Chapter 10

Instability and transition to
turbulence in shear flow

In later chapters we will aim at developing a mathematical description of turbulence. First, in
the present chapter, we therefore include a description of some stages in the transition from
laminar to turbulent flow."! On one hand we will consider linear stabilit theory, applied to

e shear flow stability (in general)
e boundary layer stability (in particular)

On the other hand we will also consider the further development of early instabilities, at stages
where linear stability theory is useless and leads to irrelevant predictions, i.e., essentially an
experimental topic.? We will follow the classification

e flow with med ’patchwise’ turbulence (in shear flow at a wall: boundary layers, pipe
flow, ...)

e flow with the same rate everywhere for generation of turbulence (in ’free’ shear flow:
jets, wakes, ...)

and we will mostly consider the first group.

10.1 Linear hydrodynamic stability theory

Linear stability makes predictions about when a flow becomes unstable with respect to in-
finitesimal disturbances. It cannot predict whether an infinitesimally stable system is stable
with respect to large disturbances.

The basic steps in a linear stability analysis are:

e Start with an (eventually approximate) solution of the equations of motion

1Within the scope of this course it will not, unfortunately, be possible to treat newer developments where
some transitions to turbulence have been identified experimentally as transitions to chaos. Most spectacularly
this is the case for Bénard convection and rotating Couette flow; we may refer to for instance [Acheson 1990],
[Landau and Lifshitz 1987] or [Tritton 1988|. Popularized presentations like [Gleick 1987] may serve as a first
introcuction to these matters.

2The presentation of empirical results in this chapter essentially follows [Tritton 1988].
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e Superpose a small perturbation on it
e Disregard all term of second and higher orders in the perturbation amplitude

e Check whether the perturbation increases or decreases with time

A Fourier decomposition of the perturbation in the spatial coordinates can be done. (A
survey of the use of Fourier integrals is included in Appendix G.) The linear approximation
provides for no coupling between the various Fourier components. Therefore, each individual
component’s influence on the stability of the solution can be studied independently of the
others. Since the Fourier integral can be interpreted as a superposition (for a given ¢) of plane
waves exp(ikr) with a weight function in k space, we can treat all Fourier components in one
mathematical operation by studying a perturbation on the form

AQ x exp{i(kr —wt)} (10.1)

where AQ refers to a perturbation of a quantity @ associated with the flow.> The emergence of
a factor exp(—iwt) follows since we are considering flow stability: A sinusoidal disturbance will
be transported with the flow, and for a given r it will be interpreted as a periodic oscillation
in time. For a given k, w follows from the equations of motion. We use the notation

W= wy + iw; (10.2)
where the sign of w; decides whether the disturbance increases or decreases with time:
e Stability if w; < 0 for all k (necessary condition)
e Instability if w; > 0 for some k (sufficient condition)
Somme comments on the results are in order:

e The growth of eventual unstable modes is exponential according to linear stability theory.
However, higher orders in the perturbation will then become significant after some time,
and the assumption about small perturbations breaks down. Linearized theory can
usually not decide what type of deviation from exponential growth (see Figure 10.1) one
will then have.

e Both w, = 0 and w, # 0 may occur in hydrodynamical stability theory. For w, =0, w; >
0 the perturbation is predicted to grow continuously with time. For w, # 0, w; > 0 a
periodic oscillation with a growing amplitude (see Figure 10.2) is predicted instead; this
is called overstability*. °

Nonlinear stability theory takes over where the linear gives up. This is an extensive field
in Fluid dynamics. We cannot include any of it in this course, and refer instead to for instance
[Drazin and Reid 1981].

3We use a notation for the time dependence different from that of [Tritton 1988] as well as a considerable part
of the classical hydrodynamical literature. There, exp(ct) is used instead of exp(—iwt). When a sinusoidal
perturbation is to be used, using our notation which is the usual one for a plane wave, is an aestehetical
improvement.

*Which may be an untimely name.

SFor boundary layer instability, there is the previously mentioned situation for w, # 0 where a periodic
disturbance increasing in space passes by an observation point by convection (more about that later on). This
is usually not classified as overstability.
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Figure 10.1: Deviations (broken lines) from exponential growth: (A) levelling off, (B) overex-
ponential growth

Figure 10.2: Overstability

How valid are the predictions of the linearized theory? In this course we will treat boundary
layer stability, where good verification has been found, but also pipe flow, where the theory
does not predict the observed transition to turbulence.®

10.1.1 Example: The Kelvin-Helmholz instability

Let us consider a case where two fluids slide smoothly parallel to each other, see Figure 10.3.
We will assume:

e 2D flow of ideal fluids (R — o0)

e Different velocities w; and wuy (without loss of general applicability: w; — wug and
uy — 0, with ug in the x direction along the common surface, where the pressure is py)

e Different densities (although not an essential condition)

e No gravity effects (except eventually as an argument that the most dense fluid flows
below the other)

SFor rotating Couette flow and Bénard convection one also finds good verification, see [Tritton 1988].
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Figure 10.3: 2D parallel flow of two fluids with a surface of discontinuity

e At the outset: Plane surface of discontinuity between the fluids

We will show that the plane surface of discontinuity is always unstable. Let us superpose a
weak, and in principle infinitesimal, disturbance of surface coordinates, velocities and pressure
in the surface of discontinuity, with the perturbations ¢, u’ and p’ being proportional to

ei(kxfwt)

Le., a spatial perturbation with a given k, where w is to be found. The Euler and continuity
equations for fluid 1 with the perturbation included are

By(uo +u') + (o + ') V) (ug + ') = —%V(Po )
V(ug+u) = 0

However, the euqations must also be satisfied for the unperturbed state, with v/ = 0 and
p’ = 0. The terms containing ug and py only will therefore cancel. If in addition we neglect
the term (uw'-V)u/, which is second order in u/, we get a linearized set of equations for the
perturbation. Using also that wg points in the x direction, we get

1

o' + ugdpu’ = —;Vp' (10.3)

Vau' = 0 (10.4)

Taking the divergence on both sides of the Euler equation, and using the equation of continuity,

we get the Laplace equation
Vi =0 (10.5)

By inserting a solution on the assumed form?

we get

—= —k%f =0, f(y)= constant - e=*¥

"We will consider y values corresponding to the transversal displacement of the surface of discontinuity.
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where only the lower sign can be used when the y axis points in the direction of fluid 1:
pl x ei(kmfwt)efky (106)

By inserting this expression into the y component of Eq. (10.3), we find (using index 1 for
fluid 1):
kp'
! 1
U, = ———— 10.7
Yoipr(kup — w) (107)
The displacement of the surface of discontinuity in the y direction is { = ((x,t), and its
velocity of displacement at constant x is 0;(. This must be equal to the y component of the
flow velocity at the surface. To the lowest order, with ufy equal to the value at the surface:

¢ = ul, — updiC

Inserting ¢ o e/ k2=w1) we get:

uy, = i€ (kug — w) (10.8)

By elimination of uj, between Eqgs. (10.7) and (10.8) we get

P = _M (10.9)

A similar calculation would have given the pressure p), on the other side of the surface, the
only differences being 1y — 0 and change of sign since y < 0 and thus p) o< e*¥:

2
Py = C”}i“’ (10.10)

The pressures p} and p), infinitesimally close to the surface on each side of the surface of
discontinuity, must be equal:

pr(kug — w)? = —pow?
Solving for w, we find that the given perturbation corresponds to two modes which both have
an imaginary frequency component:

£1 . P2
w=ku 1+1,/— 10.11
0P1+P2( Pl) ( )

We notice that the flow will be unstable even with regard to infinitesimally small disturbances,
because of the mode with w; > 0.8

In the case with a finite viscosity (finite R) one has no longer a sharp tangential disconti-
nuity. The velocity will vary from one value to another across a layer with a finite thickness,
see Figure 10.4. Both experimental and theoretical results indicate that the instability sets in
after a short time for large R also in this case. For later reference to this type of instability,
we notice that for finite R the velocity profile has an inflection point.

A wellknown experimental observation of the Kelvin-Helmholz instability can be made
with layered fluids, where a lighter fluid flows on top of a heavier in a thin vessel. When the

80mne may get a more intuitive understanding of the reason for the instability by considering Figure 10.4d/e.
Once a perturbed flow has developed, the fluid flowing past a 'top’ formed by the fluid on the other side will
have to move faster than the fluid in a 'trough’. Bernoulli’s equation will then predict a pressure distribution
which will make the perturbation grow.
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Figure 10.4: Plane parallel flow at (a) finite and (b/c) infinite R, which (d/e) is unstable

Figure 10.5: Kelvin-Helmholz instability with layered fluids

vessel is made to slant, the gravity will introduce a motion tangential to the surface. If the
destabilizing effect due to it is strong enough to overcome the stabilizing effect of the layering,
one may observe patterns as in Figure 10.5.°

10.2 Shear flow instability

As indicated by Figure 7?7 antyder, many of the velocity profiles we have treated in this course
are of the shear flow type. We classify profiles without layering as follows:

9A even more wellknown observation, in particular in Stavanger, is the wavy motion of the polar front
(the borderline between polar air and warmer air). With additional help from the Coriolis acceleration the
instabilities develop further into low pressures.



