Appendix D

Polar and axial vectors

These notions refer to the properties of vectors under reflections, their parity properties. One
can consider reflection of the physical system in a plane [Hylleraas 1950], with the coordinate
system fixed, or equivalently inversion of all coordinate axes [Goldstein 1980] with the physical
system fixed. We will use the latter in what follows.

Let r denote a position vector in a 3D Euclidean space, and p a momentum vector in the
point. After inversion of the coordinate directions the two vectors’ directions in space will be
unchanged, so the transformation rule will be:

e Polar vectors:

T — X =T
(D.1)
pi — Pi=-Di
The angular momentum L,
L = rxp
L; = €jrxipk
has a different rule of transformation:
o Auxial vectors:
Li — L= e€jaipy
= €ijkTjPk
=L, (D.2)

The components of polar vectors change sign during the inversion, those of axial vectors do
not. Among examples of polar vectors in these lecture notes:

r, V, u
One example of an axial vector is the vorticity:

w=VXxXu
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(also a vector product). The vector product of two polar or two axial vectors will be an axial
vector; considerations of sign will correspondingly show that the vector product of one polar
and one axial vector will be a polar vector.!

Axial vectors have an associated direction of rotation, a handedness: An axial vector can
equivalently be expressed by the components of an antisymmetric tensor. See the example in

Appendix B,
1

Nij = §€z‘jkwk

where the antisymmetric tensor 7;; is a measure for the rotational property of an arbitrary
velocity field, like w.

A lefthanded coordinate system results from the inversion of a righthanded one. An axial
vector thus changes handedness because its components, referred to the coordinate systems,
do not change.

If one side of a vector equation decribing a physical relation is polar (or axial), then
also the other side must be polar (or axial). That follows because a physical process and a
reflected copy of it must be physically equivalent.? In Chapter 4 that requirement is used in
the derivation of the velocity field for Stokes flow.

*

In the preceding text we got a glimpse of some fundamental relations between vectors
and the structures called tensors.> Both can be related to the notion of differential forms,
mathematical structures which however are well beyond the scope of these lecture notes. The
introduction of tensors in this course is of the traditional operational kind for fluid mechanics:
They are structures which arise in a natural way in the description of tensions in a surface,
including supporting structures like Levi-Civita’s which contribute to simplifying the notation.
On that background it is not easy to give a consise reason for an equation like (B.12), beyond
stating that it has a form which does not favorize any direction in space compared to the
others. In other derivations of Eq. (B.13) at the same level of description, see for instance
[Papatzacos 2003], one neither avoids postulates.

The energetic student is therefore advised to indulge in a course of diffential surface ge-
ometry!

nstead of polar and axial vectors, mathematicians use the notions vectors and bivectors.

?Be warned: That isn’t the case for weak interactions in atomic physics.

3The etymological origin of these monsters with 2 or more indices which from time immemorial have terrified
students, is precisely in the mechanics of continuous media, where the tension in a surface has to be specified
by two directions in space—that of the force and that of the surface normal.



