Chapter 9

Flow separation and flow attachment

We have already postulated that the flow in the boundary layer may separate and set out from
the boundary, so that the nonviscous flow becomes restricted to a volume less than what is
geometrically maximal. In this chapter we will give an empirical description of the separation
phenomenon and its opposite, flow attachment, and also use the equations of motion to deduce
conditions for separation to appear.!

9.1 A qualitative common trait

Figure 9.1 shows a 2D flow past a symmetrical block on a wall, at small and large R. De-
spite a considerable qualitative difference of behavior,they have one trait in common: A flow
separation at a separation point S on the wall upstream of the block, with retrograde flow at
the opposite side of S, as indicated in Figure 9.2. Boundary layer separation (R > 1) may
thus be considered as a special case of flow separation, which is a more general phenomenon.
Since u(y = 0) = 0, the distinction between the flow upstream and downstream of S is in
sgn du/dy| ,—o:

e A separation point for flow in the = direction has g—Z ly=0 =10

9.2 Conditions for flow separation

In what follows we will consider a simplified situation, which is adequate for presenting the
basic behavior:

e Stationary 2D flow, e, parallel to and &, normal to a wall
e Arbitrary R

The vorticity will have only one component, which may be treated as a scalar:

u = (u,v,0) (9.1)
w = (0,0, 9.2

1t is largely based on the presentation in [Tritton 1988].
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Figure 9.1: Streakline patterns for 2D flow at a) R = 0.02 and b) R = 3300

The definition ¢ = djug — doug = Ov/dx — Ou/dy implies:

% _ 0% 9%u

— _ 9.3
Oy Oxdy  Oy? (9:3)
At the wall (y = 0), because of the boundary conditions v = v = 0 for alle x:
ou Ov
. = =|._n=0 4
O ’ny O ’ny (94)
Using the continuity equation (?7) we get:
Ov 0%
—_— _ = _— — = 9-5
2y ly=0 = 5 o9 ly=0 (9.5)
Thus, for the vorticity at the wall the following condition holds:
ou
= — =0 9.6
(= -5 w=0) (9.6
0 0%u
L = (v="0) (9.7

ay 0P
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Figure 9.2: Typical flow pattern at point of separation

Figure 9.3: Retrograde circulation and reversed vorticity

This implies that the vorticity at the wall changes sign at the separation point. Thus, sepa-
ration implies the existence of a region where the vorticity has the opposite sign of compared
to elsewhere in the flow. For a flow situation like that in Figure 9.2,2 it means that apositive
(¢ is present at flow separation. However, the region with ¢ > 0 has to be less than the total
region with retrograde circulation. This is illustrated in Figure 9.3, where the vorticity in the
standing eddy’s center necessarily has the same sign as upstream of the separation point.
The considerations above show that in the x componenet of the Navier-Stokes equation,
(9u+ ou 1(910+ 82u+ 0%u
U—t+v—=———"—4+v—+r—

Ox Oy p Oz Ox? 0y?
only two terms will be different from zero infinitesimally close to the wall (irrespectively of
whether separation occurs or not):

10p 0%u

2The z axis points out of the paper, in the direction of the reader’s eyes.
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Accordingly:
Lop 06
pOx dy
We have found a relation between the pressure gradient along the wall and the vorticity
gradient normal to the wall. It is a general relation in the sense that no assumptions about
R have been made; the relation holds for creeping flow as well as boundary layer flow.
With flow and vorticity given by (9.1) and (9.2), we have (w-V)u = 0. The remaining
non-disappearing component of the vorticity equation (??) simplifies to

(u-V)¢ =vV% (9.10)

0 (9.9)

As mentioned in the discussion in Chapter 2, and analogous to properties known from usual
diffusion equations, the term vV?2( describes diffusion of vorticity down a vorticity gradient,
in the direction of smaller absolute values of the vorticity.

If, for the choice of reference system in our example, there may be any regions with a
positive ¢ out in a flow region with otherwise predominantly negative (, it follows that there
must be a region for y = 0 (where vorticity is created) with ( > 0 and 9¢(/dy < 0, to get
diffusion of positive vorticity out from the wall. It follows from Eq. (9.9) that

e Op/0z|y—o > 0 is a necessary, but not sufficient, condition for flow separation (for flow
in the positive = direction)

We have thus found an argument for the boundary layer classification which was introduced
in the previous chapter. For R > 1 we have dp/0x ~ Jpo/0x (A neglisjerbar), so that an
unfavorable pressure gradient implies the possible existence of regions with positive ¢ in the
flow, and accordingly flow separation.

Whether flow separation actually occurs if the condition above is satisfied, will depend
on the full vorticity balance as expressed in Eq. (9.9). Even for dp/0x|,—o > 0, diffusion of
vorticity from regions with ( < 0 may counteract the presence of positive ¢ in the flow, so
that separation will not take place.®> The eventual presence of separation will depend on two
things:

o Whether the flow develops a region at the wall with an unfavorable pressure gradient

e Whether this gradient is unfavorable enough

To determine whether the latter is satisfied is usually difficult. Both aspects depend on the
type of flow, and thus on R.

Figure 9.4 shows some idealized velocity profiles elucidating the above relations. The
vorticity distribution has some similarities with the distribution of —du/dy for small y, with
identity in the limit y — 0. The form of the curves is determined by the sign of §%u/dy? at
the wall; if it is positive, it implies that the velocity distribution must have an inflection point
at some distance from the wall. If 9%u/0y? |, (and thus also the pressure gradient) is large
enough, it means that a region with retrograde flow may occur at the wall. In Figure 9.4d) we
see such an explicit signature of separation; the profile may stem from a point downstream of
a separation point.

3Without the diffusion mechanism, however, there would not be any mechanism to create regions with a
positive (.

“In the next chapter we will see that an inflection point in the velocity profile implies the existence of an
instability of the laminar flow at large R, corresponding to the Kelvin-Helmholz instability. However, that
instability is not related to the separation phenomenon.
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Figure 9.4: Velocity profiles and corresponding velocity gradient profiles for a) favorable pres-
sure gradient, b) zero pressure gradient (the Blasius profile), ¢) and d) unfavorable pressure
gradient

9.3 Separation of creeping flow

Figure 9.5 shows an example. As in Figure 9.1a) the streamline pattern is symmetric, in
addition to the symmetric geometry of the boundaries. This is due to the reversiblilty of the
flow, as discussed in Chapter 3. The reversibility predicts retrocirculating regions with flow
separation both upstream and downstream, as also observe in the figure.

One may visualize that the emergence of two regions in Figure 9.5 with retrocirculation
as follows: The viscosity brings about that for a flow to pass between the cylinder and the
wall, a pressure decrease larger than the typical pressure decrease at the cylinder is needed
there. At the wall upstream of the passage the pressure has to increase to make that happen;
downstream it has to increase once again because the flow near the wall has experienced a
decrease larger than the typical decrease, while passing between the cylinder and the wall.

9.4 Boundary layer separation
At large R the flow is divided into

e nonviscous zones

e boundary layer zones

and flow separation is associated with the latter.®

Such separation may occur for instance at the wall in a diverging channel, due to pressure
increases described by Euler’s equation. If a wall has a sharp edge, separation will usually
take place there.

Laminar as well as turbulent boundary layers may separate. (For the latter, the streamlines
in Figure 9.2 will denote the averaged flow.) Usually, turbulent boundary layers will need the
largest distance with an unfavorable pressure gradient before separation takes place.

5The previous analysis in this chapter did not include stagnation points. They are not classified as separation
points.
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Figure 9.5: Streakline pattern in a 2D flow past a cylinder near a wall, at small R

Figure 9.6: Flow past a wing profile at large angle of attack

The flow pattern for boundary layer separation will depend strongly on the type of flow.
Figure 9.6 shows an example at a stall (see Chapter 7). Over the wing, downstream of the
separation point, there will be a fluctuating retrocirculating flow.

9.4.1 Boundary layer separation and drag

In a flow with separation as a significant phenomenon, vorticity produced in the boundary layer
becomes transported out into regions originally assumed to be irrotational. The presence of
separation may modify the nonviscous flow to a considerable degree, in particular concerning
the pressure distribution. d’Alembert’s principle loses its validity more due to a changed
pressure distribution than due to surface friction.

As an example, in Figure 9.7 we see the pressure distribution at a cylinder in flow. In a large
R region, including the value used in the figure, separation will take place a little upstream of
the largest cylinder width. The pressure asymmetry due to the vorticity produced, will give
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Figure 9.7: Pressure distribution at a cylinder. Broken line: Nonviscous solution; solid line:
Measured distribution for R = 1.9x10°

rise to the drag force.

As known from the introduction to dimensional analysis in basic courses, the drag coef-
ficient Cp, defined as in Eq. (??), is roughly independent of R when the viscosity is not a
relevant’ parameter. The irrelevance may be interpreted as follows: If the point of separa-
tion stays roughly fixed, then pressure differences will be proportional to the squared velocity
according to Bernoulli’s equation, and so C'p will stay roughly independent of R. Jumps in
the value of Cp occur when the point of separation moves significantly, for instance when
the boundary layer becomes turbulent. See Figure 9.8, where the result of the transition to
separation of a turbulent boundary layer is seen as a jump towards lower values of Cp at
R ~ 4x10°. The lower value occurs because the region with a changed pressure distribution
will cover a smaller fraction of the cylinder area, when the separation point moves downstream.
The effect of the type of flow on the drag coefficient is also shown for a sphere® in Figure 9.9,
where sand grains glued to the sphere’s surface make the boundary layer turbulent.

For streamlined bodies, separation can be delayed or removed altogether, except at the
downstream end where the boundary layers meet and form the wake; see Figure 9.10. Despite
a larger surface area and larger viscous drag, the absence of large pressure differences can
make Cp become as small as 1/15 of the value for a cylinder with the same thickness.

9.5 Attachment and reattachment. The Coanda effect

As shown already in several figures in this chapter, also flow attachment may occur, a phe-
nomenon being the opposite of flow separation. At small R, reattachment may occur as a
consequence of the reversibility of the flow. At large R we talk about the Coanda effect, the

5In much of the technical literature, Cp is defined by introducing the actual area instead of the square of
a characteristic length. As mentioned in another footnote in Chapter 7, that would correspond to multiplying
the value of ’our’ Cp for a sphere (but not for a cylinder) by 4/7. In Figure 9.9 such modified Cp values have
been used.
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Figure 9.8: Drag coefficient as a function of R for a sylinder

Figure 9.9: Separation point on a sphere at R ~ 10, for a) smooth surface and b) rough
surface on the sphere’s upstream end
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Figure 9.10: Flow past a) streamlined body and b) cylinder

Figure 9.11: Attachment at large R: a) Coanda effect, b) boundary layer reattachment

tendency of a free jet to entrain the adjacent fluid. If such a jet is close to a wall, pressure
effects may make the jet suck itself ttowards the wall; see Figure 9.11a.” Turbulent flow has
a stronger entrainment than laminar flow (see a later chapter), and a stronger tendency for a
Coanda effect to occur. The effect is usually stronger in 2D flow than in 3D flow; in the latter
case, inflow from the sides may lessen the unwanted pressure effects between the jet and the
wall.

The entrainment process may also occur for separated boundary layers, and may cause
reattachment of the boundary layer as indicated in Figur 9.11b, provided the unfavorable
pressure gradient does not reach far enough. This may happen without a transition to a tur-
bulent boundary layer. Often, however, a laminar boundary layer flow will become turbulent
just after separation, which may make it attach to the wall again. See Figure 9.12, where a
subsequent turbulent separation is also shown.

9.6 Problems

Problem 9.1 Consider flow of a fluid with density p and nonviscous velocity u along a wall
with length L. Close to a separation point it must be possible to have satisfied both (1)
the Bernoulli equation and (2) the relation u?(y) < Au2. Show that the minimal order
of magnitude of the pressure increase Ap (corresponding to Au3) over a distance Ax

"In 1987 /1988, at a local institute for applied research, an ’accelerated test’ of an injection valve on a well
injection pipe was to be performed. The injected fluid was assumed to mix into the fluid flowing in the annulus,
and sand was added to it to increase the friction. However, a Coanda effect occurred: The jet attached to
the outer pipe and ground a hole in the wall! Fortunately, this took place in a surface test stall, and not in
downhole test facilities.
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Figure 9.12: Separation points at a cylinder, for various R values

along the wall, for a boundary layer separation to occur, is given by

&)2/3

Ap ~ pu?
PPUO(L



