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Association Rule Discovery

Supermarket shelf management - Market-basket
model:

» Goal: Identify items that are bought together by sufficiently
many customers

» Approach: Process the sales data collected with barcode
scanners to find dependencies among items

» A classic rule:

> If someone buys diaper and milk, then he/she is
likely to buy beer

» Don’t be surprised if you find six-packs next to diapers!
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The Market-Basket Model

A large set of items

> e.g., things sold in a
supermarket

A large set of baskets

Each basket is a
small subset of items

> e.g., the things one
customer buys on one day

Want to discover
association rules

Input:
TID Items
1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Output:

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

»  People who bought {x,y,z} tend to buy {v,w}

»  Amazon!




Applications — (I)

Items = products; Baskets = sets of products someone
bought in one trip to the store

Real market baskets: Chain stores keep TBs of data
about what customers buy together

» Tells how typical customers navigate stores, lets them
position tempting items

» Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

» Need the rule to occur frequently, or no $$’s

Amazon’s people who bought X also bought Y
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Applications — (2)

Baskets = sentences; Items = documents containing those
sentences

» Items that appear together too often could represent
plagiarism

» Notice items do not have to be “in”’ baskets

Baskets = patients; Items = drugs & side-effects

» Has been used to detect combinations
of drugs that result in particular side-effects

> But requires extension: Absence of an item

needs to be observed as well as presence
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More generally

» A general many-to-many mapping (association)
between two kinds of things

> But we ask about connections among “items”,
not ‘“baskets”

» For example:

» Finding communities in graphs (e.g., Twitter)



Example:

» Finding communities in graphs (e.g., Twitter)
» Baskets = nodes; Items = outgoing neighbors

» Searching for complete bipartite subgraphs K; , of a big
graph
» How?

> View each node i as a
basket B; of nodes i it points to

» K, = aset Y of size ¢ that
occurs in s buckets B;

S hodes
t nodes

» Looking for K , = set of
A dense 2-layer graph support s and look at layer ¢ — all

frequent sets of size ¢
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Confidence, Support, Interestingness

Then: Algorithms for finding frequent
itemsets

Finding frequent pairs

A-Priori algorithm



Frequent ltemsets

» Simplest question: Find sets of items that appear
together “frequently” in baskets

» Support for itemset I: Number of baskets containing all

items in 1
TID Items
»  (Often expressed as a fraction I |DBread, Coke, Milk
2 Beer, Bread
of the total number of baskets) 3| Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
» Given a support threshold s, > | Coke Diaper, Milk

Support of

then sets of items that appear (Beer, Bread) = 2

in at least s baskets are called
frequent itemsets



Example: Frequent ltemsets

> Items = {milk, coke, pepsi, beer, juice}
» Support threshold = 3 baskets
B, ={m,p, j}
B,={c i}
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Association Rules

Association Rules:
If-then rules about the contents of baskets

fi1y I5...0, ) — J means: “if a basket contains all of ij,...,i,
then it is likely to contain j”

In practice there are many rules, want to find
signhificant/interesting ones!

Confidence of this association rule is the probability of j
given I = {i,,....i;}

support(/ U j)

conf(/ — j)=
( /) support(/)
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Interesting Association Rules

» Not all high-confidence rules are interesting

» The rule X — milk may have high confidence for many
itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

» Interest of an association rule I — j:
difference between its confidence and the fraction of baskets

that contain j

Interest(/ — j)=conf(/ — j)—Pr[ /]

» Interesting rules are those with high positive or negative

interest values (usually above 0.5)
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Example: Confidence and Interest

B, ={m, ¢, b} B, ={m, p, j}

B; = {m, b} B,= {c, j}
B; = {m, p, b} B, ={m,c Db, j}
B, ={c, b, j} B; = {b, c}

» Association rule: {m, b} —c
» Confidence =2/4=05
» Interest = |0.5-5/8|=1/8
> Item € appears in 5/8 of the baskets

> Rule is not very interesting!
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Finding Association Rules

Problem: Find all association rules with support
>s and confidence >c

» INote: Support of an association rule is the support of the
set of items on the left side

Hard part: Finding the frequent itemsets!

» If {iy, 155..., [} — J has high support and confidence, then
both {i;, iy,..., i;} and
{iis Ip..0l) j} Will be “frequent”

support(/ U j)

conf(/ — j)=
( /) support(/)
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Mining Association Rules

» Step I: Find all frequent itemsets [
» (we will explain this next)
» Step 2: Rule generation
» For every subset A of I, generatearule A — 11 A4
» Since I is frequent, A is also frequent
»  Variant I: Single pass to compute the rule confidence
» confidence(A,B—C,D) = support(A,B,C,D) / support(A,B)
> Variant 2:

»  Observation: If A,B,C—D is below confidence, so is
A,B—C,D

»  Can generate “bigger” rules from smaller ones!

»  Qutput the rules above the confidence thresholid
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Example

B, ={m, c, b} B,={m, p,}}
B;,={m,c,b,n} B,={cj}
B; = {m, p, b} B, ={m, ¢ Db,j}
B; ={c Db, j} B; = {b, c}
» Support threshold s = 3, confidence c =0.75
» 1) Frequent itemsets:
+ {b,m} {b,c} {c,;m} {c,j} {m,c,b}
» 2) Generate rules:
» —b—m—e=46— b—c: c=5/6 bryc=mTc=35—
» m—b: ¢c=4/5 b,m—c: c=3/4

» —bB =36
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Compacting the Output

» To reduce the number of rules we can
post-process them and only output:

» Maximal frequent itemsets:
No immediate superset is frequent

> Gives more pruning

or

» Closed itemsets:
No immediate superset has the same count (> 0)

» Stores not only frequent information, but exact counts
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Example: Maximal/Closed

AB
AC
BC
ABC

Support

4

5
3
4
2
3
2

Maximal(s=3) Close

No
No
No
Yes
No
Yes
No
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Frequent, but

No

Frequent, and

its only superset,
Yes ABC, not freq.

Superset BC
NO\ has same count.

Yes
No

Its only super-
Yes set, ABC, has

smaller count.

Yes






A-Priori Algorithm — (1)

A two-pass approach called | T~

A=Priori limits the need for ’ b

main memory %

ab ac bc

Key idea: monotonicity \

» If a set of items I appears at
least s times, so does every subset J of 1

Contrapositive for pairs:

If item i does not appear in s baskets, then no pair including
i can appear in s baskets

So, how does A-Priori find freq. pairs?
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A-Priori Algorithm — (2)
» Pass |: Read baskets and count in main memory

the occurrences of each individual item

> Requires only memory proportional to #items

» Items that appear > s times are the frequent items

» Pass 2: Read baskets again and count in main memory only those
pairs where both elements
are frequent (from Pass |)

> Requires memory proportional to square of frequent items only
(for counts)

> Plus a list of the frequent items (so you know what must be
counted)
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Main-Memory: Picture of A-Priori

oo | s

Main memory

Pass 1 Pass 2
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Detail for A-Priori

» You can use the triangular -
matrix method with n = number || Item counts L
. items
of frequent items . #s
» May save space compared >
with storing triples 3 counts of
= pairs of
: f tit
» Trick: re-number frequent CE% ARSI RS
items |,2,... and keep a table

relating new numbers to original
item numbers
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Frequent Triples, Etc.

» For each k, we construct two sets of
k-tuples (sets of size k):

» €, = candidate k-tuples = those that might be frequent
sets (support > s) based on information from the pass for

k-1

» L, = the set of truly frequent k-tuples

All
items

/

C, ™

Count
the items

Filter

All pairs
of items
from L,

/

L,

Construct

Count To be
the pairs explained
Construct




** Note here we generate new candidates by
generating C, from L,_, and L,.

Exal I l P I e But that one can be more careful with candidate

generation. For example, in C; we know {b,m,j}
cannot be frequent since {m,j} is not frequent

Hypothetical steps of the A-Priori algorithm

»

»

»

C, = {{b}{c} {i} {m} {n} {p} }

Count the support of itemsets in C,

Prune non-frequent: L, ={ b, ¢, j, m }

Generate C, = { {b,c} {b,j} {b,m} {c,j} {c.;m} {j,m} }
Count the support of itemsets in C,

Prune non-frequent: L, = { {b,m} {b,c} {c,m} {c,j}}
Generate C; = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

Count the support of itemsets in C; o

Prune non-frequent: L; = { {b,c,m} }
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Generating Candidates — Full Example

Data

pase D

TID

Iltems

100
200
300
400

134
239

12 d8
25

itemset

Sup

{13}
{2 3}
{2 3}
{3 9}

N W IN NC

G

itemset

{2 35)

Scan D

Scan D;

minsup = 2

itemset

S

c

p.

{1}

{2}

{3}
{4}
15}

W= W wWwiN

itemset

{12}
{13}
{195}
{2 3}
{2 5}
{3 5}

N W N= N = C

itemset

sup

{2 35)
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L,

Scan D

itemset

sup.

{1}
{2}
{3}
{5}

W wwmN

itemset

{12}
{13}
{15}
{2 3}
{2 5}

A

Scan D

{3 5}

J

C4is empty



Pruning Step

|t?1m33}et S;p » For an itemset of size k, check if all
{23} | 2 the itemsets of size k-1 are also
{25} | 3 frequent
(35} | 2
» If any of the k-1 sized itemsets are
Cs fitemsetl [itemset not frequent prune the itemset of
{235} |[{135} size k
orantese . (23 {13}
e B8 (39
25 [

AN

Not frequent!
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A-Priori for All Frequent ltemsets

One pass for each k (itemset size)

Needs room in main memory to count
each candidate k—tuple

For typical market-basket data and reasonable support (e.g., 1%),
k = 2 requires the most memory

Many possible extensions:
»  Association rules with intervals:
»  For example: Men over 65 have 2 cars
»  Association rules when items are in a taxonomy
»  Bread, Butter — FruitjJam
»  BakedGoods, MilkProduct — PreservedGoods

»  Lower the support s as itemset gets bigger
28
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Frequent ltemsets in < 2 Passes

» A-Priori takes k passes to find frequent itemsets of
size k

» Can we use fewer passes?

» Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets

» Random sampling

» SON (Savasere, Omiecinski, and Navathe)

» Toivonen (see textbook)
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Random Sampling (1)

» Take a random sample of the market baskets

» Run a-priori or one of its improvements

in main memory Copy of
sample
> So we don’t pay for disk I/O each S | baskets
time we increase the size of itemsets é
> Reduce support threshold CE% Space
proportionally CI)?Jrnts
to match the sample size
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Random Sampling (2)

» Optionally, verify that the candidate pairs are truly frequent
in the entire data set by a second pass (avoid false positives)

» But you don’t catch sets frequent in the whole but not in the
sample

» Smaller threshold, e.g., s/125, helps catch more truly
frequent itemsets

> But requires more space
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SON Algorithm — (1)

» Repeatedly read small subsets of the baskets into main
memory and run an in-memory algorithm to find all frequent

itemsets

> Note: we are not sampling, but processing the entire file
in memory-sized chunks

» An itemset becomes a candidate if it is found to be frequent
in any one or more subsets of the baskets.
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SON Algorithm — (2)

» On a second pass, count all the candidate itemsets and
determine which are frequent in the entire set

» Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is frequent in at
least one subset.
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SON Summary

Pass | — Batch Processing

»  Scan data on disk

»  Repeatedly fill memory with new batch of data
»  Run sampling algorithm on each batch

» Generate candidate frequent itemsets

Candidate Itemsets — if frequent in some batch
Pass 2 — Validate candidate itemsets

Monotonicity Property

Itemset X is frequent overall = frequent in at least one batch
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SON — Distributed Version

» SON lends itself to distributed data mining

» Baskets distributed among many nodes
»  Compute frequent itemsets at each node
» Distribute candidates to all nodes

»  Accumulate the counts of all candidates
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SON: Map/Reduce

» Phase |: Find candidate itemsets
» Map!?

> Reduce?
» Phase 2: Find true frequent itemsets
» Map!?

» Reduce!?
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(Park-Chen-Yu) PCY Idea

Improvement upon A-Priori
Observe — during Pass |, memory mostly idle

|dea

v

Use idle memory for hash-table H

v

Pass | — hash pairs from b into H

» |Increment counter at hash location

v

At end — bitmap of high-frequency hash locations

v

Pass 2 — bitmap extra condition for candidate pairs
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<~ mTOoOEmEZ

Memory Usage PCY

Candidate Items

Hash Table

Pass 1

40

Frequent Items

Candidate

Pairs

Pass 2

<~ mTOoOEmEZ



PCY Algorithm

Pass |

»  m counters and hash-table T

»  Linear scan of baskets b

»  Increment counters for each item in b

»  Increment hash-table counter for each item-pair in b
Mark as frequent, f items of count at least s

Summarize T as bitmap (count >s => bit = [)
Pass 2
» Counter only for F qualified pairs (X, X)):
»  both are frequent
»  pair hashes to frequent bucket (bit=1)
»  Linear scan of baskets b
» Increment counters for candidate qualified pairs of items in b
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Multi-Stage PCY

» Problem — False positives from hashing

> New ldea
» Multiple rounds of hashing
»  After Pass |, get list of qualified pairs
> In Pass 2, hash only qualified pairs
» Fewer pairs hash to buckets = less false positives
(buckets with count >s, yet no pair of count >s)

> In Pass 3, less likely to qualify infrequent pairs
» Repetition — reduce memory, but more passes

> Failure — memory < O(f+F)
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Multi-Stage PCY Memory

Candidate Items

Hash Table 1

Pass 1

Frequent Items

Hash Table 2

Frequent Items

Pass 2
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Bitmap 2

Candidate

Pairs




Literature

» Mining of Massive Datasets Jure
Leskovec, Ahand Rajaraman, Jeff Ullman,
Chapter 6

> http://mmds.org
http://infolab.stanford.edu/~ullman/mmds/ché.pdf
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