Appendix A

Relations for the V operator

A.1 Proofs of the product relations in Chapter 1

To prove Egs. (1.10) and (1.11) we will use two relations supposedly known from basic courses
in physics or mathematics. Let w and A represent vector fields, and ¢ a scalar field.

o (Gauss’s theorem:
/ divudV = 7{ u-dS (A.1)
\% S
o Stokes’s theorem:

/S(curlu)-dS = 7{Lu-dL (A.2)

V is a volume, S a surface, and L a curve embedded in the surface. The integral sign § denotes
a closed (og thus enveloping) surface or curve. The line element dL is a vector tangential to
the curve. In the surface element dS = ndS, n is a perpendicular unit vector in a point on
the surface. For a closed surface, n points by definition out of the enveloped volume, and the
direction of circulation around a closed curve corresponds to a positive rotation around the
normal vector on the enclosed surface. In Eq. (A.2) it is assumed that curl w is continuous.

Let now u = —grad ® in Eq. (A.2). Then the RHS equals zero, since the integrand in it
is a total differential

w-dL = U; d.%'i = —8¢‘I>d1’i = —dP

and thus the integral around the closed curve equals zero. Since the LHS must hold for
any surface S for the arbitrary closed curve L, the integrand must satisfy curlgrad® = 0.
Eq. (1.10) is thus proved.

Alternatively, let us then replace u with another vector field A in Eq. (A.2), and let the
curve L shrink to a point in such a way that S becomes a closed surface enclosing a volume.
(I the conditions for Stokes’s theorem, the surface S may have the form of a “bag”.) Then

7{ (curl A)-dS = 0
S

because the line integral on the RHS becomes zero when the integration path shrinks to a
point (provided the vector field A is continuous). If we then let w = curl A (A thus a vector
potential) in Eq. (A.1), we get divcurl A = 0, since Gauss’s theorem must hold for all choices
of volume V enclosed by a surface S. Eq. (1.11) has thus been proved.
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To prove the validity of Egs (1.12), (1.13) og (1.14) we use the contraction relation
€ijk€imn = 5jm5kn - 5jn5km (A3)
between the Levi-Civita tensor (1.9) and the Kronecker delta (1.5). Inserting, and using that
the Levi-Civita tensor does not change its value if the indices are rotated, we get:
(curlcurlw); = €10;€kmnOmun
= ekijekmnajamun
= (5zm5]n - 5zn5jm)ajamun
= analun - ajajui
= 9i(divu) — V3u; (A.4)

(uxcurlu); = Eijkujfkmnamun
= (5zm5]n - 52n5]m)ujamun

= %al-(fzf) — (u-V)u, (A.5)

Egs. (1.12) and (1.13) have thus been proved. To prove (1.14) we first take the curl of the
LHS of Eq. (A.5), and use the rule for derivation of a product:

(curl(u x curlw));
€k 0} €kmn Um EnopOolp
= (0imdjn — Oindjm)€nopQjumOotyp
= €op0juiOptp — €iop0ju;Opuy
= €jop(9jui)Dotip + €jop(1i0j) oty — €iop(D;1uj) Doty — €iop(u;0;) Doty
= ((curlw)-V)u; + (VxV)-uw)u; — (V-u)(curl u); — (u-V)(curl u); (A.6)
The term with VXV on the RHS is zero because of the usual rule for a vector product. However

the three Levi-Civita symbols in curl(uxcurlw) can also be contracted in an alternative order,
corresponding to taking the curl of the RHS of Eq. (A.5):

(curl(wxcurlu)); — (curl((w-V)u)); = €;10;(unOpun)
= ewk(ajun)(akun) + el-jkunajakun
=0 (A7)

That the RHS of Eq. (A.7) equals zero, follows by letting the ’'dummy’ summation indices j
and k interchange their names (the sum being invariant, of course). The Levi-Civitd symbol
is antisymmetric in the interchange of two indices, such that

€ijk = —€jik
Since the rest of the factors in each product in the nest-to-last line of Eq. (A.7) are symmetric

in the interchange of j and k, we find that each term must be equal to itself with the opposite
sign, and thus must be zero.

Egs. (A.6) and (A.7) taken together give Eq. (1.14), which has thus been proved. Also the
relations (1.10) and (1.11) could have been shown in a simple way by the symmetry arguments
used above.
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Figure A.1: Cylindrical (a) og spherical coordinates (b)

A.2 Expressions in curvilinear coordinates

The following expressions refer to the quantities defined in Figure A.1. A more precise notion
of the two coordinate systems we will restrict ourselves to consider, is cylindrical and spherical
polar coordinates. Notice that e, denotes different things in the two coordinate systems.

The summary below is not assumed to be exhaustive. We will only include expressions
which are needed for the exposition in these lecture notes, as well as in problem solving.
Formula collections like [Rottmann 1995| give a more complete survey.
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e (Cylindrical coordinates:

U = Ur€, + Ugly + UL€, (A.8)
8 10 8
ou, - 1(9 (9 »
Vo = 5; + UT += (;:f + 2 (A.10)
6u¢ Ugp 1 Bur
o O w1 A1l
(Vxu) o + - T 00 ( )
Our  ug Ouy ou, Ui

(w-V)u)r = um=+ —- -2 (A.12)

78¢ +u282 r

9%u 10u U 1 0%u 0% 2 Ou
2 o T - r Y L r ro __qb
(Vi) = or? + r Or r2 + r2 O¢? + 022 1?2 0¢ (A.13)

0%u 10u U 1 0%u 0%u 2 Ou
2 _ ¢ L U Uy - T U ¢ L 220 A.14
(VZu)g or? +7" or 7’2+7"2 0?2 + 022 +7’2 0¢ (A-14)
0%u 10u 1 0%u 0%u
2 _ 4 720, -7 72 z Al
(Vu) or? + r Or * r2 O¢? + 022 (A.15)
dV = rdrd¢dz (A.16)
e Spherical coordinates:
u = uré,+ugey+ U¢é¢ (A17)
0 10 1 0
= € Ep———— Al
v "or e 89+e¢rsin98¢ (A.18)
B ou, 2u, 10ug Uy 1 Ouy
Vu = o + . + o0 + cotg 6 " +rsin9 96 (A.19)
dV = r*sinfdrdfde (A.20)

Notice the difference between the following two expressions in the D-dimensional (D € {2,3})
spherically symmetric case:

1 9 0P
2 — Y, D-1Y9* .
Vo = D15, (r o ) (spherical symmetry) (A.21)
1 0 ou U
2 _ D-19Ury o\ Ur .
(Vu), = oy (r 5 )— (D 1)—742 (spherical symmetry) (A.22)

It arises because @ is a scalar, independent of the choice of coordinate system, while u, is a
vector component from an expression which had its basic definition in cartesian coordinates.
For D = 2 the expressions may refer both to plane polar coordinates and to cylindrical
coordinates with z independence. The factor 7”~!, coming from the div part of V2, arises
because the expression can be interpreted as the divergence of a volume flow velocity.



