Papatzacos 2003] for a more complete description of this phenomenon in terms of char-
acteristics.
8The solutions of this equation are more adequately described in [Papatzacos 2003].
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Figure 6.9: Discontinuous jump function under the influence of a diffusion equation

in Figure 6.9.

We may therefore interpret the solution (6.29), drawn qualitatively in Figure 6.7a, as an
equilibrium between the tendency for nonlinear shock development and the dissipative
front smearing. Such solutions are also often denoted as shocks.

Dispersion: Suppose that a given harmonic plane wave u ~ cos(kz — wt) has a k-dependent

phase velocity, with the dispersion relation
w(k) = cok — BE> (B> 0)

It can be easily checked by insertion that this dispersion relation follows from the wave
equation

ou ou u
o ot
Such waves have a constant phase velocity in the limit of infinite wavelengths, and
a weakly k-dependent phase velocity for shorter wavelengths. A wave which is a su-
perposition of such plane waves, will usually become broadened with time due to the

dispersion.
Eq. (6.31) can be considered as a linearized (and scaled) version of Eq. (6.26). That
suggets the following interpretation of the pulse solution of the KAV equation: Eq. (6.30)

and Figure 6.7b describe an equilibrium between nonlinear shock development and dis-
persive pulse smearing.

=0 (6.31)

The result of Problem 6.3 is that a certain transformation of the dependent variable will

bring the Burgers equation on a linearized form; a linearized diffusion problem emerges. It is
therefore easy to construct solutions with several solitary waves of the type (6.29) simultaneosly
present. Based on the diffusion representation one notices easily that coexisting single waves
will not conserve their form and velocity after a collision; rather, they will combine into one
new solution. Thus, the solutions of the Burgers equation are not solitons.

The KdV solution (6.30) can be written as

2

() = 12% InU(z, t) (6.32)
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where

Uz, t) =1+ f, F(z,t) = e~ Vela—zo—ct)

The transformation (6.32) does not produce a linear equation for U, but it is still useful in
the search for solutions comprising several solitons [Hemmer 1994|. Let us cite the result for
two superposed waves:

Cc1 — C 2
f = f1+f2+f1fz%, (6.33)

i = e~ Vei(z—zoi—cit)
This expression is an exact particular solution of Eq. (6.26) with the transformation (6.32)
applied. For t = t* = (zg2 — z01)/(c1 — c2) the separate solitary waves f1 and fo will have
the same maximum positions. In the limits ¢ < t* and ¢ > t* the expression (6.33) will
represent the two separate solitary waves at large distance from each other, however with
their order changed in the two limits—after the ’collision’ each of the solitary pulses emerge
again with unchanged form and velocity. Accordingly, we notice that the KAV equation
possesses solutions which are solitons.
There is good reason to assume that J. Scott Russell was chasing a soliton!

6.3 Problems

Problem 6.1 Show that in the limit F; > 1, the ratio between mechanical energy lost in a
hydraulic jump and the incoming energy will approach 1.

Problem 6.2 Water flows with the rate 5.4 m®s~! under a sluice gate in a channel with
rectangular cross-section and width 3.5 m, resulting in a water depth of 0.38 m. A
hydraulic jump occurs downstream of the sluice position. Calculate the water depth
downstream of the jump, as well as the mechanical power dissipated during the jump.

Problem 6.3 Show that the Burgers equation becomes linearized by the Cole-Hopf transfor-
mation 9
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