Frequent Itemsets and Association
Rule Mining

Vinay Setty
vinay.j.setty(@uis.no

Slides credit: http://www.mmds.org/

Association Rule Discovery

Supermarket shelf management - Market-basket
model:

» Goal: Identify items that are bought together by sufficiently
many customers

» Approach: Process the sales data collected with barcode
scanners to find dependencies among items

» A classic rule:

> If someone buys diaper and milk, then he/she is
likely to buy beer

» Don’t be surprised if you find six-packs next to diapers!

2

v

v

The Market-Basket Model

A large set of items

> e.g., things sold in a
supermarket

A large set of baskets

Each basket is a
small subset of items

> e.g., the things one
customer buys on one day

Want to discover
association rules

Input:
TID Items
1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Output:

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

» People who bought {x,y,z} tend to buy {v,w}

» Amazon!

Applications — (I)

Items = products; Baskets = sets of products someone
bought in one trip to the store

Real market baskets: Chain stores keep TBs of data
about what customers buy together

» Tells how typical customers navigate stores, lets them
position tempting items

» Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

» Need the rule to occur frequently, or no $$’s

Amazon’s people who bought X also bought Y

1

Applications — (2)

Baskets = sentences; Items = documents containing those
sentences

» Items that appear together too often could represent
plagiarism

» Notice items do not have to be “in”’ baskets

Baskets = patients; Items = drugs & side-effects

» Has been used to detect combinations
of drugs that result in particular side-effects

> But requires extension: Absence of an item

needs to be observed as well as presence
5

More generally

» A general many-to-many mapping (association)
between two kinds of things

> But we ask about connections among “items”,
not ‘“baskets”

» For example:

» Finding communities in graphs (e.g., Twitter)

Example:

» Finding communities in graphs (e.g., Twitter)
» Baskets = nodes; Items = outgoing neighbors

» Searching for complete bipartite subgraphs K; , of a big
graph
» How?

> View each node i as a
basket B; of nodes i it points to

» K, = aset Y of size ¢ that
occurs in s buckets B;

S hodes
t nodes

» Looking for K , = set of
A dense 2-layer graph support s and look at layer ¢ — all

frequent sets of size ¢
7

Confidence, Support, Interestingness

Then: Algorithms for finding frequent
itemsets

Finding frequent pairs

A-Priori algorithm

Frequent ltemsets

» Simplest question: Find sets of items that appear
together “frequently” in baskets

» Support for itemset I: Number of baskets containing all

items in 1
TID Items
» (Often expressed as a fraction I |DBread, Coke, Milk
2 Beer, Bread
of the total number of baskets) 3| Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
» Given a support threshold s, > | Coke Diaper, Milk

Support of

then sets of items that appear (Beer, Bread) = 2

in at least s baskets are called
frequent itemsets

Example: Frequent ltemsets

> Items = {milk, coke, pepsi, beer, juice}
» Support threshold = 3 baskets
B, ={m,p, j}
B,={c i}

10

Association Rules

Association Rules:
If-then rules about the contents of baskets

fi1y I5...0,) — J means: “if a basket contains all of ij,...,i,
then it is likely to contain j”

In practice there are many rules, want to find
signhificant/interesting ones!

Confidence of this association rule is the probability of j
given I = {i,,....i;}

support(/ U j)

conf(/ — j)=
(/) support(/)

11

Interesting Association Rules

» Not all high-confidence rules are interesting

» The rule X — milk may have high confidence for many
itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

» Interest of an association rule I — j:
difference between its confidence and the fraction of baskets

that contain j

Interest(/ — j)=conf(/ — j)—Pr[/]

» Interesting rules are those with high positive or negative

interest values (usually above 0.5)
12

Example: Confidence and Interest

B, ={m, ¢, b} B, ={m, p, j}

B; = {m, b} B,= {c, j}
B; = {m, p, b} B, ={m,c Db, j}
B, ={c, b, j} B; = {b, c}

» Association rule: {m, b} —c
» Confidence =2/4=05
» Interest = |0.5-5/8|=1/8
> Item € appears in 5/8 of the baskets

> Rule is not very interesting!

13

Finding Association Rules

Problem: Find all association rules with support
>s and confidence >c

» INote: Support of an association rule is the support of the
set of items on the left side

Hard part: Finding the frequent itemsets!

» If {iy, 155..., [} — J has high support and confidence, then
both {i;, iy,..., i;} and
{iis Ip..0l) j} Will be “frequent”

support(/ U j)

conf(/ — j)=
(/) support(/)

14

Mining Association Rules

» Step I: Find all frequent itemsets [
» (we will explain this next)
» Step 2: Rule generation
» For every subset A of I, generatearule A — 11 A4
» Since I is frequent, A is also frequent
» Variant I: Single pass to compute the rule confidence
» confidence(A,B—C,D) = support(A,B,C,D) / support(A,B)
> Variant 2:

» Observation: If A,B,C—D is below confidence, so is
A,B—C,D

» Can generate “bigger” rules from smaller ones!

» Qutput the rules above the confidence thresholid

15

Example

B, ={m, c, b} B,={m, p,}}
B;,={m,c,b,n} B,={cj}
B; = {m, p, b} B, ={m, ¢ Db,j}
B; ={c Db, j} B; = {b, c}
» Support threshold s = 3, confidence c =0.75
» 1) Frequent itemsets:
+ {b,m} {b,c} {c,;m} {c,j} {m,c,b}
» 2) Generate rules:
» —b—m—e=46— b—c: c=5/6 bryc=mTc=35—
» m—b: ¢c=4/5 b,m—c: c=3/4

» —bB =36

16

Compacting the Output

» To reduce the number of rules we can
post-process them and only output:

» Maximal frequent itemsets:
No immediate superset is frequent

> Gives more pruning

or

» Closed itemsets:
No immediate superset has the same count (> 0)

» Stores not only frequent information, but exact counts

17

Example: Maximal/Closed

AB
AC
BC
ABC

Support

4

5
3
4
2
3
2

Maximal(s=3) Close

No
No
No
Yes
No
Yes
No

18

Frequent, but

No

Frequent, and

its only superset,
Yes ABC, not freq.

Superset BC
NO\ has same count.

Yes
No

Its only super-
Yes set, ABC, has

smaller count.

Yes

A-Priori Algorithm — (1)

A two-pass approach called | T~

A=Priori limits the need for ’ b

main memory %

ab ac bc

Key idea: monotonicity \

» If a set of items I appears at
least s times, so does every subset J of 1

Contrapositive for pairs:

If item i does not appear in s baskets, then no pair including
i can appear in s baskets

So, how does A-Priori find freq. pairs?

20

A-Priori Algorithm — (2)
» Pass |: Read baskets and count in main memory

the occurrences of each individual item

> Requires only memory proportional to #items

» Items that appear > s times are the frequent items

» Pass 2: Read baskets again and count in main memory only those
pairs where both elements
are frequent (from Pass |)

> Requires memory proportional to square of frequent items only
(for counts)

> Plus a list of the frequent items (so you know what must be
counted)

21

Main-Memory: Picture of A-Priori

oo | s

Main memory

Pass 1 Pass 2

22

Detail for A-Priori

» You can use the triangular -
matrix method with n = number || Item counts L
. items
of frequent items . #s
» May save space compared >
with storing triples 3 counts of
= pairs of
: f tit
» Trick: re-number frequent CE% ARSI RS
items |,2,... and keep a table

relating new numbers to original
item numbers

23

Pass 1 Pass 2

Frequent Triples, Etc.

» For each k, we construct two sets of
k-tuples (sets of size k):

» €, = candidate k-tuples = those that might be frequent
sets (support > s) based on information from the pass for

k-1

» L, = the set of truly frequent k-tuples

All
items

/

C, ™

Count
the items

Filter

All pairs
of items
from L,

/

L,

Construct

Count To be
the pairs explained
Construct

** Note here we generate new candidates by
generating C, from L,_, and L,.

Exal I l P I e But that one can be more careful with candidate

generation. For example, in C; we know {b,m,j}
cannot be frequent since {m,j} is not frequent

Hypothetical steps of the A-Priori algorithm

»

»

»

C, = {{b}{c} {i} {m} {n} {p} }

Count the support of itemsets in C,

Prune non-frequent: L, ={ b, ¢, j, m }

Generate C, = { {b,c} {b,j} {b,m} {c,j} {c.;m} {j,m} }
Count the support of itemsets in C,

Prune non-frequent: L, = { {b,m} {b,c} {c,m} {c,j}}
Generate C; = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

Count the support of itemsets in C; o

Prune non-frequent: L; = { {b,c,m} }

25

Generating Candidates — Full Example

Data

pase D

TID

Iltems

100
200
300
400

134
239

12 d8
25

itemset

Sup

{13}
{2 3}
{2 3}
{3 9}

N W IN NC

G

itemset

{2 35)

Scan D

Scan D;

minsup = 2

itemset

S

c

p.

{1}

{2}

{3}
{4}
15}

W= W wWwiN

itemset

{12}
{13}
{195}
{2 3}
{2 5}
{3 5}

N W N= N = C

itemset

sup

{2 35)

26

L,

Scan D

itemset

sup.

{1}
{2}
{3}
{5}

W wwmN

itemset

{12}
{13}
{15}
{2 3}
{2 5}

A

Scan D

{3 5}

J

C4is empty

Pruning Step

|t?1m33}et S;p » For an itemset of size k, check if all
{23} | 2 the itemsets of size k-1 are also
{25} | 3 frequent
(35} | 2
» If any of the k-1 sized itemsets are
Cs fitemsetl [itemset not frequent prune the itemset of
{235} |[{135} size k
orantese . (23 {13}
e B8 (39
25 [

AN

Not frequent!
27

A-Priori for All Frequent ltemsets

One pass for each k (itemset size)

Needs room in main memory to count
each candidate k—tuple

For typical market-basket data and reasonable support (e.g., 1%),
k = 2 requires the most memory

Many possible extensions:
» Association rules with intervals:
» For example: Men over 65 have 2 cars
» Association rules when items are in a taxonomy
» Bread, Butter — FruitjJam
» BakedGoods, MilkProduct — PreservedGoods

» Lower the support s as itemset gets bigger
28

uent Itemsets

Frequent ltemsets in < 2 Passes

» A-Priori takes k passes to find frequent itemsets of
size k

» Can we use fewer passes?

» Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets

» Random sampling

» SON (Savasere, Omiecinski, and Navathe)

» Toivonen (see textbook)

30

Random Sampling (1)

» Take a random sample of the market baskets

» Run a-priori or one of its improvements

in main memory Copy of
sample
> So we don’t pay for disk I/O each S | baskets
time we increase the size of itemsets é
> Reduce support threshold CE% Space
proportionally CI)?Jrnts
to match the sample size

31

Random Sampling (2)

» Optionally, verify that the candidate pairs are truly frequent
in the entire data set by a second pass (avoid false positives)

» But you don’t catch sets frequent in the whole but not in the
sample

» Smaller threshold, e.g., s/125, helps catch more truly
frequent itemsets

> But requires more space

32

SON Algorithm — (1)

» Repeatedly read small subsets of the baskets into main
memory and run an in-memory algorithm to find all frequent

itemsets

> Note: we are not sampling, but processing the entire file
in memory-sized chunks

» An itemset becomes a candidate if it is found to be frequent
in any one or more subsets of the baskets.

33

SON Algorithm — (2)

» On a second pass, count all the candidate itemsets and
determine which are frequent in the entire set

» Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is frequent in at
least one subset.

34

SON Summary

Pass | — Batch Processing

» Scan data on disk

» Repeatedly fill memory with new batch of data
» Run sampling algorithm on each batch

» Generate candidate frequent itemsets

Candidate Itemsets — if frequent in some batch
Pass 2 — Validate candidate itemsets

Monotonicity Property

Itemset X is frequent overall = frequent in at least one batch

35

SON — Distributed Version

» SON lends itself to distributed data mining

» Baskets distributed among many nodes
» Compute frequent itemsets at each node
» Distribute candidates to all nodes

» Accumulate the counts of all candidates

36

SON: Map/Reduce

» Phase |: Find candidate itemsets
» Map!?

> Reduce?
» Phase 2: Find true frequent itemsets
» Map!?

» Reduce!?

37

(Park-Chen-Yu) PCY Idea

Improvement upon A-Priori
Observe — during Pass |, memory mostly idle

|dea

v

Use idle memory for hash-table H

v

Pass | — hash pairs from b into H

» |Increment counter at hash location

v

At end — bitmap of high-frequency hash locations

v

Pass 2 — bitmap extra condition for candidate pairs

39

<~ mTOoOEmEZ

Memory Usage PCY

Candidate Items

Hash Table

Pass 1

40

Frequent Items

Candidate

Pairs

Pass 2

<~ mTOoOEmEZ

PCY Algorithm

Pass |

» m counters and hash-table T

» Linear scan of baskets b

» Increment counters for each item in b

» Increment hash-table counter for each item-pair in b
Mark as frequent, f items of count at least s

Summarize T as bitmap (count >s => bit = [)
Pass 2
» Counter only for F qualified pairs (X, X)):
» both are frequent
» pair hashes to frequent bucket (bit=1)
» Linear scan of baskets b
» Increment counters for candidate qualified pairs of items in b

41

Multi-Stage PCY

» Problem — False positives from hashing

> New ldea
» Multiple rounds of hashing
» After Pass |, get list of qualified pairs
> In Pass 2, hash only qualified pairs
» Fewer pairs hash to buckets = less false positives
(buckets with count >s, yet no pair of count >s)

> In Pass 3, less likely to qualify infrequent pairs
» Repetition — reduce memory, but more passes

> Failure — memory < O(f+F)

42

Multi-Stage PCY Memory

Candidate Items

Hash Table 1

Pass 1

Frequent Items

Hash Table 2

Frequent Items

Pass 2

43

Bitmap 2

Candidate

Pairs

Literature

» Mining of Massive Datasets Jure
Leskovec, Ahand Rajaraman, Jeff Ullman,
Chapter 6

> http://mmds.org
http://infolab.stanford.edu/~ullman/mmds/ché.pdf

11

