Appendix B

Derivation of the Navier-Stokes
equations

The derivation is assumed to be known. We will summarize it here because the formalism
is also used in the derivation of the expression for viscous energy loss in Chapter 2. It is
presented for a compressible fluid, with eventual specialization to the incompressible case. An
alternative version of the derivation of Eq. (B.13), also in tensor notation, can be found in
[Papatzacos 2003].

B.1 The stress tensor
We introduce the stress tensor ||o|| (see also Eq. (?7)), a matrix with components
Oij = —pél-j + Tij (Bl)

where 7;; contains stresses due to the viscous effects. The first index specifies which component
of the force per unit area one considers, the second specifies which surface is considered by the
direction of its normal vector. Some components of the tensor ||7| are shown in Figure B.1.
The viscous tensor 7;; must be symmetric (7;; = 7j;), which follows from momentum balance
for a volume element of fluid (absence of infinite rotation). The total force per unit volume in
the ¢ direction is obtained by computing the variation in the direction of the surface vector.
Using the summation convention,

({“)jO'ij = —0ip+ 8]‘7',‘]‘ (B.2)
We notice that Newton’s 2. law for a unit volume,
pDyu; = 0j0i5 + pgi (B.3)

reduces to the Euler equation (1.24) in the case without viscous effects.

B.2 The angular deformation velocity tensor

The viscous part of the stress tensor will depend upon the fluid properties and upon the
deformation rate for a fluid element. To get a measure of the deformation rate we first
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Figure B.1: The stress tensor

Figure B.2: Relative movement in the fluid

introduce the velocity gradient tensor (;;:
Gij = Oiu; (B.4)

This is the rate of rotation for a line element with direction ¢ due to the component of velocity
in the j direction. The tensor can be expressed as a sum of one symmetric part, e;;, and
another antisymmetric part, 7;;:

Gj = eij +nij (B.5)
1

eij = 5(@‘;‘ + Gji)
1

Nij = 5(@';’ — Gji) (B.7)

Referring to Figure B.2 we compute the rate of strain for the difference §l between two material
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points A and B in the fluid:
(61)? = dx; O (B.8)

Dy(61)? = 26x; Dy(dx;)
= 20x; du;
= 20x; 0z Oju,
= 20x;0xje; (B.9)

The rate of strain thus depends upon the components of the symmetric combination e;; in
Eq. (B.6), the angular deformation velocity tensor'. As can be easily checked, the combination
Gij + ¢ji measures the rate of the angular deformation at the edge ij of a cartesian volume
element. Thus, the tensor |le|| measures the rate of deformation of a fluid element.

The antisymmetric combination ||n|| in Eq. (B.7) contains no deformation contributions:

1
mij = 50 —dju;)
1
= §€ijk€kmn8mun
1
= §€ijkwk (B.lO)

Thus, 7;; corresponds to the worticity, Eq. (1.20).2 Tt is a measure of the property of the
velocity field which corresponds to rotation without deformation.

B.3 Newtonian fluid

For a Newtonian fluid the components of the stress tensor depend linearly on the components
of the angular deformation velocity tensor:

Tij = Nijkier (B.11)

Since physical processes are independent of the axis directions chosen, |A|| must be an isotrop-
ical tensor, and the most general form of such a tensor is (see also the comment at the end of
Appendix D)

Aijrr = Nijont + 0051 + x0idjk (B.12)
This gives
Tij = Ajerr + (£ + X)eij
= 2H€ij + )\(Sijekk
2
= p(9u; + Oju; — g(sijakuk) + (03 O u, (B.13)
where the coeflicient 5
C=A+ 3H (B.14)

!This tensor can also be found in the literature without the factor 1/2 included.
2The vorticity vector is an example of an azial vector, whose components are given by the components of
an antisymmetric tensor, as distinct from a “usual” (polar) vector. More about axial vectors in Appendix D.
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is defined such that the expression in the parentheses on the RHS of Eq. (B.13) equals zero
for i = j (with summation implied).? *
Eq. (B.13) is then inserted into Egs. (B.1) and (B.2):

1
0;mi; = p((0;07)ui + 50:(5u5)) + CO:(9ju;) (B.15)
From Eq. (B.3) we then get the equation of motion for a compressible Newtonian fluid:
pDiu = —Vp + pg + uV>u + (C + %)V(Vﬂ) (B.16)

In the incompressible case we get Eq. (1.25), which is the Navier-Stokes equation.

The formalism in this derivation is quite analogous to the one for the static dependence
between stresses and deformations in an elastic continuous solid [Sommerfeld 1964]. The exis-
tence of two coefficients of viscosity, u and ¢, corresponds to the appearance of two constants,
Young’s modulus and the Poisson ratio, in the description of the elastic properties.

Among expressions for the components of ||7]| in curvilinear coordinates we will present
two in spherical and one in cylindrical polar coordinates (see Appendix A) for the special case
of an incompressible fluid, to be used in Chapter 4:

Trr = 2Q ag:f (spherical) (B.17)
10u, Oug g )
= - — - h 1 B.1
Tor L Y s (spherical) (B.18)
B 10u, Ouy ug o
Tor = ,u{r 9 5 r} (cylindrical) (B.19)

By choosing a velocity field with e1o = 20u/dy, and the other e;; = 0, we see that the definition of p is
such that it coincides with the basic definition of the viscosity coefficient from elementary courses.

“The viscosity coefficient ¢ is usually of the same order of magnitude as . For compressions or dilatations
(p # konstant) ¢ will get contributions from relaxation processes where the substance adapts to a new ther-
modynamical equilibrium. Such processes are irreversible and involve a change of entropy. They take place
over a characteristic period of time, the relazation time. Therefore, ¢ cannot be a constant, properly speaking
[Landau and Lifshitz 1987]; it depends on the order of magnitude of the time scale of the fluid dynamical
processes as compared to the molecular relaxation time.



