Appendix E

Waves

E.1 Elementary plane-wave formalism

Consider the expression!

Ae? | 0 =kr—uwt+a (E.1)

where exp (if) = cos @ +isin , r being a position vector and ¢ the time, and « a constant. For
a fixed t = ty the phase 6 will have a fixed value 6§ = 6y everywhere in a given plane with k
as a normal vector, since r’s components parallel to the plane do not contribute to the scalar
product. Without any loss of general applicability we will in what follows assume

k=ke;

with the plane’s position at x = xg for ¢t = £y. For later times t = tg + At we have 6 = 0 for
x =z + Az, and exp(if) will still have the initial value for all (At¢, Az) for which

kxrg — wty + o+ kAx — wAt =60y + 27N N integer

Points with a constant phase will thus be moving in the positive « direction with the phase
velocity

For a constant ¢ = t¢, exp(if) will have the same value for all
r=x9+ N, N integer
and for a constant x = x¢, exp(if) will have the same value for all
t=1ty+ NT, N integer
with A and T the wavelength and the period, respectively. Further definitions follow:?
k= 2; wave number (E.3)
2m
W= = 2r f angular frequency (E.4)

!This summary is included for the benefit of eventual students without physics as a specialty.
2The angular frequency symbol not to be mistaken for the vorticity!
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192 APPENDIX E. WAVES

Thus, Eq. (E.1) describes a periodic field of values moving in the k direction with velocity
V', a wave. Since only one frequency is involved, this wave is called monochromatic, and a
plane wave since all points in a given plane normal to k have the same value for the expression
for a given t. If the amplitude A is replaced by a vector A, the wave is transversal for A | k
and longitudinal for A || k.3

The physical quantities of the wave are implicitly represented by either the real or the
imaginary part of (E.1). The real part has been used explicitly in Chapters 5 and 6 to
describe the wave, in the case of the linear surface waves with the amplitude a function of the
depth:

A(z) cos(kx — wt)

The wave number is 27 x the number of wave crests per unit length. If the medium of
propagation of the wave is moving relative to an observer, this person will count a different
number of tops passing per unit time compared to the case where the medium is at rest. This
change in (angular) frequency is called the Doppler effect, and by counting crests one can
easily satisfy oneself that the change in frequency is

w—w=kusg (E.5)

where u; is the medium’s transport velocity.
The functional form of the frequency’s dependence on the wave number is called the

dispersion relation:
w=w(k) (E.6)

For a constant phase velocity, w(k) = Vk.

E.2 Group velocity

For a wave with the dispersion relation w = w(k) the group velocity is defined by

dw
U=-"2 E.
g (E.7)
Its relation to the phase velocity V is
w = Vk
dv
dv = Vdk+ k—dk
w + Ik
dv
U = V4+k—
+ dk
Or: av
U=V -)\— E.
o (E.8)

For a wave composed by plane waves with different frequencies, evidently the group velocity
will contain more information than the phase velocity of a wave of any single wave. Let us
consider the physical interpretation of the group velocity:

3Surface waves in a liquid is an example of an intermediate case, concerning the movement of the fluid
particles.



E.2. GROUP VELOCITY 193

We start by a wave given by a Fourier superposition (see also Appendix G) of plane waves
with frequencies in a narrow interval of width 2e around a central frequency wg.* With the
complex formalism and the real part chosen as representing the physically relevant quantity,
we denote the wave’s deviation from the equilibrium position by

ko+e )
C(z,t) = / a(k)e'Fe=) g (E.9)
ko—e
The exponent can be rewritten as
kx —wt = kox —wot + (k—ko)z — (w —wo)t
= (kor —wot) + (Akz — Awt)
Thus,
) ko+e .
C(@,t) = Oz, H)doz—=0d)  O(q, 1) = / a(k)e! Ok z=80t) g1 (E.10)
ko—e

This can be interpreted as a high “carrier frequency” wy modulated by a time dependent
amplitude C(z,t). The propagation velocity of this amplitude is

de @ _ Aw
a  t Ak
dw
~ — E.11
e (E.11)

which is precisely the group velocity U. Depending on the sign of dV/d\, the group velocity
may be smaller or larger than the phase velocity.

The modulated shape of the wave can be interpreted as a representation of information,
or of energy if the latter quantity is related to the deviation from the equilibrium position.
We may therefore interpret U as the propagation velocity of the energy and information of
a wave. For a visualization, let the Fourier superposition be a pure addition of two simple
adjacent frequencies, with k1 ~ ko ~ k and wy ~ wy ~ w:

cos(kix — wit) + cos(kox — woat)
. (kl + kz)x — (wl + wg)t cos (/Cl — kg)x — (w1 — wg)t
2 2
1 1
~ 2cos(kx — wt) cos(iAkx - EAw t) (E.12)

= 2co

This is a rapidly varying signal with frequency w, with a superposed slowly varying signal
with frequency %Aw. The latter will have nodes where the deviation from the equilibrium
position is zero. If the wave’s energy is related to the deviation, then the energy cannot pass
through a node of the wave with frequency %Aw.

Thus, the energy propagates together with this superposed wave whose group velocity is
Aw/Ak. If w is not proportional to k, the group velocity will differ from the phase velocity
w/k. For surface waves on water this was shown explicitly for the case of a single plane wave.
(The same holds in the limit Ak, Aw — 0.)

If a superposition is to represent an “isolated” wave, a wave packet, one cannot stick to
a narrow range of frequencies. In this case the integration has to run over all wave numbers
from —oo til 4o0.

“The final reault will hold equally well for a single plane wave with a nontrivial dispersion relation, with
plane surface waves in a liquid (Chapter 5) as an example.



