
Frequent Itemsets and Association
Rule Mining

Vinay Setty
vinay.j.setty@uis.no

Slides credit: http://www.mmds.org/

Association Rule Discovery

Supermarket shelf management – Market-basket
model:

‣ Goal: Identify items that are bought together by sufficiently
many customers

‣ Approach: Process the sales data collected with barcode
scanners to find dependencies among items

‣ A classic rule:

‣ If someone buys diaper and milk, then he/she is
likely to buy beer

‣ Don’t be surprised if you find six-packs next to diapers!
2

The Market-Basket Model
‣ A large set of items

‣ e.g., things sold in a
supermarket

‣ A large set of baskets

‣ Each basket is a
small subset of items

‣ e.g., the things one
customer buys on one day

‣ Want to discover
association rules

‣ People who bought {x,y,z} tend to buy {v,w}

‣ Amazon!
3

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

Applications – (1)

‣ Items = products; Baskets = sets of products someone
bought in one trip to the store

‣ Real market baskets: Chain stores keep TBs of data
about what customers buy together

‣ Tells how typical customers navigate stores, lets them
position tempting items

‣ Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

‣ Need the rule to occur frequently, or no $$’s

‣ Amazon’s people who bought X also bought Y
4

Applications – (2)

‣ Baskets = sentences; Items = documents containing those
sentences

‣ Items that appear together too often could represent
plagiarism

‣ Notice items do not have to be “in” baskets

‣ Baskets = patients; Items = drugs & side-effects

‣ Has been used to detect combinations
of drugs that result in particular side-effects

‣ But requires extension: Absence of an item
needs to be observed as well as presence

5

More generally

‣ A general many-to-many mapping (association)
between two kinds of things

‣ But we ask about connections among “items”,
not “baskets”

‣ For example:

‣ Finding communities in graphs (e.g., Twitter)

6

Example:
‣ Finding communities in graphs (e.g., Twitter)

‣ Baskets = nodes; Items = outgoing neighbors

‣ Searching for complete bipartite subgraphs Ks,t of a big
graph

7

‣ How?

‣ View each node i as a
basket Bi of nodes i it points to

‣ Ks,t = a set Y of size t that
occurs in s buckets Bi

‣ Looking for Ks,t à set of
support s and look at layer t – all
frequent sets of size t

…

…

A dense 2-layer graph

s
no

de
s

tn
od

es

First: Define
Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent
itemsets

Finding frequent pairs

A-Priori algorithm
8

Frequent Itemsets

‣ Simplest question: Find sets of items that appear
together “frequently” in baskets

‣ Support for itemset I: Number of baskets containing all
items in I

‣ (Often expressed as a fraction
of the total number of baskets)

‣ Given a support threshold s,
then sets of items that appear
in at least s baskets are called
frequent itemsets

9

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of
{Beer, Bread} = 2

Example: Frequent Itemsets

‣ Items = {milk, coke, pepsi, beer, juice}

‣ Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

‣ Frequent itemsets: {m}, {c}, {b}, {j},

10

, {b,c} , {c,j}.{m,b}

Association Rules
‣ Association Rules:

If-then rules about the contents of baskets

‣ {i1, i2,…,ik} → j means: “if a basket contains all of i1,…,ik
then it is likely to contain j”

‣ In practice there are many rules, want to find
significant/interesting ones!

‣ Confidence of this association rule is the probability of j
given I = {i1,…,ik}

11

)support(
)support()conf(

I
jIjI È

=®

Interesting Association Rules

‣ Not all high-confidence rules are interesting

‣ The rule X → milk may have high confidence for many
itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

‣ Interest of an association rule I → j:
difference between its confidence and the fraction of baskets
that contain j

‣ Interesting rules are those with high positive or negative
interest values (usually above 0.5)

12

]Pr[)conf()Interest(jjIjI -®=®

Example: Confidence and Interest
B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

‣ Association rule: {m, b} →c

‣ Confidence = 2/4 = 0.5

‣ Interest = |0.5 – 5/8| = 1/8

‣ Item c appears in 5/8 of the baskets

‣ Rule is not very interesting!

13

Finding Association Rules

‣ Problem: Find all association rules with support
≥s and confidence ≥c

‣ Note: Support of an association rule is the support of the
set of items on the left side

‣ Hard part: Finding the frequent itemsets!

‣ If {i1, i2,…, ik} → j has high support and confidence, then
both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

14
)support(
)support()conf(

I
jIjI È

=®

Mining Association Rules
‣ Step 1: Find all frequent itemsets I

‣ (we will explain this next)

‣ Step 2: Rule generation

‣ For every subset A of I, generate a rule A → I \ A

‣ Since I is frequent, A is also frequent

‣ Variant 1: Single pass to compute the rule confidence

‣ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

‣ Variant 2:

‣ Observation: If A,B,C→D is below confidence, so is
A,B→C,D

‣ Can generate “bigger” rules from smaller ones!

‣ Output the rules above the confidence threshold

15

Example

B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, c, b, n} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

‣ Support threshold s = 3, confidence c = 0.75

‣ 1) Frequent itemsets:
‣ {b,m} {b,c} {c,m} {c,j} {m,c,b}

‣ 2) Generate rules:

‣ b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5

‣ m→b: c=4/5 … b,m→c: c=3/4

‣ b→c,m: c=3/6
16

Compacting the Output
‣ To reduce the number of rules we can

post-process them and only output:

‣ Maximal frequent itemsets:
No immediate superset is frequent

‣ Gives more pruning

or

‣ Closed itemsets:
No immediate superset has the same count (> 0)

‣ Stores not only frequent information, but exact counts

17

Example: Maximal/Closed

Support Maximal(s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes
18

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.

A-Priori Algorithm – (1)

‣ A two-pass approach called
A-Priori limits the need for
main memory

‣ Key idea: monotonicity

‣ If a set of items I appears at
least s times, so does every subset J of I

‣ Contrapositive for pairs:
If item i does not appear in s baskets, then no pair including
i can appear in s baskets

‣ So, how does A-Priori find freq. pairs?
20

A-Priori Algorithm – (2)
‣ Pass 1: Read baskets and count in main memory

the occurrences of each individual item
‣ Requires only memory proportional to #items

‣ Items that appear ≥ 𝒔 times are the frequent items

‣ Pass 2: Read baskets again and count in main memory only those
pairs where both elements
are frequent (from Pass 1)

‣ Requires memory proportional to square of frequent items only
(for counts)

‣ Plus a list of the frequent items (so you know what must be
counted)

21

Main-Memory: Picture of A-Priori

22

Item counts

Pass 1 Pass 2

Frequent items

M
ai

n
m

em
or

y Counts of
pairs of

frequent items
(candidate

pairs)

Detail for A-Priori

‣ You can use the triangular
matrix method with n = number
of frequent items

‣ May save space compared
with storing triples

‣ Trick: re-number frequent
items 1,2,… and keep a table
relating new numbers to original
item numbers

23

Item counts

Pass 1 Pass 2

Counts of pairs
of frequent

items

Frequent
items

Old
item
#s

M
ai

n
m

em
or

y

Counts of
pairs of

frequent items

Frequent Triples, Etc.
‣ For each k, we construct two sets of

k-tuples (sets of size k):

‣ Ck = candidate k-tuples = those that might be frequent
sets (support > s) based on information from the pass for
k–1

‣ Lk = the set of truly frequent k-tuples

24

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

Example
‣ Hypothetical steps of the A-Priori algorithm

‣ C1 = { {b} {c} {j} {m} {n} {p} }

‣ Count the support of itemsets in C1

‣ Prune non-frequent: L1 = { b, c, j, m }

‣ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

‣ Count the support of itemsets in C2

‣ Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }

‣ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

‣ Count the support of itemsets in C3

‣ Prune non-frequent: L3 = { {b,c,m} }

25

** Note here we generate new candidates by
generating Ck from Lk-1 and L1.
But that one can be more careful with candidate
generation. For example, in C3 we know {b,m,j}
cannot be frequent since {m,j} is not frequent

**

Generating	Candidates	– Full Example

Scan D

i temset sup.
{1}
{2}
{3}

2
3
3

{4} 1
{5} 3

C1

i temset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3}
{2 5}
{3 5}

2
3
2

C2

Scan D

Scan D
L3 itemset sup

{2 3 5} 2

i t e m s e t s u p .
{ 1 } 2
{ 2 } 3
{ 3 } 3
{ 5 } 3

L1

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2
i temset

{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

C2

C3 itemset
{2 3 5}

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

minsup = 2Database D

Scan D

26

C4 is empty

Pruning Step

‣ For an itemset of size k, check if all
the itemsets of size k-1 are also
frequent

‣ If any of the k-1 sized itemsets are
not frequent prune the itemset of
size k

27

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C3 itemset
{2 3 5}

{2 3}
{3 5}
{2 5}

Check to see
of all these
itemsets are
frequent

itemset
{1 3 5}

{1 3}
{3 5}
{1 5}

Not frequent!

A-Priori for All Frequent Itemsets
‣ One pass for each k (itemset size)

‣ Needs room in main memory to count
each candidate k–tuple

‣ For typical market-basket data and reasonable support (e.g., 1%),
k = 2 requires the most memory

‣ Many possible extensions:

‣ Association rules with intervals:

‣ For example: Men over 65 have 2 cars

‣ Association rules when items are in a taxonomy

‣ Bread, Butter → FruitJam

‣ BakedGoods, MilkProduct → PreservedGoods

‣ Lower the support s as itemset gets bigger
28

Frequent Itemsets in < 2 Passes

‣ A-Priori takes k passes to find frequent itemsets of
size k

‣ Can we use fewer passes?

‣ Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets

‣ Random sampling

‣ SON (Savasere, Omiecinski, and Navathe)

‣ Toivonen (see textbook)

30

Random Sampling (1)

‣ Take a random sample of the market baskets

‣ Run a-priori or one of its improvements
in main memory

‣ So we don’t pay for disk I/O each
time we increase the size of itemsets

‣ Reduce support threshold
proportionally
to match the sample size

31

Copy of
sample
baskets

Space
for

counts

M
ai

n
m

em
or

y

Random Sampling (2)
‣ Optionally, verify that the candidate pairs are truly frequent

in the entire data set by a second pass (avoid false positives)

‣ But you don’t catch sets frequent in the whole but not in the
sample

‣ Smaller threshold, e.g., s/125, helps catch more truly
frequent itemsets

‣ But requires more space

32

SON Algorithm – (1)

‣ Repeatedly read small subsets of the baskets into main
memory and run an in-memory algorithm to find all frequent
itemsets

‣ Note: we are not sampling, but processing the entire file
in memory-sized chunks

‣ An itemset becomes a candidate if it is found to be frequent
in any one or more subsets of the baskets.

33

SON Algorithm – (2)

‣ On a second pass, count all the candidate itemsets and
determine which are frequent in the entire set

‣ Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is frequent in at
least one subset.

34

SON Summary

35

‣ Pass 1 – Batch Processing

‣ Scan data on disk

‣ Repeatedly fill memory with new batch of data

‣ Run sampling algorithm on each batch

‣ Generate candidate frequent itemsets

‣ Candidate Itemsets – if frequent in some batch

‣ Pass 2 – Validate candidate itemsets

‣ Monotonicity Property

Itemset X is frequent overall à frequent in at least one batch

SON – Distributed Version

‣ SON lends itself to distributed data mining

‣ Baskets distributed among many nodes

‣ Compute frequent itemsets at each node

‣ Distribute candidates to all nodes

‣ Accumulate the counts of all candidates

36

SON: Map/Reduce

‣ Phase 1: Find candidate itemsets

‣ Map?

‣ Reduce?

‣ Phase 2: Find true frequent itemsets

‣ Map?

‣ Reduce?

37

(Park-Chen-Yu) PCY Idea

39

‣ Improvement upon A-Priori

‣ Observe – during Pass 1, memory mostly idle

‣ Idea

‣ Use idle memory for hash-table H

‣ Pass 1 – hash pairs from b into H

‣ Increment counter at hash location

‣ At end – bitmap of high-frequency hash locations

‣ Pass 2 – bitmap extra condition for candidate pairs

Memory Usage PCY

40

Candidate Items

Pass 1 Pass 2

M
E
M
O
R
Y

M
E
M
O
R
Y

Hash Table

Frequent Items
Bitmap

Candidate
Pairs

PCY Algorithm
‣ Pass 1

‣ m counters and hash-table T

‣ Linear scan of baskets b

‣ Increment counters for each item in b

‣ Increment hash-table counter for each item-pair in b

‣ Mark as frequent, f items of count at least s

‣ Summarize T as bitmap (count > s à bit = 1)

‣ Pass 2
‣ Counter only for F qualified pairs (Xi,Xj):

‣ both are frequent

‣ pair hashes to frequent bucket (bit=1)

‣ Linear scan of baskets b

‣ Increment counters for candidate qualified pairs of items in b

41

Multi-Stage PCY
‣ Problem – False positives from hashing

‣ New Idea
‣ Multiple rounds of hashing

‣ After Pass 1, get list of qualified pairs

‣ In Pass 2, hash only qualified pairs

‣ Fewer pairs hash to buckets à less false positives

(buckets with count >s, yet no pair of count >s)

‣ In Pass 3, less likely to qualify infrequent pairs

‣ Repetition – reduce memory, but more passes

‣ Failure – memory < O(f+F)

42

Multi-Stage PCY Memory

43

Candidate Items

Pass 1 Pass 2

Hash Table 1

Frequent Items
Bitmap

Frequent Items
Bitmap 1
Bitmap 2

Candidate
Pairs

Hash Table 2

Literature

‣ Mining of Massive Datasets Jure
Leskovec, Anand Rajaraman, Jeff Ullman,
Chapter 6

‣ http://mmds.org
http://infolab.stanford.edu/~ullman/mmds/ch6.pdf

44

