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Classical sensitivity analysis of machine learning regression models is a topic sparse in literature. Most of
data-driven models are complex black boxes with limited potential of extracting mathematical understanding
of underlying model self-arranged through the training algorithm. Sensitivity analysis can uncover erratic
behavior stemming from overfitting or insufficient size of the training dataset. It can also guide model
evaluation and application. In this paper, our work on data-driven sensitivity analysis of complex machine
learning models is presented. Rooted in one-at-a-time method it utilizes training, validation and testing datasets
to cover the hyperspace of potential inputs. The method is highly scalable, it allows for sensitivity analysis of
individual as well as groups of inputs. The method is not computationally expensive, scaling linearly both with
the available data samples, and in relation to the quantity of inputs and outputs. Coupled with the fact that
calculations are considered embarrassingly parallel, it makes the method attractive for big models. In the case
study, a regression model to predict inclinations using recurrent neural network was employed to illustrate

our proposed sensitivity analysis method and results.

1. Introduction

Sensitivity of a model describes the severity of change of the model’s
output related to the change of a given input value. It can give an
insight in the influence of input variables on outputs. Such analysis is
necessary for understanding models’ behavior in terms of the change
of input values, noise tolerance, data quality, internal structure, etc.

There are a number of statistical methods to evaluate sensitivity,
for instance Sobol’ indices (Sobol, 1993), cobweb plots (Kurowicka
and Cooke, 2006), various metamodels (Simpson et al., 2001) and
more (Iooss and Lemaitre, 2015). These methods might however be not
suitable for high-dimensional models of hundreds of input variables. In
cases where inputs are highly dependent on each other, as in case of
recurrent neural networks, sensitivity analysis remains an area of active
research (Iooss and Lemaitre, 2015). More recent work have introduced
Shapley effect (Radaideh et al., 2019) to tackle this problem, however
the high computational cost remains a problem.

Sensitivity information can be, to an extent, extracted by examining
weights of neurons in the network. Such approach has been published
in the past (Jamal et al., 2014), however it becomes impractical for

networks when neurons are counted in hundreds. Most commonly
however, a simple sensitivity index (Loucks et al., 2005), a one-at-a-
time (OAT) approach is utilized. In light of the rise in machine learning
approaches applied to drilling, such as Ulker and Sorgun (2016) and
Sorgun and Ulker (2016), a rise in focus on models’ sensitivity analysis
is expected in the near future.

This paper presents sensitivity analysis using partial derivatives
(PaD) with the dataset used for development of the machine learning
model as a basis of a quasi-Monte Carlo analysis (Caflisch, 1998).
To our knowledge this is the first comprehensive exploration of PaD
method of sensitivity analysis for models with number of inputs over
100; case study of directional drilling model this paper presents consists
of 643 inputs and 100 outputs.

In this paper, presented case study contains hundreds of inputs and
outputs and is based on the model prepared for prediction and recovery
of inclination data in directional drilling (Tunkiel et al., 2020). The
aim of this study is to explore the sensitivity analysis for complex
machine learning models, such as those exploiting recurrent neural
networks, where it is impossible or impractical to follow the classical
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methods — this is done in detail in Section 3.2. Employing the dataset
that was originally used for training, validation and testing of the
model is the basis for our analysis. Basic method where an input is
altered within carefully selected range and response of the output is
evaluated was applied; this was in turn applied through all the samples
of existing dataset as individual starting points, generating individual
results. Using this method, sensitivity can be presented as a statistical
distribution based on starting points representative of realistic potential
inputs.

Similar work on a much smaller scale was performed by Lu et al.
(2001) for neural networks with 19 inputs for spool fabrication produc-
tivity studies, which was later picked up for business research (Detienne
et al., 2003), climatology (Nourani and Sayyah Fard, 2012), nanotech-
nology (Babakhani et al., 2017), petroleum (Dutta and Gupta, 2010),
metallurgy (Shojaeefard et al., 2013) and ecology (Franceschini et al.,
2019). These studies were however restricted to non-recurrent models
and no more than 26 inputs in total. Existing analyses lack specific focus
on the base dataset, which becomes necessary with the rising number
of inputs, as the dataset necessarily will not populate the complete
possible input hyperspace. This paper contributes to filling these gaps,
applying and analyzing the method for big machine learning models.
To our knowledge we are first in presenting, and formally defining
a data-driven sensitivity analysis that is suitable for recurrent models
with inputs and outputs defined as spatio-temporal sequences.

The paper is structured with focus of gradual understanding of the
presented method. First, sensitivity calculations are performed using
basic mathematical model as an example. Next, our novel method
of data-driven approach to sensitivity is introduced. Using the same
mathematical model as before, our method is applied and sample
results and conclusions are presented. As a next stage, a mathematical
model is replaced by a machine learning model mimicking the original
one to evaluate how the results differ. This prepares the reader for
analysis of our case study, a complex model for predicting continuous
inclination data that utilizes 643 inputs and 100 outputs. In the case
study, sensitivity analysis is performed for both individual inputs, as
well as sets of inputs — a unique, new possibility in our novel method
for sensitivity analysis. At the end, benchmarking against Sobol’ indices
is performed to evaluate how our proposed method compares with
other established approaches.

To explore and better understand basic one-at-a-time method, as-
sume that the system is described as:

R=f(S) (€8]

where R is the output and S is the input of a model described by a
function f. Classical OAT sensitivity index is typically calculated at
an arbitrarily selected point in the possible input domain, typically in
the middle. Sensitivity index can be calculated through the following
equation, that can be considered a partial derivative:
_ [R(Sy + AS) — R(S; — AS)]
- 248
where STy denotes sensitivity index for an output variable R per unit
change in the magnitude of an input parameter .S from its base value
Sy. AS is the change applied to the input.

There are significant shortcomings to this basic approach. To illus-
trate we introduce a simple model of a flow rate through a nozzle:

Slgs )

24
O=c-A-v=c-mr- Tp (3)

where:

+ Q is Flow Rate through a nozzle, output in m3/s.
« ¢ is Discharge Coefficient (unitless), ¢ € (0.5,1)

+ A is Nozzle Area in mm?

+ v is Flow Velocity, in mm/s

* r is Nozzle Diameter, in mm, r € (1, 50)
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Fig. 1. Sample Spider plot of mathematical model’s sensitivity.

» Ap is Pressure across the nozzle, in Pa, 4p € (0, 1000000)
+ p is Fluid Density, in kg/m?, p € (700, 1300)

By using a spider plot, as seen in Fig. 1, it is visualized how the
output value will change per percentage change in input. All inputs
are set at their median value, considering their potential range, i.e. for
discharge coefficient c the value is set at (0.5 + 1)/2 = 0.75. Keeping
all other values at their median value, the output Q can be plotted as
a function of ¢ from —33.3 percent (0.75 — 0.75 % 33.3% = 0.5) to +33.3
percent (0.75 + 0.75 x 33.3% = 1). This is done in the same manner for
all the inputs.

There is a lot of information that is hidden on this plot. For example,
the change in nozzle diameter r suggests that the flow rate can be
adjusted by this parameter between 0 m3/s and 0.05 m?/s. This is
however only true for the selected middle values for all the other
parameters. More general statement can be made that doubling the
nozzle radius will quadruple the flow rate, however the chart does not
uncover that this is not valid when the pressure drop 4p is equal to zero.
Most importantly however, OAT methods cannot cover a significant
part of the high-dimensional Euclidean space (Saltelli and Annoni,
2010). The significance of this grows with the number of dimensions,
which is especially high in case of recurrent neural networks.

2. Data-driven approach to sensitivity of data-driven models

In machine learning problems related to sequential data Recurrent
Neural Networks (RNN) are often utilized (Yu et al., 2019). Abstracting
from the specific internal structure of the network, the model takes
multiple inputs, in the same order as they exist in a dataset. Model that
will take into account last n values of a single input will technically
have n inputs. This custom length will be driven by the performance of
a given model as well as computational cost of training.

Neural Networks can have thousands of inputs without reaching a
bottleneck in terms of computational power when training the model.
Areas where machine learning often excels are commonly both highly
dimensional with interdependent inputs, such as RNN and other com-
plex models, which makes them unsuitable for classical sensitivity
analysis methods. This paper proposes a number of approaches that
were specifically designed for data-driven models with high number
of inputs and outputs, addressing both of these issues.

A number of assumptions are made in the proposed method that
stem from specific nature of data-driven models. This enables simple
calculations and it leapfrogs shortcomings of the classical methods. The
basis for proposed sensitivity analysis is the training, validation, and
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testing dataset of the model. It is a requirement that this dataset repre-
sents the complete range of possible inputs and outputs relatively well.
While this may be considered too strict or unrealistic requirement, by
definition a data-driven model is applicable to inputs and outputs that
are covered by the training material. Data-driven sensitivity analysis
will be valid only for ranges of values represented by the dataset at
hand, the same way as the data-driven model is valid only for the input
data from the mathematical vicinity of the training set. It has to be
stressed, that sensitivity analysis in any form is connected to the range
of inputs and, additionally in our case, the distribution of the samples.

Typical training/validation/testing split of the dataset is removed
in our method and complete dataset is used to maximize the amount
of samples and therefore coverage of the inputs’ hyperspace. While
developing a data-driven model this split is introduced to ensure that
the model can generalize and not simply memorize the provided sam-
ples. In contrast, our method utilizes the data as a set of representative
and realistic inputs to the model, and therefore the split is no longer
necessary.

Limiting calculations to the data points existing in the dataset,
instead of all possible combinations, apart from significant reduction
in calculation time, avoids diluting results with impossible inputs. Our
case study consists of multiple sequential data inputs organized along
the increasing depth, for example inclination change of the well or sur-
face torque. These data are continuous and never rapidly oscillate be-
tween maximum and minimum value, only smoothly rises at different
rates. Checking sensitivity for unrealistic scenarios is non-productive,
since the model is not valid for them.

Second assumption is that the existing dataset is balanced in terms
of probability of inputs. That is, if a given model predicts daily mean
temperature, the number of samples should be distributed evenly across
all twelve months. This is done to ensure that any data skew that may
exist in the dataset does not translate to a skew in sensitivity analysis.
Additionally, an artificial limitation can be introduced to a dataset, for
example to explore sensitivity related to data exclusive to February.

If a dataset is imbalanced, methods commonly used for dealing with
such problem in the domain of machine learning can be applied. Un-
dersampling the overrepresented data can be performed, where some
samples are simply removed. Duplicating underrepresented samples
can also be done, however this should be done with caution, so that
the dataset does not become overly skewed towards specific data. For
example, if there are 1000 samples for weather data for each month
except for February, duplication would be acceptable if it extends the
sample size from 750 to 1000. On the other hand, should February have
only 100 data points, such process would be questionable.

Presented SA methods, while are rooted in one-at-a-time methods,
are applied to an existing dataset populating the complete hyper-space
of probable inputs. This means that the computational complexity in
big-O notation is O(n - m) with n being the sample count and m being
the input count. The amount of outputs does not influence the computa-
tional complexity. Our case study consisting of 643 inputs, 100 outputs,
and with a dataset of 1300 samples required just over 1 h to calculate
all the results.! Our method is also considered embarrassingly parallel,
i.e. it is trivial to perform calculations on multiple computers at the
same time. Therefore, it can be easily implemented in frameworks such
as Hadoop or Spark should the data size require that.

The result of the presented methods is a probability distribution.
One-at-a-time methods are applied to the many samples of the dataset
generating a set of individual results that, as a whole, present global
sensitivity of the model.

1 Calculations were performed on Intel Core i7-8850H, 32 GB RAM, Python
3.6.9, SALib library in version 1.3.8.
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2.1. Method introduction, flow through a nozzle

Basics of the method are presented using the example of flow rate
through a nozzle shown earlier in Eq. (2) before exploring an oilfield
related case study utilizing recurrent neural networks. Dataset was gen-
erated for inputs for this model containing 1000 samples with normal
distribution at the center of the range indicated for Eq. (3) and standard
deviation equal to 0.2 of total range width. For example, samples for
density, ranging from 700 to 1300 kg/m?, were randomly generated
using normal distribution with mean value of 1000 kg/m? and standard
deviation of 120 kg/m?>. Note that this is done for illustration purposes
only in-lieu of real dataset. Systems in practice rarely follow pure
Gaussian distribution hence using true dataset is important.

Sensitivity Indices were calculated using Eq. (2) with previously
generated sample data as a starting point. Value of AS was set to 0.1;
the influence of the value selection is explored further in the paper.
The following calculations were performed for each of the four inputs
to gauge their respective sensitivities. Fig. 2 shows the distribution
of sensitivity indexes over the dataset. To better understand the data
behind this Fig. 3 is also plotted, where sensitivity index is shown
as a function of the input value. What may be surprising is that it is
not a continuous line. This is because sensitivity index, as described
by Eq. (2), deals with absolute values. For example, when pressure
across the nozzle is high, small increase in its diameter will cause a
large nominal flow increase. Alternatively, at very low pressures, even
big nozzle increase will not yield significant change.

To check the relative impact on the output one may calculate
sensitivity divided by the model output at nominal input value, which
this paper refers to as relative sensitivity index:

RST.. - [RGo+A48) — RSy~ 4S)] 1
ks = 24S "R(Sy)

C)

This will produce a relation seen in Fig. 4, where a fixed change in
nozzle size will affect relative flow output more at smaller diameters,
i.e. change from 1.5 mm nozzle to 2.5 mm, and less for bigger nozzles,
i.e. from 20 mm to 21 mm nozzle. Since this response is disconnected
from the absolute value of the output, it produces a continuous line.

One can further explore the system response with Elasticity Index,
or elasticity of a function (Sydsaeter and Hammond, 1995), given
by Eq. (5) below.

[R(Sy + AS) = R(Sy = 4S)] S,

Elgg =
RS 248 R(Sy)

6))

The equation was again applied to all the samples and all the inputs,
with results plotted in Fig. 5. Elasticity Index in practice uncovers the
exponent of the function, hence in case of Eq. (3) it is equal to 2.
Derivation of this relationship is presented in Appendix.

When exploring the produced figures one can see a number of issues
with the calculated data. First and foremost, the scale of the Sensitivity
Index values varies by orders of magnitude. For nozzle radius it is
between 0 and 4, and for pressure drop, intuitively a very important
parameter for flow through a nozzle, it is in range of 10~8. Note that
the units themselves are different (m?/s/m, m? /s/Pa, and others) which
mean that the values cannot be compared.

While in the case of a simple equation the relative sensitivity index
and elasticity index bring interesting additional information, in our case
study focus will be on the basic sensitivity index. Nevertheless, it is
beneficial, for the sake of presentation of the method, that all three
equations will be explored. They are a natural next step, and are needed
to understand why the simpler, and seemingly less informative equation
is used.
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2.2. Practical problem of scale

One problem that was identified while inspecting results produced
in the previous section is units and scales. Referring back to Fig. 2 and

Elasticity Index

(Average = 2.0)

Elasticity Index

(Average = 0.5)

Fig. 5. Elasticity index.

Elasticity Index

(Average = -0.5)

inspecting the x-axis it is clear that there is no straightforward informa-
tion about which input has high sensitivity compared to others. This is
the key information that sensitivity analysis is seeking to uncover when

probing a given model.
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It is worth reiterating that machine learning models exist with a
strong relationship to a dataset of samples, and in consequence, to the
range in which inputs exist. Looking back at the sample nozzle flow
Eq. (3), while mathematically sensitivity is defined by the equation
alone, the application makes it tied to the range of inputs. For example,
in practical terms, sensitivity of the nozzle radius input can be consid-
ered high if it is ranging from 1 to 50 mm, but it will be very low if it
is bound between 5 mm and 5.1 mm.

Nozzle Equation (3) was encapsulated in a function such that all
inputs are scaled between 0 and 1 in relation to generated samples.
Output is also scaled between 0 and 1 for values generated from the
samples. While this looks uncanny for a mathematical equation this is
a very typical approach for a machine learning model. Histograms seen
in Fig. 6 were generated the same way as described in the subsection
before, and therefore are analogous to Fig. 2.

The scaling process did not affect the shape of the histograms in
a significant way, but the sensitivity factor can now be evaluated in
terms of expected range of inputs and outputs. For example, one can
see that when radius input is changed by 10 percent of full scale, output
can be expected to also change by 10 percent, since the most common

sensitivity value on the histogram is 1. In case of discharge coefficient
sensitivity is smaller. 10 percent change will typically affect the output
by 2.5 percent of expected full scale (one to 0.25). This can be tied to
the spider plot back in Fig. 1, where the model response is presented.
Linearly approximating the curves one can roughly see the same values
as presented here — the steeper the curve the higher the sensitivity
index. Note that this is a distribution of results, hence the response
discussed above should be considered mean sensitivity of the model.

After scaling, inputs and outputs should be considered unitless with
a scaler attached to them that describes the scaling parameters, i.e. orig-
inal minimum and maximum values. Therefore the sensitivity index
calculated with scaled data becomes unitless as well. Alternatively,
scaled values can be considered percentage of range, making the unit of
sensitivity index to be a percentage of range of output per percentage
of range of input. This method was used before in relation to sensitivity
analysis of neural networks (Lu et al., 2001) highlighting the same
problems related to units and scale.

Analyzing scatter plots in Fig. A.27 showing relationship between
the sample value and sensitivity index there are no immediate differ-
ences due to scaling of the dataset. For brevity this figure is reproduced
in the Appendix.
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Moving to Relative Sensitivity Index in Fig. 7 and comparing to non-
scaled charts seen previously in Fig. 4 one can notice that the result is
no longer a continuous line. There is some disturbance introduced due
to scaling and this effect is even stronger when inspecting Elasticity
Index in Fig. 8, where EI is strongly pulled towards zero at inputs close
to zero. The average still indicates what kind of function is behind the
model, but it is no longer precise. as indicated by the average values
below the plots.

Analysis of results of the scaled inputs and outputs is easier, as it
can be done in relation to the full scale of these inputs and outputs. It
is easy to see that sensitivity to the nozzle radius is highest, followed
by pressure drop, discharge coefficient and with density being the lowest,
which additionally is identified as inversely correlated with the output.

2.3. Applying method to a machine learning model

While sensitivity index and the other methods used provide clear
insights to the inner working of a model when applied to simple
equations, a study was done in relation to machine learning models.
To evaluate method’s suitability for such scenario, an ML model of
the previously used flow through a nozzle equation was created using
a Random Forest regression model (Breiman, 2001) made with pre-
viously generated samples. Common best practices were used while
making the model, including a train/test dataset split (here 50/50 split)
as well as basic hyperparameter tuning to find the optimal amount of
estimators and forest depth.? Model results of the testing portion of
the dataset evaluated against the equation output have an R? value of
0.976. This can be considered a very good fit for a machine learning
model and can be considered representative of performance of the best
case real-world ML models.

Scaling of inputs and outputs in the range of (0, 1) was also
applied. This is considered standard practice when creating ML models,

2 Identified values are: n_estimators = 93, max_depth = 3.

although not strictly necessary for the algorithm used here. The trans-
formation was nevertheless applied, since our method of evaluating
sensitivity works best on a scaled model. Note that there is no practical
reason to create an ML model of a known equation and here it is done
only for the purpose of evaluating the method.

Same type of analysis was performed on the ML model as it was
on the mathematical model to evaluate how the intrinsic inaccura-
cies of the ML model influence the results. Figs. 9 and 10 showing
results for the ML model correspond to Figs. 2 and 3 produced for
the equation-based model. Most important takeaway is that the his-
tograms of sensitivity indices for both models show approximately
the same shapes and values, while the scatter plots are significantly
different. When calculated for mathematical model, scatter plots for
all but one variables seen in Fig. 3, showed approximately Gaussian
distribution along both axes. For the ML model, Fig. 10, scatter plots
are significantly different taking various shapes that were not present
before.

Relative Sensitivity Index was also calculated for the ML model,
seen in Fig. A.28; same charts for mathematical model are in Fig. 4.
Clear smooth lines are no longer visible, except for the nozzle radius.
For other three parameters it is hard to identify even the direction of
the original curve. This means that Relative Sensitivity Index is very
susceptible to the inaccuracies even in a case of very accurate ML
model and its usefulness will be limited for data-driven models. Lastly,
the Elasticity Index was analyzed, as seen in Fig. A.29; mathematical
model-based results are in Fig. 5. Average values became closer to zero
than in the mathematical model with scaling and data is overall difficult
to interpret. Conclusions related to the exponent of the equation used
can no longer be drawn.

The conclusion from ML model analysis is that our proposed method
focuses mainly on the distribution of the sensitivity index. Calculating
additional metrics, such as relative sensitivity index and elasticity
index in our experience did not bring forward any further valuable
information.
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2.4. Uneven distribution

Sensitivity analysis is closely tied not only to the range of inputs,
but also to their distribution. To uncover it, another simulation was
performed with the nozzle flow equation, but this time the distribution
of the discharge coefficient was changed, with 800 samples generated
at fixed value of 0.5 and 200 samples generated at a fixed value of
1, making a strongly bi-modal distribution. This does not change the
range of the inputs, but significantly alters how the model behaves on
average.

For a direct comparison (0, 1) scaling was performed and ma-
chine learning model created. Analysis of histograms and scatter plots
(Figs. A.30 and A.31, Appendix) shows reduced sensitivity of all inputs.
This is caused by overrepresentation of samples with low discharge
coefficient and therefore low flow rate, and in return — low sensitivity
in terms of percentage of output range. This situation can only be un-
covered via analysis on the inputs’ distribution, and later by analyzing
sensitivity for both clusters separately. This is outside of the scope of
this study.

2.5. Summary of the method

Different aspects of dataset-based sensitivity analysis were evalu-
ated on a synthetic example in the previous sections. Our conclusion is
that the most condensed information is retained within median value
and distribution of Sensitivity Index when calculated on a (0, 1) scaled
values. Coincidentally, scaling of values, both inputs and outputs, is
a standard practice in machine learning, making application of the
method very simple.

Relative sensitivity index was found to not bring significant ad-
ditional information when exploring even our very accurate machine
learning model. Furthermore, this parameter is best evaluated on a
scatter plot, what becomes impractical when hundreds of inputs are
being analyzed. Elasticity Index can potentially bring information about
the type of equation behind the model, it is however sensitive to scaling
and can suggest misleading values. Additionally, it cannot be used
when probing multiple inputs, which is useful in case of recurrent
neural networks, as presented in further chapters.

2.6. Pseudocode

To aid in the implementation of the presented method pseudocode
is provided in Algorithm 1 demonstrating calculation of Data-Driven
Sensitivity Index. Note that the output of the algorithm is a 3 dimen-
sional array that contains all local sensitivity indices for all samples,
inputs, and outputs. One can visualize this data in a number of ways,
for example calculating median sensitivity of individual inputs by
calculating it over samples and outputs such as in Fig. 17. In this case,
inputs along one channel were probed individually.

If a particular input is of interest, median sensitivity on outputs
can be calculated along samples on that one input, such as in Fig. 18,
where one particular input in the inclination channel is investigated. It
is possible to visualize data as a heatmap, where median sensitivity is
calculated of all samples per individual inputs and outputs, resulting
in a 2D map of sensitivity between inputs and outputs, as seen in
Figs. 20 and 21. If samples are sorted by a meaningful dimension,
depth, time, distance, etc., it may be useful to calculate mean of all
inputs, retaining the sample and input dimension, to investigate the
distribution of sensitivity along that meaningful dimension. In our case
study, such analysis was performed and is presented as a 2D map in
Fig. 22.

Pseudocode for calculating sensitivity index per complete channel
is provided in Algorithm 2. It is particularly useful in relation to RNNs,
where inputs are often given in a series along depth or along time. It
can also be suitable when inputs may be grouped together for other
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Algorithm 1: Data-Driven Sensitivity Index (DDSI), per single
input
Data: X := [X{,Xy, ..., X;]
Xy, = [Xp,15 Xp25 -+ 5 Xpm]]
an array of n samples with m inputs
A typically 0.1, or 10% of input range
Result: DDSI := [SI;, SI,, ..., SI,]
SI, =[Sy, Sly 2, «s Sy m]
SInm = [Sinm,15 Sinm, 25+ Sinmw]
an array of individual, local Sensitivity Indices, through n
samples, m inputs, and w outputs.

1 Function Model([xy, 1, Xp, 2, -+ » Xp,mD:

2 model calculations;

3 return [y;,yo, .. 5¥wl 5

4 for i:=1 ton do

5 for j:=1 to m do

6 samplePlus = X[i];

7 samplePlus[j] += 4;

8 outputPlus = model(samplePlus);

9 sampleMinus = X[i];

10 sampleMinus[j] -= 4;

11 outputMinus = model(sampleMinus);
12 oneSensitivity = (outputPlus - outputMinus) / 24 ;
13 DDSI[i,j] = oneSensitivity;

14 end

15 end

reasons, for example in weather models sensors can be grouped into
temperature, barometric, and rainfall channels.

The output of the algorithm is a 3 dimensional array, with di-
mension for samples, channels, and outputs. Visualizing one channel
at a time, one can visualize distribution of channel’s sensitivity via
2D heatmap, as in Fig. 13, or potentially easier to read median and
percentile statistics reducing the sample dimension, as seen in Fig. 14.

3. Case study model — inclination in directional drilling
3.1. Introduction of the model

To evaluate proposed methods of sensitivity analysis a case study
machine learning model was employed which was previously used for
prediction of continuous inclination data in directional drilling (Tunkiel
et al., 2020); data and source code is available on GitHub (Tunkiel).
This model predicts inclination values that are artificially made lagging
23 m behind the bit. It is a mixed approach of trend prediction as well
as regression by correlation with other parameters assumed available
real-time. Flowchart from aforementioned paper showing simplified
model structure is shown in Fig. 11.

Data were taken from the Volve dataset open sourced by Equinor
(2018), which covers an offshore oil field off the coast of Norway. Part
of a well F9 A, starting from 500 m to 845 m measured depth was
selected as containing the longest directional drilling section performed
with a bent motor. Three parameters assumed available all the time
were selected in addition to the past inclination data: Surface Torque,
Rotary Speed and Rate of Penetration. Data were split into training and
validation, 500 m to 800 m, with 80/20 split, and testing, 800 m to
845 m, which were used only for final score calculation.

All inputs and outputs of the model are scaled between 0 and 1,
and all calculations presented in this paper are done in relation to
those scaled values. Additional normalization step was introduced to
the inclination input channel. To normalize the samples in relation to
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Fig. 11. Case study model flow chart.

absolute inclination, a local coordinate system was employed. This way,
inclination input channel samples always start at zero, see Fig. 12 for
reference. Global scaling of the inclination was selected such, that after
introducing the local coordinate system the maximum value of inputs
in the inclination channel should be maximum 1.

The model contains a branched neural network, with one branch
with Gated Recurrent Unit (Cho et al., 2014) RNN taking 85 inputs,
the inclination data, and a second branch with multi-layer perceptron
(MLP) taking 3 x 186 inputs from the additional available parameters.
Inputs and outputs are considered in terms of relative position from
the introduced start of the gap. The RNN branch receives inclination
values from position —20 m to zero meters relative to the gap. The MLP
branch receives values from three different measurements, the Rotary
Speed, Surface Torque, and Rate of Penetration. That data are input from
position of —20 m to +23 m relative to the gap. The model returns 100
output values as prediction of individual inclination values at location
from 0 m to +23 m.

One can consider this model as utilizing four input channels and one
output channel. This way the model can be reduced, for the purposes
of the analysis, to four separate vector inputs and one vector output.
Example results from the case study model can be seen in Fig. 12. In
the top subplot dashed line denotes inclination data input, while the
solid line is a prediction, and the dotted line is ground truth. The other
three plots present the surface parameters that are considered available
all the time. Note that the output is a continuous line. This result is not
forced through algorithm, but achieved purely through neural network
training.

For the purpose of the sensitivity analysis the case study model was
considered as follows:

Y = f(X) (6)

To reflect the structure of the input consisting of four distinct
channels, further expansion to X, = f(X, X2, X, X P) is made, where:
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Algorithm 2: Data-Driven Sensitivity Index, per channel

Data: X := [X; ,X,, ..., X;]
X, = [Xy15 Xng 5 5 Xkl
Xn,k = [Xn,k,lﬁ Xn,k,2’ ey Xn,k,mk:I
an array of n samples with k channels, and my_ inputs on
k-th channel.
A typically 0.1, or 10% of input range
Result: DDSI := [SI;,SI,, ..., SI;]
SI, := [SL,1, Sy 2, - 5 Syl
SIng = [Syic1> Slhgc2s -+ » Sljw]
an array of individual, local Sensitivity Indices through n
samples, k input channels, and w outputs.

1 Function Model(
[[xn,,l,l > X 1,20 00 Xy 1y, 1,
(X0, 200 X0, 2,20 00 X, 2my 1o

[xn,,k,l > xn,v,k,Z’ e xn[,k,mk ]]):

2 model calculations;

3 return [y;,ya, ... »¥wl 5

4 for i:=1 to n do

5 for r:=1 to k do

6 samplePlus = X[i];

7 sampleMinus = X[i];

8 for j:=1 to m;, do

9 samplePlus[r][j] += 4;

10 sampleMinus[r][j] -= 4;

11 end

12 outputPlus = model(samplePlus);

13 outputMinus = model(sampleMinus);
14 oneSensitivity = (outputPlus - outputMinus) / 24 ;
15 DDSI[i,r] = oneSensitivity;

16 end

17 end
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Fig. 12. Input and output sample from the case study model.

X" denotes the nth input channel. Let us consider the model to be:

Y, = f(xA xE xE, xP) %)
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where
T
Y, = |:yt—m0|t’ s Y1) yt|t:| ®
T
X1 = st o ©
T
X' = [xf_mlr,...,xf_lt,xﬁt] , n=B,C,D 10)

and my = 100 and m; = 186, y€ R and x € R.
3.2. Sensitivity index of input channels

To analyze the model top to bottom, sensitivity of the complete
channel is explored first, i.e. related to multiple inputs at the same time.
This is done the following way:

S+ AS XE XE XD - f(X - A4S XP X XP)

st 248 an
where SIA is sensitivity of the channel A, and

T
AS = |:As,A..,As,As:| ,As =0.1 12)

This generates multidimensional results and there are many ways
to visualize them. The model is predicting 100 continuous data points
(23 m), hence they are plotted along x axis as a distance to the start
of data gap. Complete results can be presented as a heatmap, as seen
in Fig. 13, however this makes quantitative analysis difficult. It is
clear that sensitivity is approximately 0.9 at distance to data gap O
(bright yellow area) and becomes more spread out further along, but
it is in general hard to read. To facilitate evaluation of the results
median, 15th, and 85th percentile, maximum, and minimum values
were used. In Fig. 14 results are presented from calculating sensitivity
index related to the complete inclination channel. Referring to Eq. (2),
all inputs in the inclination channel are varied by AS = 0.1, which is
10 percent of the total input scale, as the inputs are scaled between 0
and 1. This is akin to using a miscalibrated sensor where an offset is
introduced to all inputs on a channel.

Particularly interesting insight is that while sensitivity of the incli-
nation input starts slightly below 1 with very little change in median
value, other channels’ sensitivity index starts at zero for the first
predicted data point (one example in Fig. 15) and the magnitude of it
rises as the prediction is done for further points. Both of those results
indicate that the developed model acts as it should. The output is a
continuous prediction, a continuation of the inclination input, therefore
necessarily if whole input channel is shifted by a given value, the first
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output will shift by nearly identical value. Inclination cannot change
sharply, only gradually, hence near zero sensitivity on the other three
channels for the first prediction point.

For channels other than inclination, sensitivity index grows as the
prediction distance increases. This is consistent with the modeled pro-
cess, as the inclination can be influenced more in the outputs farther
from the initiated gap.

3.3. Magnitude of change

In calculating sensitivity index there is a potential influence of the
AS value. To evaluate this matter, sensitivity index was calculated at
AS = 0.1 and AS = 0.5. It must be noted that this value corresponds to
scaled parameters, hence are equivalent to 10 percent and 50 percent
of full scale change respectively. Results can be inspected in Fig. 16.
Median sensitivity can be considered the same for both selected 4. The
main difference is that the result is more stable, i.e. the 15th and 85th
percentile values are closer to median. This suggests that the selection
of specific AS does not affect the results of the analysis significantly.

3.4. Sensitivity to single inputs

Another type of sensitivity analysis proposed is sensitivity to single
inputs, which can also uncover sensitivity to outliers or sensitivity to a
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specific input. A function was developed that calculated the sensitivity
index, as per Eq. (2), again using the existing dataset of inputs.

FXA+AS XE XE . XP) - f(X2 - AS,. XB, X, XP)

A
SI1A(k) = R (13)
where
T
1 2 k=1 ko k+l . 643
ASy= [0 0 .. 0 1 0 .. 0 ] a4

Per given sample only one singular input was modified. This was
done for all singular inputs and channels separately, from the first input
to the last one, altering original value by 0.1.

To provide a two dimensional, easy to read chart, for this method
sensitivity that is averaged over all outputs is used. This way, an
indication of how all the outputs change on average in relation to
a change on a specific input is provided. For further clarity result
plots are bundled into input channels. Two charts are reproduced
here, one for the inclination channel, Fig. 17, and one for the torque
channel, Fig. 19. What is interesting in the first figure, is that there is a
decrease in value close to the input points at about —3 m from the gap.
Additionally, points farther than —10 m have much lower response,
which suggests that it may be possible to shorter the input to the model
without a significant loss in performance. It must be noted, though,
that the case study model was developed through hyperparameter
tuning and the input length of 23 m was selected as providing the
smallest error. Fig. 17 suggests that this window can be shortened with
minimal influence on the output, and therefore minimal influence on
the error. Such changes may be considered if, for example, shortening
that input would generate significant savings in the deployment phase
of a project. It may also be used in guiding sensor accuracy selection, by
showing relationship between measurement error and output. Addition-
ally, charts similar to Figs. 17 and 19 may be generated while tuning
hyperparameters of a data-driven model, giving an instant insight in
the inner workings of the neural network, allowing to narrow down a
range of possible hyperparameters.

To explore results from Fig. 17 further, a chart was generated that
investigates the point of maximum sensitivity at approximately —1 m
from data gap, presented in Fig. 18. This allows us to evaluate how the
point of maximum sensitivity, in relation to all outputs, is distributed
between individual outputs. One can see that output at approximately
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8 m after the data gap is the most sensitive, with further points’
sensitivity dropping. This is in line with previously explored sensitivity
of the inclination channel as a whole in relation to individual outputs,
Fig. 14. Additional takeaway here is that 15th percentile line lies almost
perfectly at zero sensitivity, suggesting that there is a relatively sharp
cutoff with sporadic negative sensitivity, which is in line with the
physical aspect of the model, i.e. higher inclination just before the data
gap will suggest higher inclination after it.

Similar analysis was performed for input channel related to torque,
with results in Fig. 19. Note that this channel has more inputs, as in our
case study this parameter is considered available both before and after
the data gap, while the inclination only before. Interestingly, there is
a clear minimum between —6 m and 3 m. This is approximately the
same area that has a local maximum in the inclination input. Higher
response is visible for the points from 0 m forward. This again confirms
the intuitive behavior of the model. Physically, the inputs above 0 m
are co-located with the output, and therefore logically will have the
highest impact.

Another interesting insight here is that again the 15th percentile
line often lies at zero change, also in line with the physics of the
modeled system. Attention must be paid to the scale of the y-axis on
these charts, as the sensitivity to the inclination input channel is an
order of magnitude higher than the one calculated for rotary speed.
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3.5. Input-output heatmap

It is possible to plot median sensitivity of outputs to specific input
channel as a heatmap. This allows to see the influence of individual
inputs to individual outputs. It must be highlighted that this is done on
a point-by-point basis, one-at-a-time. Note that in this case the color
scales are not synchronized between the charts as the results vary by an
order of magnitude. Due to nature of the plot it is the median sensitivity
calculated over the complete dataset that is visualized.

Looking at Fig. 20 one can consider it an expanded version of
Fig. 17, with the output dimension now visible. One can, for exam-
ple, identify, that inclination input at -5 m from the gap positively
influences the output close to the gap, but negatively influences the
outputs further from the gap. Similarly, in Fig. 21, the weakest response
between inputs between —6 m and —3 m can be identified, first seen
in Fig. 19, as a white plateau over the whole range of outputs. In
this figure one can also identify a potential problem with the analyzed
model. As explained before, this input physically overlaps with the
output. Therefore input at location of n meters cannot have influence
on the outputs before location n meters. There practically should be a
triangle between points (0, 0), (23, 0) and (23, 23) with zero sensitivity
— yellow overlay in that area was added in Fig. 21.

This apparent contradiction can be explained through correlation
and causation. It is likely that during operation it is the achieved
inclination (here output) that influences the rotary speed (here input),
and not the other way round. The correlation however still exists and
the model can use it. This means that the model will correctly predict
inclination during typical drilling, but will fail if the inputs will deviate
too much from normal operation. This is understandable considering
that the training dataset covers only typical drilling.

3.6. Channel sensitivity as a function of well depth

The core of the presented method is statistical analysis of the
models’ sensitivity with the training/validation/testing dataset at its
foundation. It is, however, possible to investigate how the calculated
statistical sensitivity is affected by the contents of available dataset. Our
case study models BHA-formation interaction while drilling a curved
section of a well. Sensitivity analysis can be performed on a channel as
a whole, as done in the section Sensitivity Index of Input Channels, and
evaluated along the length of the well. Results are presented in Fig. 22.
The sensitivity analysis was performed for a complete channel, as
previously presented in Figs. 14 and 15 and using Eq. (11). Sensitivity
was calculated separately for all four channels. The heatmap presented
in Fig. 22 shows the median value of sensitivity for a given output.
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Such a graphic enables evaluation of sensitivity changes with the
varying base value in the dataset. It is possible to identify areas of
significantly high or low sensitivity and investigate those specific sam-
ples. This can provide further insights of how the system behaves
— in our case study it is possible separately analyze the sensitivity
during rotating and sliding modes of the BHA. It is also possible to
evaluate how well the dataset represents potential inputs of the system
by looking for unusual responses, with an assumption that unusual
sensitivity response coincides with unusual set of inputs. In our case this
can be seen in the inclination channel between samples 500 and 600
and further on at approximately sample 950, where there is negative
inclination channel sensitivity in outputs close to 23 m. This is the
area responsible for minimum sensitivity below zero visible earlier in
Fig. 14.

3.7. Comparison to Sobol’ indices

Sobol’ indices developed in the early 90s (Sobol, 1993) are a form
of variance-based global sensitivity analysis. This method is used to
calculate how much of the output’s variance can be attributed to
different inputs. With this method one can calculate how important
are individual inputs, and if second order indices are calculated, how
important is interaction between two inputs.

Our data-driven sensitivity analysis method used n = 1300 samples.
To calculate sensitivity index 2n model evaluations must be performed,
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as a base value has to be increased and decreased. With 643 inputs,
to calculate sensitivity for all of them individually, this results in
1674400 evaluations. For comparison, calculated Sobol’ indices were
calculated using SALib Sensitivity Analysis Library in Python (Herman
and Usher, 2017), using methods developed by Sobol (2001), Saltelli
(2002) and Saltelli and Annoni (2010). n = 5000 samples were used,
limited by memory in available computer. Note that in common prac-
tice 10* samples are required to estimate Sobol’ indices within 10%
uncertainty (Iooss and Lemaitre, 2015). Our setup resulted in 3225000
sub-samples for first order calculations. It took 10 min to generate
required samples, 38 min to evaluate the model for all the samples and
40 min to calculate the resulting indices.> Second order calculations
require double the amount of samples and were not calculated. Other,
faster algorithms were considered, however in general literature sug-
gests that those methods remain costly, unstable and biased for models

3 Calculations were performed on Intel Core i7-8850H, 32 GB RAM, Python
3.6.9, SALib library in version 1.3.8.
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with more than 10 inputs (Tissot and Prieur, 2012; Iooss and Lemaitre,
2015).

While computation time was not significantly different between our
method and Sobol’ indices, our method allows for evaluating partial
results, that is sensitivity of a single input can be calculated for a
model with thousands of inputs very quickly. Note that since our
case study model has 100 outputs representing 100 individual depth-
steps in the model, each input will have 100 Sobol indices related
to all separate inputs. Sobol indices are calculated assuming singular
output; since our case study produces 100 outputs as a complete depth-
sequence prediction, Sobol indices had to be calculated as if there
were 100 separate models with single output to evaluate. Minimum
and maximum boundaries for Sobol’ indices calculation were taken
from boundary values for specific input found in the dataset. This is
typically in range (0, 1) for all inputs except for the ones responsible for
inclination input. Due to scaling and moving the center of coordinate
system employed in the model they vary in minimums and maximums.

For comparison purposes, a number of figures that were origi-
nally developed with our proposed method were recreated to compare
results. Note that it is not possible to evaluate the sensitivity of a
complete channel (multi-input) with Sobol’ indices, hence it is not
possible to compare those. First comparison is between our Figs. 17
and 23 generated with Sobol’ index data. It can be seen that results
are different. First, Sobol indices in principle cannot be negative, hence
negative sensitivity at —5 m is not seen. The chart overall looks much
more noisy and difficult to read.

Chart type that was used to investigate the maximum sensitivity
on that channel, Fig. 18, was also plotted again, which can be seen in
Fig. 24. Note that there is no statistical distribution to the new chart,
as at this level singular Sobol’ indices are being plotted.

As with previous comparison, general insights are still here, but
some of the information available with our data-driven method is not
there. Our method uncovers the spread in sensitivity, is based on actual
data, and additionally uncovers that in some rare cases the sensitivity
can be negative, which is not visible using Sobol’ indices.

Lastly, the Sensitivity heatmap for inclination channel, Fig. 20,
was re-done as a heatmap of Sobol’ indices in Fig. 25. When using
our method one can see exactly which areas are sensitive, and which
are not. Using Sobol’ indices this information is again missing. While
our method uncovered an area of negative sensitivity, it is nearly
invisible in Fig. 25, and the information about the sign of sensitivity
is necessarily gone.

13

Journal of Petroleum Science and Engineering 195 (2020) 107630

- Sobol' indicies.

- 0225
i)
®
£ 0.200
o
£
<_; € 0.175
o
£
% © 0.150
25
s a
3€ 0125
Qo
e}
c
— 0.100
o
Q
o
@ 0.075

0.050

0 5 10 15 20
Output

Distance from data gap [m]

Fig. 24. Sobol indices for all individual outputs for inclination input at —1 m from
data gap.

0
- 0.2
5
— - 0.1
£
T8
8@10
C®©
55 oo
58 I '
S0
35
® 15
[a]
- —0.1
I
20
- -0.2

-15 -10 -5 0
Inclination Input channel
Distance to data gap [m]
Fig. 25. Sobol indices heatmap of Inclination input channel and output. (For interpre-

tation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

—— Standard deviation
0.4

0.3

0.2

0.1

Sensitivity Index' standard deviation

0.0

0 5 10

Output
Distance from data gap [m]

15

Fig. 26. Statistical sensitivity, Inclination channel, standard deviation.



A.T. Tunkiel et al.
4. Discussion

Approaching sensitivity analysis in the domain of neural networks,
especially those with a high number of inputs, require a novel ap-
proach. This is especially visible in the case of recurrent neural net-
works that have highly interdependent inputs; it is where variance-
based methods cannot be reliably used (Saltelli and Tarantola, 2002).
Proposed data-driven approach exploits the fact that ML methods are
created when there is a dataset available that is sufficiently big to cover
the possible inputs and outputs.

While geometric arguments are brought up proving insufficiency of
one at a time methods (Saltelli and Annoni, 2010) due to inability to
cover the possible inputs, the proposed method does not suffer from this
shortcoming. By performing analysis on a single input, as in the section
on Sensitivity to single inputs, through repeating calculations on multiple
starting points, the whole scope of potential inputs is covered. It is
crucial to understand that the presented method deals with sensitivity
of the model, not sensitivity of the real system. It is a significant
distinction and expert interpretation is needed to decide whether a
specific insight belongs to the system, or does it only exist in the model.

Additional benefit of data-driven sensitivity analysis is mathemat-
ical simplicity of the approach. It utilizes very basic methods and
expands them through repetition. It becomes more and more com-
mon to bypass math-heavy approaches where analytical solutions exist
with Monte Carlo type methods due to their simplicity (VanderPlas,
2016). Additionally, since the basic output of the presented method
is a dataset, as opposed to a single value, further, deeper analysis is
possible than presented here. For example, referring back to Fig. 14,
median sensitivity of all outputs is the same, approximately 0.8. It is
however possible to extract much more information, such as standard
deviation or variance of the sensitivity. Result of such calculation is
shown in Fig. 26, where standard deviation is shown for sensitivity
on the inclination channel. This gives a very good indication of how
different sensitivity can be between outputs, even though the median
value is the same. Such calculations can be tailor made for each case,
providing even more tools to analyze a model compared to common
methods.

5. Conclusion

Classical sensitivity analysis methods are often ill-suited for data-
driven models, such as recurrent neural networks, due to high number
of interdependent inputs. Common, basic, one-at-a-time methods fail to
provide meaningful results when high number of inputs is considered.
These can, however, be enhanced by employing datasets originally
used for training, validation, and testing the models. These datasets
necessarily cover the possible inputs, often with statistical distribution
matching reality.

In our case study, the proposed sensitivity analysis method was able
to pinpoint many new insights into performance and limitations of the
model that would otherwise be difficult to uncover. It was discovered
that sensitivity exists where it should not. This suggests that the model

Nozzle Radius
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performs well when directional driller follows a certain procedure of
operation, and the model can exploit correlations that are tied to that
behavior. At the same time, the model would perform poorly if used
as a simulator, where users are free to do as they please. We believe
that the presented method may be a very useful tool in developing ever
more complicated machine learning models, as well as, in evaluation
of other black box solutions.
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Appendix

A.1. Elasticity index as input exponent

Derivation of Elasticity Index being the exponent of the input:
Consider Elasticity index of a function y = f(x) as:

_ﬂ.fzf’(x).f
y

" dx y as

».x

A function in a general form f(x) = C - x* has derivative in relation

to x as f'(x) = « - C - x?~1. Therefore £,, = a-C-x*!. ﬁ Since
Xnt—l — x
—:

x®

X
X Cox@
which can be reduced to simply E, , = a. Bear in mind, that this is true
for AS being significantly smaller than S,.

E . .=a-

yx c:

(16)

A.2. Additional figures

Some less important figures are reproduced in the Appendix only.
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Fig. A.27. Sensitivity index, scaled function, scatterplot.
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