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Abstract

The focus of this dissertation is on the design of two-dimensional �lters for feature extraction,
segmentation, and classi�cation of digital images with textural content. The features are ex-
tracted by �ltering with a linear �lter and estimating the local energy of the �lter response.
The dissertation gives a review covering broadly most previous approaches to texture feature
extraction and continues with proposals of several new techniques.

Texture feature extraction using a quadrature mirror �lter (QMF) bank is proposed, utilizing
both critically sampled and full rate implementations. In the critically sampled case, tremendous
computational savings can be realized. One of the major conclusions of the experiments is
that it is possible to use sub-sampled �lters with only a modest degradation in segmentation
accuracy � realizing considerable computational savings. Furthermore, the commonly used octave
band decomposition is evaluated against alternative decompositions, concluding that non-octave
decompositions are generally superior. The QMF �lter bank features are tested on benchmark
images, on document segmentation, and on image content search.

The use of linear least squared prediction error �lters is also proposed, yielding an optimal
representation of the textures. Compared to non-optimized �lter banks, this approach yields
a low number of feature images for problems with a moderate number of textures. Still good
classi�cation results are obtained in most cases. However, being optimal with respect to tex-
ture representation does not guarantee optimality with respect to discrimination. Therefore,
approaches for the design of �lters with optimal energy separation are proposed. For two-texture
problems, an exact closed form solution optimizing the relative distance between the average
feature values is derived. Furthermore, an approximate solution for the Fisher criterion is also
derived. For both of these solutions, the coe�cient vector of the optimal �lter is selected from
the eigenvectors of the same matrix. A generalized criterion leading to the same eigenproblem
is therefore introduced. Motivated by this generalized criterion, a scheme selecting the �lter
coe�cient vector with respect to minimum feature histogram overlap is proposed. The methods
are also extended to multiple texture cases and unsupervised problems. A model for the feature
extraction process is required for the optimization and is developed and assessed.

The performances of the proposed methods are shown in extensive experiments. These exper-
iments also incorporate methods broadly covering most approaches to texture feature extraction
with �lters, along with a few non-�ltering approaches. The results clearly justify the new ap-
proaches.

Finally, new methods for automated seismic interpretation are proposed. In these techniques,

the dominating orientation of the seismic is estimated. It is shown that applying �lters tuned with

respect to the dominating orientation in the seismic signal, powerful features for the detection

of discontinuities in the seismic data, i.e., faults, may be extracted. It is furthermore shown how

the orientation �ow yields tools for analyzing stratum interfaces.
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Chapter 1

Introduction

Webster's Dictionary [137] gives the following de�nition of texture: �The characteristic
structure of the interwoven or intertwined threads, strands, or the like, which make up
a textile fabric [...]. The characteristic physical structure given to a material, an object,
etc., by the size, shape, arrangement, and proportions of its parts [...]�. Most natural
surfaces and naturally occurring patterns exhibit texture. A texture recognition system
will therefore be a natural part of many computer vision systems. In texture segmentation,
the problem is to automatically identify the di�erent regions with homogeneous textures,
like in the images in Figure 1.1. For detailed discussions on what is and what is not
texture, see [55, 88]. For more de�nitions of texture, see [20].

This introductory chapter is organized as follows: In Section 1.1, applications of tex-
ture analysis are discussed. A discussion of various categories of approaches to texture
analysis is given in Section 1.2. The scope and major contributions are discussed in
Section 1.3, while an outline of the dissertation is given in Section 1.4.

1.1 Applications of texture analysis

A wide range of examples of the successful applications of texture recognition systems
exists. A few examples are discussed brie�y in this section. For more information on
applications, refer to the overview article by Tuceryan and Jain [128] or to several of the
other papers in the reference list of this dissertation.

Medical imaging: Images in medicine arise from non-intrusive techniques as photog-
raphy, x-ray, ultrasound, tomography, etc. Furthermore, some medical images also arise
from intrusive techniques as microscopic photography of biopsies. In several of these image
types, textural properties are important for diagnosis. Cancer is often characterized by
characteristic textures with di�erent medical imaging techniques. Breast cancer is a lead-
ing cause of cancer deaths among women [41]. Early detection is the most e�ective way
to reduce mortality, and mammographic screening is currently the best method for early
detection. Texture techniques have been applied successfully to the detection of lesions in
mammographic images [41, 40]. Another example of images where cancer is characterized
by texture is electron microscope images of thin slices of liver cells. Also for this kind of

1
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Figure 1.1: Examples of images with textural content. (a) Benchmark composite 256�256 5-texture image. (b)
Vacation photo. (c) Scanned newspaper page. (d) Thin slice of a rock core sample from below the surface of the
earth.

images, texture techniques have been applied successfully for cancer detection [4].

Remote sensing: Remote sensing is the measurement of properties of an object far
away from the object. Remote sensing techniques include satellite photography, satellite
multi-spectral measurements, seismic surveys, sonar surveys, etc. Numerous approaches
to texture recognition in remote sensing have been presented. Applications include ter-
rain classi�cation [140, 120], cloud classi�cation [61], sea �oor mapping [63], and seismic
pattern recognition [93].

Industrial inspection: In industrial processes, the detection of defects in manufactured
products or in the raw material may be of a crucial importance. Manual visual inspection
is often a tedious and laborious task, thus automation is of great interest. In many cases,
the quality of a surface is well characterized by its texture. Hence, texture analysis plays
an important role in inspection. Numerous approaches to inspection by texture techniques
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have been proposed. Two examples are quality inspection of painted metallic surfaces [32]
and lumber defect detection [113].

Document segmentation: When viewed from a su�cient distance, the text regions
of printed documents are by humans perceived as texture. For a particular language,
font, etc., the text appears as a homogeneous texture, see for example Figure 1.1(c). By
the use of texture analysis, it may be possible to segment regions of text from regions
of graphics in scanned documents. Such segmentation is important for successful optical
character recognition and may be utilized in for example digitizing of paper documents
or periodicals. Examples are given in Section 7.1 and in references [49, 84].

Content based image search: Digital image data has been around on computers and
on the Internet for a long time. However, locating an image with a speci�c content is
not straight-forward. Without search tools, this requires manual labeling or browsing
of the images. Hence, an evolving research area in computer vision is content based
image search. Some content types, e.g., hair, leaves, sky, and grass, have texture as an
important characteristic. Therefore, applications including texture recognition have been
presented [34, 86, 88], see also Section 7.2.

Shape from texture: Texture analysis has also found its application in reconstruct-
ing three-dimensional shape from two-dimensional images. By analyzing how the texture
pattern changes, the shape of an object may in principle be reconstructed from the tex-
ture [125].

Arbitrary-dimensional textures: The typical texture context is two-dimensional im-
age processing, but it is also possible to extend the concept of texture to an arbitrary di-
mensionality. For instance, speech recognition systems using short-time spectral analysis
can in this respect be regarded as texture analysis tools.

In order to measure the quality of a texture feature extraction scheme, numerous
approaches have been devoted to the application on benchmark images. An example
benchmark image is shown in Figure 1.1(a). Several experiments on benchmark images
are presented in this dissertation, especially in the comparative study of Chapter 6. Most
benchmark textures used in this dissertation, including Figure 1.1(a), are scanned from
Brodatz [14].1

1The images from Brodatz [14] were scanned using a Hewlett Packard ScanJet II scanner with a
640 � 640 pixels resolution and eight bits per pixel. All test images are available on the Internet from
http://www.hsr.no/sigproc/. It is noted that the scanning resolution will have signi�cant impact on
the performance of most texture features. Conclusions drawn from experiments are therefore highly
dependent on scanning resolution.
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1.2 Approaches to texture analysis

Approaches to texture feature extraction and recognition span a wide range of methods.
Several books and articles give overviews of the available methodology [43, 48, 114, 128].
Four major categories may be identi�ed [128];

Statistical: Co-occurrence and autocorrelation features.

Geometrical: Voroni tessellation and structural features.

Model based: Random �eld and fractal parameters.

Signal Processing: Spatial and spatial frequency �lters and �lter banks, wavelet trans-
forms, wavelet packets, and wavelet frames.

The geometrical features are of limited practical utility [114] due to tight assumptions on
the images. They are probably the least commonly applied features in texture recognition.
The other three categories are included in experiments in this work.

1.3 Scope of this dissertation

The focus of this dissertation will be on the signal processing approaches. Multiple new
�lter bank and optimal �lter and �lter bank approaches will be proposed. Examples
on the applications of the approaches will be presented and comparisons with previously
published works will be given. For reference, experiments with statistical and model based
features are also given. Brie�y summarized, the major contributions of this dissertation
are:

1. Introduction of the class of quadrature mirror �lters (QMF) to texture feature ex-
traction, along with the derivations of multi-rate local energy functions. Consider-
able improvements of the computational complexity are realized by the multi-rate
(critically sub-sampled) �lter banks.

2. It is shown how the multi-rate �lter bank may be utilized for document segmentation
and image content search.

3. Proposal of optimal prediction error �lters for texture feature extraction. Class maps
are formed by selecting the class corresponding to the minimum local prediction
error.

4. Development of a powerful �lter feature extraction model. The model includes
expressions for estimating mean and variance of features extracted by a �lter and a
local energy function.

5. Proposals of several new �lter optimization approaches for two-texture problems.

6. Proposal of a new multi-texture optimal �lter bank design scheme.
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7. Proposals of solutions to the problems of fault and stratigraphic pattern recognition
in seismic signals.

A more detailed summary of the contributions is given in Section 9.1.

1.4 Outline of this dissertation

This dissertation can be divided into three parts; the introductory part, the methodology
part, and the applications part. The methodology chapters constitute the core part of
this dissertation. An overview of the chapters is given in this section.

1.4.1 Introduction

Chapter 1: Introduction to the problems and a brief overview of applications and
approaches.

Chapter 2: A description of the principles of texture feature extraction with �lters is
given. Furthermore, a survey covering broadly most previous works on signal processing
approaches to texture recognition is given.

1.4.2 Methodology

Chapter 3: An extension of the dyadic Gabor �lter bank of Jain and Farrokhnia [50]
to arbitrary sub-band decompositions is proposed. Furthermore, the class of QMF �lter
banks is introduced for texture �ltering. In order to utilize sub-sampling of the QMF
bank, a novel local energy function for sub-sampled �lter banks is proposed.

Chapter 4: Two di�erent �lter optimization approaches are suggested in Chapters 4
and 5. In Chapter 4, an approach based on linear prediction error �ltering is proposed.
This approach is optimal with respect to representation of the textures, but not necessarily
optimal with respect to discrimination.

Chapters 5: Several new FIR �lter design techniques yielding �lters optimal with re-
spect to discrimination are proposed in Chapter 5. These are optimization approaches for
two-texture problems with respect to several criteria, extensions to multiple textures, and
an approach to unsupervised optimal �ltering. Furthermore, necessary feature extraction
models are developed.

Appendix A: The most involved details of the mathematical derivations and proofs of
Chapter 5 are put in this appendix. Furthermore, a method to �nd the upper bound for
one of the criteria, the Fisher criterion, is developed.
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Chapter 6: Numerous approaches to texture feature extraction with �lters are proposed
in the literature and some novel techniques are proposed in this dissertation. However, no
extensive comparisons covering most of the approaches have been presented previously.
In Chapter 6, an extensive comparative analysis is compiled. These experiments cover
broadly most published �lters and �lter banks for texture feature extraction. The study
also includes the new approaches proposed herein. Special emphasis is put on making
the experiments reliable and comparable, to be able to judge the quality of the di�erent
approaches. This chapter concludes the methodology part of the dissertation.

1.4.3 Applications

Chapter 7: The applications of the QMF �lter banks of Chapter 3 to the problems of
document segmentation and content based image search are addressed in Chapter 7.

Chapter 8: Another application, seismic pattern recognition, is addressed in Chap-
ter 8. Solutions to two problems in seismic signal analysis, automated fault and auto-
mated stratigraphic boundary identi�cation, are addressed. Not being strictly texture
analysis, this chapter is somewhat on the side of the other chapters. However, since
the approaches are based on feature extracting �lters and other elements of the texture
recognition systems, these approaches are closely related to texture approaches.

Chapter 9: The dissertation is summarized in Chapter 9, listing the major contributions
and conclusions of this work and directions for future research.



Chapter 2

Texture feature extraction

Experiments on cats and apes, which have visual systems similar to the human visual
system [67], show that these animals decompose the visual images into several �ltered
images. The �ltered images are tuned to di�erent spatial frequency ranges and orienta-
tions [15]. Spatial �ltering forms the basis for most of the texture segmentation schemes
used in this dissertation. Figure 2.11 shows the general experimental setup. The focus
of this dissertation will be on the �lter, and a description of the principles of �ltering for
texture feature extraction/classi�cation and segmentation is discussed in Section 2.1. A
survey of past �ltering approaches will be presented in Sections 2.2 and 2.3, while the
major classes of non-�ltering approaches are discussed brie�y in Section 2.4. Some new
approaches to texture �ltering will be presented in Chapters 3, 4, and 5.

2.1 Principles of texture analysis by �ltering

Before proceeding with the description of di�erent �ltering approaches, a brief description
of the elements of the system in Figure 2.1 will be given. Consider the simple synthetic
textured image in Figure 2.2(a). This image consists of two textures generated by sinu-
soids. The left half of the image has one low-frequency sinusoid and the right half has a
high-frequency sinusoid superimposed on the low frequency one.

For illustrational purposes, consider a horizontal line through this image, Figure 2.2(b).
The �rst operation of the system in Figure 2.1 is �ltering. Assume that the image is �ltered
with a �lter stopping the low frequency sinusoid and passing the high frequency sinusoid.
A line in the resulting image is illustrated in Figure 2.2(c). In this case, we see that the
�lter response for the left texture has low energy and the right texture high. However, we
can still not classify the image by its pixel values alone without signi�cant classi�cation
errors.

Next, a local energy function is applied, consisting of a nonlinearity (Figure 2.2(d)),
basically rectifying2 the �lter response, and smoothing (Figure 2.2(e)). The resulting
feature image is given in Figure 2.2(f) and this feature image can be classi�ed with success.

1The normalizing nonlinearity is rarely used, and is optional.
2Recti�cation is here understood as the operation of transforming both negative and positive ampli-

tudes to positive amplitudes.

7
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Figure 2.1: Experimental setup for most experiments in this dissertation. The dashed box is optional, see the text.

The optional second nonlinearity box in Figure 2.1 is not illustrated in this experiment.
This nonlinearity is typically monotonic and it do only have e�ect when there is more
than one feature image.

2.1.1 Local energy function and post processing

The objective of the local energy function, see Figures 2.1 and 2.2, is to estimate the
energy in the �lter output in a local region. Each �lter is in essence a band-pass �lter
with frequency and orientation selective properties. The local energy function is utilized
for the purpose of transmitting areas in each channel where the local pass band energy
is strong into a high gray-level and vice versa. However, accurate edge preservation and
accurate energy estimation are con�icting goals. High spatial resolution is required for
accurate edge localization, while high spatial frequency resolution is required for accurate
energy estimation.

Several smoothing �lters are possible, and the Gaussian low-pass �lter is one candidate.
The Gaussian low-pass �lter, which is separable and given by

hG(n) =
1p
2��s

e
� 1

2

n2

�2s (2.1)

in each dimension, has joint optimum resolution in the spatial and spatial frequency
domains [36, 26]. The Gaussian low-pass �lter has in�nite unit pulse response, thus it is
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.2: Illustration of a typical texture feature extraction process with filters. (a) Two synthetic textures, (b) a
horizontal scan line through the image, (c) filtered, (d) nonlinearly transformed, (e) smoothed, and (f) the resulting
2D feature image.

not realizable. However, in all experiments it is realized by a �nite approximation. Where
not otherwise noted, this smoothing �lter is used for the smoothing operations throughout
this dissertation.

How do we determine the size of the smoothing �lter? If we want to estimate the local
energy of a signal with low spatial frequency, the smoothing �lter must have a wide unit
pulse response. On the other hand, we can allow narrower smoothing �lters for higher
frequencies. Hence, for a band-limited �lter output, we may set the smoothing �lter size
as a function of, for instance, the band center frequency. With f0 being the normalized
center frequency (in the range �1

2
� f0 � 1

2
), Jain and Farrokhnia [50] suggested

�s =
1

2
p
2f0

: (2.2)

Strictly speaking, energy is de�ned with a squaring nonlinearity. However, in a generalized
energy function, other alternatives may be used. Numerous nonlinearities have been
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applied in the literature. Some of the most popular are the magnitude (e.g. [31, 30])

j � j; (2.3)

the squaring (e.g. [132])

(�)2; (2.4)

and the recti�ed sigmoid (e.g. [50]),

j tanh(��)j: (2.5)

It is worth noting that the magnitude and squaring nonlinearities are parameter free,
whereas the recti�ed sigmoid nonlinearity requires tuning of the saturation parameter, �.
This may be an advantage if it is easy to tune this parameter or a disadvantage otherwise.
The saturation parameter is dependent on the dynamic range of the input image and on
the �lter ampli�cation.

The second nonlinearity illustrated in Figure 2.1 is less common. Unser [132] proposed
and tested several combinations of the �rst and second nonlinearity for unsupervised tex-
ture segmentation. He concluded that squaring, in combination with a logarithmic nor-
malizing nonlinearity, was the best combination. This combination will consequently be
used in most experiments in this dissertation. Unser did not test the recti�ed sigmoid non-
linearity. However, due to the issue of appropriate saturation parameter determination,
this nonlinearity will primarily not be used.

2.1.2 Classi�cation

The output from the local energy function is a set of images, one image per �lter. These
images are the feature images that will form the basis for the classi�cation. They are
used to form feature vectors, where each feature image corresponds to one element in the
feature vectors. Classi�cation is the task of assigning class labels to these feature vectors.

Numerous classi�cation approaches are possible and are described in several text
books, e.g. [29, 35, 116]. The choice of classi�er will not be examined in detail, but
classi�ers will be used for illustrating the usefulness of the proposed feature extraction
schemes. In the experiments, the most common classi�er will be the �Type One Learning
Vector Quantizing (LVQ)� supervised classi�er of Kohonen [58]. However, in some exper-
iments, class maps will be made by thresholding or other nearest neighbor estimations,
when the features are designed appropriately.

In order to have a reliable test of the classi�cation, it is necessary to have separate test
and training feature vectors. Despite this, it is quite common in texture segmentation to
pick the training feature vectors as a subset of the test vectors, see e.g. [32, 51, 104, 123].
This practice has implications on the performance of the classi�cation system and yields
results not attainable in a realistic environment. Farrokhnia [32] suggests using 6% of
the feature vectors for classi�er training in the supervised experiments. To illustrate the
e�ect of this choice, experiments with the texture image of Figure 1.1(a) were conducted.
In these experiments, the classi�ers were trained using two di�erent approaches:
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1. Using 6% of the test feature vectors for training the LVQ.

2. Picking training and test data from non-intersecting regions of the source texture
images, without using any edge speci�c information. The details of the experiments
are listed in Tables 6.3, 6.4, and 6.6.

Otherwise, the experiments were identical. A total of 45 feature extraction techniques
were applied (see Tables 6.3, 6.4, and 6.6 for details). The average results were 6.3%
classi�cation error when using a subset of the test features as training data and 18.6%
error when using separate training data. The standard deviations for the error percentages
were 4.4% when using a subset and 12.4% when using separate data. In 87% of the cases,
the error with separate training data was more than 50% higher. As expected, we see
a signi�cant increase in classi�cation error, primarily due to increased edge inaccuracy,
when using separate training data. It is also important to note that the number of
training vectors was increased when a separate training set was used, typically yielding
better classi�er training [35].

A number of the illustrative experiments in this dissertation will be with design data
from the test images, but in the comparative experiments in Chapter 6, separate test and
design data sets will be applied. The experiments with dependent training and test data
are given to make the results comparable to other published results.

2.2 Previous works on �xed �lter banks

A basic assumption for most �ltering approaches is that the energy distribution in the
frequency domain identi�es a texture. Hence, if the frequency spectrum is decomposed
into a su�cient number of sub-bands, the spectral energy signatures of di�erent textures
are di�erent. Utilizing this, several �lter bank approaches and related schemes have
been proposed. The approaches presented here are tested against the new approaches
presented in this dissertation in Chapter 6 and, where required, parameter choices for
these experiments are described in the following subsections.

2.2.1 Laws �lter masks

One of the �rst approaches to �ltering for texture identi�cation was presented in the
work by Laws [62]. Laws suggested using a bank of separable �lters, �ve in each di-
mension, i.e., a total of 25 �lters. The �lter masks suggested were h1 = [1; 4; 6; 4; 1],
h2 = [�1;�2; 0; 4; 1], h3 = [�1; 0; 2; 0;�1], h4 = [�1; 2; 0;�2; 1], and h5 = [1;�4; 6;�4; 1].
The resulting 25 sub-bands are illustrated in Figure 2.3(b), with the one-dimensional
equivalent in Figure 2.3(a).

2.2.2 Ring and wedge �lters

Assuming that texture is discriminated by spatial frequency and orientation, Coggins
and Jain [21] suggest using seven dyadically spaced ring �lters and four wedge-shaped
orientation �lters for feature extraction. The �lters are designed in the two-dimensional
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Figure 2.3: (a) Sub-band split of the one-dimensional equivalent separable Laws [62] filter masks (normalized).
(b) The resulting two-dimensional frequency band split. The axis labels are vertical and horizontal normalized
spatial frequencies.

spatial frequency domain, giving the amplitude responses of Figure 2.4. The rings and
wedges have Gaussian cross sections.

2.2.3 Dyadic Gabor �lter bank

Jain and Farrokhnia [50] suggest a bank of Gabor �lters, i.e., Gaussian shaped band-pass
�lters, with dyadic coverage of the radial spatial frequency range and multiple orientations.
This choice is justi�ed by the relation to models for the early vision of mammals as well
as the �lters' joint optimum resolution in time and frequency [36, 26],

The basic even-symmetric Gabor �lter oriented at 0� is a band-pass �lter with unit
pulse response

h(k; l) = e
� 1

2

�
k2

�2x
+ l2

�2y

�
cos (2�f0k) ; (2.6)

where f0 is the radial center frequency. Other orientations are obtained by rotating the
reference coordinate system, (k; l). This �lter has in�nite unit pulse response, but in
practical experiments it is approximated by a �nite �lter.

Five radial frequencies are suggested [50] (for images of size 256 � 256) and four
orientations. In the tests presented here, the same number of �lters are used, irrespective
of the size of the input image. The discrete radial center frequencies

p
2

26
;

p
2

25
;

p
2

24
;

p
2

23
; and;

p
2

22
(2.7)

and orientations 0�, 45�, 90�, and 135� are used, see Figure 2.5.
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Figure 2.4: Amplitude responses of the ring and wedge filters [21]. The axis labels are normalized spatial frequen-
cies.

2.2.4 Wavelet transforms, packets, and frames

A transform like the discrete wavelet transform corresponds to a critically sampled �lter
bank with particular �lter parameters and sub-band decompositions [2, 124]. Wavelet
transform approaches are consequently �lter bank approaches. The application of the
discrete wavelet transform, and variants thereof, for texture identi�cation has received
considerable attention in the literature. The use for texture analysis was pioneered by
Mallat [68], who applied a �standard� wavelet transform for feature extraction, i.e., criti-
cally decimated with dyadic sub-band structure. The work by Chang and Kuo [16], how-
ever, indicate that texture features are most prevalent in intermediate frequency bands,
thus that the octave band decomposition is not optimal. The trend therefore seems to
be a concentration on the wavelet packet transform [16, 60, 115], which basically is the
wavelet transform with sub-band decompositions not restricted to be dyadic.

The discrete wavelet transform and the discrete wavelet packet transform are critically
sampled multi rate �lter banks. Particular restrictions apply for the �lter coe�cients and
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Figure 2.5: The frequency response of the dyadic bank of Gabor filters. The maximum amplitude response over all
filters is plotted. Each filter is represented by one center-symmetric pair of lobes in the illustration. The axes are in
normalized spatial frequencies.

the sub-band decomposition. However, critically sampled �lter banks typically imply in-
accurate texture edge localization, see Section 3.2. The use of overcomplete wavelet rep-
resentations, i.e., wavelet frames [131], is a remedy for alleviating this problem. Improved
results with overcomplete representations have been reported [131], see also Section 3.2
and Chapter 6.

Evaluation of absolutely all approaches to texture analysis using wavelet representa-
tions is beyond the scope of the experiments. The attention will be restricted to the
Daubechies class of wavelets [25]. The sub-band decompositions illustrated in Figure 2.6
will be evaluated.

(a) (b) (c) (d)

Figure 2.6: Sub-band decompositions evaluated in this dissertation. Decompositions (a-c) are dyadic (octave
band), while (d) is not. The axes are the same as in Figure 2.3(b).
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Figure 2.7: (a) One-dimensional equivalent of the amplitude response of the filter bank corresponding to a separa-
ble 3�3 Discrete Cosine Transform (normalized). (b) The resulting two-dimensional frequency band split. The axis
labels are vertical and horizontal normalized spatial frequencies.

2.2.5 Discrete Cosine Transform (DCT)

The discrete cosine transform is popular in image coding due to good performance and fast
implementation [96]. It is, for instance, the backbone in the JPEG compression standard.
Ng et al. [79] suggest using a 3� 3 DCT for texture feature extraction. They furthermore
suggest excluding the low-frequency component of the DCT, thus yielding 8 features.

Image transforms are equivalent to critically sampled �lter banks. The above approach
is tested in a �lter bank implementation, without critical sampling. The �lter bank is
separable, determined by the one-dimensional �lter masks h1 = [1; 1; 1], h2 = [1; 0;�1],
h3 = [1;�2; 1]. The amplitude responses are illustrated in Figure 2.7.

2.3 Previous work on optimized �lters and �lter banks

The heuristically3 designed �lter banks have been reported to yield successful results in
numerous cases. There are, however, cases where many of them show poor performances,
see Chapter 6. Furthermore, most of the heuristically designed �lter banks imply large
numbers of features. Consequently the computational complexities are large in feature ex-
traction and classi�cation. Hence, it may be desirable to attempt to optimize the �ltering
operation. Optimizing �lters or �lter banks may yield low feature vector dimensionality,
maximized feature separation, and in some cases more simple classi�ers. As in Section 2.2,
the approaches presented here are tested against the new approaches of Chapters 3, 4,
and 5 in Chapter 6.

As is evident from the presentation, some of the optimization approaches are inher-

3By a heuristically designed �lter bank is meant a �lter bank that is not optimized, i.e., designed more
or less irrespective of the textures.
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ently restricted to two-texture problems, while others are applicable also to multi-texture
problems. Furthermore, some of the approaches yield one �lter, while others yield banks of
�lters. However, common for all approaches is that the �lters are optimized with respect
to some criterion.

2.3.1 Eigen�lter

Maybe the �rst approach to optimizing the �lter function for texture feature extraction
was presented in 1983 by Ade [1]. Ade suggests using eigen�lters derived from the auto-
correlation functions of the textures. From each texture, a 9 � 9 matrix is constructed
from the autocorrelation function and the eigenvectors and eigenvalues are computed.
Each 9�1 eigenvector corresponds to a 3�3 �lter mask. Then, the image is �ltered with
the 3� 3 �lters corresponding to the principal eigenvectors. One set of �lters is designed
for each texture and all �lters are applied to the composite image.

In the original approach, the �lters corresponding to the eigenvalues summing up to at
least 99% of the total eigenvalue sum were selected. This leads to a signi�cant number of
�lters, typically in the range 5 to 9 per texture. Two of the test images in Chapter 6 have
10 and 16 textures, thus a considerable number of �lters are constructed. This implies
heavy computational complexities for the feature extraction and classi�cation systems.
Therefore, the total number of �lters was restricted to maximally 40=NT per texture,
where NT is the number of textures. Hence, the maximum number of �lters for any image
is 40.

The �lters designed by this technique are not band-pass �lters. Consequently, using a
smoothing operator dependent on the center frequency, as suggested in Section 2.1.1, is
not adequate. Hence, a �xed Gaussian smoothing �lter with �s = 8 is used. This selection
of �lter size was based on numerous experiments.

It is worth noting that this approach is optimized with respect to image representation
� it is closely related to the Karhunen-Loeve transform [96]. However, optimal representa-
tion does not imply optimal discrimination. This can be illustrated by a simple example.
Assume that the two vectors x1 = [10 0:1]T and x2 = [10 0:2]T were to be represented by
a one-dimensional sub-space. Then the Karhunen-Loeve transform yields the transfor-
mation vector [0:9999 0:0101]T , and the vectors are represented by the one-dimensional
representation vectors 10.0005 and 10.0015, respectively. The relative distance between
these representations is only 0.01%. On the other hand, if x1 and x2 were transformed
by the vector [0 1]T , the one-dimensional representation vectors would be 0.1 and 0.2.
The relative distance between these is 67%. The last representation would be much more
robust than the �rst from a discrimination point of view.

2.3.2 Optimal representation Gabor �lter bank

In order to tune the �lters to the characteristics of the underlying textures, Bovik et
al. [11, 12] suggested using narrow-band Gabor �lters. The �lters' central frequencies
are tuned to the spectral peaks of the textures. That is, for each texture, the central
frequencies of the corresponding Gabor �lters are selected as the frequencies corresponding
to the principal spectral peaks of the texture. Bovik et al. suggest a semi-automatic
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procedure for determining the spectral peaks. However, this procedure should easily be
extendable to be fully automatic [11, 12]. Such a procedure was implemented, selecting
two �lters per texture. The smoothing �lter was tuned with respect to the center frequency
of the selected �lter.

Like the eigen�lter approach, this approach is only optimal with respect to image
representation. There is no guarantee that the selected center frequencies will yield good
feature separation.

2.3.3 Optimal two-class Gabor �lter

A Gabor �lter design scheme yielding �lters optimized with respect to feature separation
has been suggested by Dunn and Higgins [30]. The Gabor �lter center frequency giving
features yielding minimum modeled classi�cation error for a pair of textures is designed.
The optimal center frequency is determined by evaluating a large range of center frequen-
cies (using the Fourier transform) and selecting the best candidate. The user is required
to select the bandwidth, �, of the �lter, see Equation (2.6). Gabor �lters with �-values
2, 4, 8, and 16 were evaluated. These �-values are suggested by Weldon et al. [138]. Fur-
thermore, as suggested by Weldon et al., smoothing Gaussian �lters with spatial widths
given by �s = 2� (see Section 2.1.1) were applied.

Inherently, this �lter design approach is based on classi�cation of the feature image
by a threshold classi�er. Such a simple classi�er is less complex to design than a more
complex classi�er as the LVQ. Furthermore, a large parameter size typically requires
more training data vectors. Hence, since a threshold classi�er has only one parameter,
the needed amount of training data is relatively low.

2.3.4 Optimal multi-class Gabor �lter bank

The previous approach to optimal �lter design was limited to two-texture problems with
one �lter. Furthermore, the �lter bandwidth had to be determined heuristically. These
issues are addressed by Weldon et al. [138, 139]. In their approach, a bank of Gabor
�lters is designed for problems involving an arbitrary number of textures. The user is
only required to select the number of �lters to be used. The approach is based on the
feature extraction model developed by Dunn and Higgins [30]. However, a modi�ed
criterion function, incorporating the e�ect of the �lter size on the edge accuracy, is used.
This approach furthermore allows more than two textures and more than one �lter.

The �lter size is determined by evaluating a number of �lter sizes and selecting the
best candidate. Di�erent �lter sizes are allowed for the di�erent �lters in the �lter bank.
The � and �s values, Equations (2.6) and (2.1), suggested by Weldon et al. [138] were
also used in these experiments, that is � = 2; 4; 8; 16 and �s = 2�.

2.3.5 Optimal two-texture FIR �lters

The Gabor �lter is a band-pass �lter with a Gaussian shaped pass band. Consequently,
the only free parameters of such a �lter are the radial center frequency, the orientation,
and the bandwidths. By allowing more free parameters, it should be possible to adapt the
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�lter better to the underlying textures. Mahalanobis and Singh [120, 66] suggest a two-
texture design approach yielding more general FIR �lters with maximum ratio between
the extracted mean feature values. That is, �lters maximizing the criterion

JMS =
�v1
�v2

(2.8)

are designed, where �vi is the mean feature value for texture number i.
Inherently, this �lter design scheme is based on the assumption of classi�cation by a

threshold classi�er, just like with the optimal Gabor �lters. Like the eigen�lters, �lters
designed by these approaches are not band-pass �lters, thus a Gaussian smoothing �lter
with �s = 8 is used in the experiments.

The size of the �lter mask is also of importance for the results. A symmetric region
of support is intuitively preferential for accurate edge localization. In order to have a
symmetric region of support, an odd sized mask is required. Experiments indicate that
for most textures, mask sizes 5�5 and up are adequate. A few texture pairs have required
larger than 5 � 5 mask sizes. In the experimental chapter, �lters with mask sizes 7 � 7
are optimized.

In Chapter 5, several new related approaches are presented, yielding considerable
improvements in feature quality. Furthermore, an extension to problems with multiple
textures is proposed.

2.3.6 Random search optimized multi-texture FIR �lters

Yet another approach to FIR �lter design has been presented by Cohen and You [22].
In their approach, �lters are optimized using unguided random search. The search is
accomplished by random draw of a �lter, feature extraction with that �lter, computing
an objective function from the extracted features, random draw of a new �lter, etc. Even-
tually, the �lter yielding best criterion function is selected. For the design of an Mh�Nh

�lter, the parameter space dimensionality is MhNh. Hence, even moderately sized �lters
yield very large parameter dimensionality, thus the computation time required to �nd a
good �lter will typically be tremendous.4

This approach has also been improved with the incorporation of a numerically esti-
mated gradient of the classi�cation error [23, 143], but still the number of computation-
ally complex iterations is high. Furthermore, the search may easily get stuck in a local
optimum. None of these approaches will be tested in the comparative experiments in
Chapter 6, due to the considerable computational complexity.

2.3.7 Back propagation designed mask

Neural networks have proved to be of practical utility in numerous applications and have
also been applied to texture feature extraction. Jain and Karu [51] suggest extracting fea-
tures and classifying using a feed forward neural network trained by the back-propagation
rule. In this approach, the input nodes cover a neighborhood of image pixels. The inputs

4This was veri�ed in a discussion with Dr. Cohen in 1995.
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are weighted and summed in the nodes in the network, thus parts of the network may be
formulated as a �lter or �lter bank. Furthermore, the application of the nonlinearities in
the network resembles the nonlinearity in the local energy function. Hence, this approach
is very similar to �ltering approaches. The scheme may be modi�ed to utilize the e�ect
of the smoothing operation in the local energy function [51]. However, this generalization
is not used in the experiments due to implementational and complexity issues.5

A three-layer neural network is used and the neural network parameters (numbers of
nodes in the layers, etc.) used are the same at the ones used in [51]. Since this approach
has �ltering, nonlinearity, smoothing, and classi�cation all in one, it is impossible to
use the standard setup (Figure 2.1) for these operations. The only extra element is a
5 � 5 median �lter that is applied as proposed [51] to the resulting class map to reduce
speckle-like classi�cation errors.

2.4 Major non-�ltering approaches

The focus of this dissertation is on �ltering and local energy estimation for texture recog-
nition. An extensive coverage of non-�ltering approaches will not be given. However,
due to the fundamental importance and wide range of applications of some non-�ltering
approaches, a brief review is necessary. Furthermore, to provide a reference framework
with techniques familiar to readers who are not familiar with �ltering, comparisons with
two classical non-�ltering approaches are provided. Results with statistical co-occurrence
and model-based autoregressive features are presented in the comparison of Chapter 6.

2.4.1 Statistical features

In statistical approaches, the textures are described by statistical measures. The probably
most commonly applied and referenced method for texture description is the co-occurrence
method, introduced by Haralick [42]. In the co-occurrence method, the relative frequencies
of gray-level pairs of pixels at certain relative displacements are computed and stored in
a matrix, the co-occurrence matrix P. For G gray-levels in the image, P will be of size
G � G. If G is large, the number of pixel pairs contributing to each element, pij, in P
will be low, and the statistical signi�cance poor. On the other hand, if the number of
gray-levels is low, much of the texture information will be lost in the image quantization.
Ohanian and Dubes [80] reported that G = 8 was an appropriate choice for subimages of
size 32� 32. These parameters have been chosen for the experiments in this dissertation.
Since the task is segmentation, overlapping subimages will be used. As suggested by other
researchers [80, 123], the combination of the nearest neighbor pairs at orientations 0�, 45�,
90�, and 135� will be used in the experiments.

Haralick [42] suggests 14 features describing the two-dimensional probability density
function pij. Four features that are widely used [42, 80, 123] have been selected. These
are the Angular Second Moment (ASM), Contrast (Con), Correlation (Cor), and Entropy

5In discussions in 1996 and 1997, Kalle Karu claimed that the complexity requirements were too large
for practical purposes.
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(Ent). They are given by

ASM =
G�1X
i=0

G�1X
j=0

p2ij (2.9)

Con =
G�1X
n=0

N2

8<
:
X

ji�jj=n

pij

9=
; (2.10)

Cor =
1

�x�y

G�1X
i=0

G�1X
j=0

ijpij � �x�y (2.11)

Ent =
G�1X
i=0

G�1X
j=0

pij log pij; (2.12)

where �x, �y, �x, and �y are the means and the standard deviations corresponding to the
distributions

p
(x)
i =

G�1X
j=0

pij (2.13)

p
(y)
j =

G�1X
i=0

pij: (2.14)

2.4.2 Model based features

Another major class of texture features is the model-based features. With model based
features, some image model is assumed, its parameters estimated for a subimage, and the
model parameters, or attributes derived from them, are used as features.

As an example of this class of features, the multi resolution autoregressive (AR) fea-
tures introduced by Mao and Jain [71] are used. The autoregressive model for an image
x(m;n) can be expressed as

x(m;n) =
X

(k;l)2N

�(k; l)x(m� k; n� l) + �""(m;n); (2.15)

where N is the model neighborhood, �(k; l) are the model parameters, and �""(m;n)
the model error term. The feature vectors are composed by all the model parameters
from the three neighborhoods in Figure 2.8. Furthermore, the error energy, �", is used
as a feature. The parameters are determined in 25 � 25 pixel overlapping windows. In
order to overcome problems with too high feature variances, the features are smoothed.
The smoothing �lter applied in the experiments here was a Gaussian low-pass �lter with
�s = 3, see Equation (2.1).

2.5 Summary

In this chapter, an intuitive analysis of texture segmentation with �lter, local energy func-
tion, and classi�er has been given. Di�erent choices for the elements of the local energy
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Figure 2.8: Neighborhood sets N1, N2, and N3 for the AR features. Each Ni corresponds to one relative pixel
position.

function have been discussed. Furthermore, several �xed �lter banks along with �lter
and �lter bank optimization approaches presented in the literature have been reviewed
brie�y. The review sections are primarily reviews of prior knowledge. However, in order
to compare the performances of the �lters, the local energy function and classi�er should
not be very di�erent in the various experiments. Hence, some new considerations are
made regarding the local energy function and the classi�er. However, inherent �lter de-
sign requirements, in some cases, are based on speci�c classi�ers or speci�c local energy
functions. In these cases, those speci�c elements will be used. This implies an unfairness
with respect to the comparisons. However, since the choice re�ects inherent properties,
it also re�ects advantages or limitations of the approaches.
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Chapter 3

Fixed �lter banks

As we saw in Chapter 2, several approaches to multi channel �ltering for texture segmen-
tation are proposed. There are di�erent, and to some extent con�icting, objectives for
the choice of a �lter bank. The principal objective is good feature separation, i.e., good
classi�cation or segmentation accuracy. However, issues as feature extraction complexity,
feature dimensionality, memory requirements, and how easy the feature extractor may be
tuned may also be important.

Two new multi channel �lter approaches are presented in this chapter, addressing
some of these objectives. In Section 3.1, alternatives to the Gabor �lter bank sub-band
decomposition of Jain and Farrokhnia [50] are suggested. The idea for suggesting new
decompositions, is that they may yield improved segmentation accuracies. In Section 3.2,
�lters applied successfully to image compression [46] are introduced for texture feature
extraction. Furthermore, the use of critically sampled �lter banks is proposed. These
approaches are advantageous with respect to their computational properties. It is there-
fore interesting to see if they can compete with the more computationally complex �lter
banks.

3.1 Non-dyadic Gabor �lter bank decomposition

It has been common to decompose the frequency band by the octave band (dyadic) de-
composition [50, 87, 126, 129]. This choice is motivated by the similarities between the
octave band decomposition and the early vision of mammals. Octave band decomposi-
tions imply �ner frequency resolutions in lower than in higher frequency regions. The
work by Chang and Kuo [16], however, indicate that texture features are most prevalent
in intermediate frequency bands. Hence, the octave band decomposition is not ideal for
texture recognition. In this section, an extension of the scheme of [50] to more arbitrary
decompositions is developed.

Some possible two-dimensional sub-band decompositions are given in Figure 2.6. The
�lter of Equation (2.6) is used and f0 is set to the radial value of the center frequency of
the pass-band. The �lter orientation is set to the corresponding angle. Previously, �lter
orientations in the range 0� to 180� have been used [50]. The decomposition proposed

23
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(a) (b)

Figure 3.1: Segmentation results with the texture mosaic of Figure 1.1(a) and different Gabor filter approaches, (a)
with the decomposition of Jain and Farrokhnia [50] and (b) with the sub-band decomposition of Figure 2.6(d).

here will only make it possible to specify orientations from 0� to 90�.1 To maintain some
selectiveness of angles from 90� to 180�, �lters whose frequency responses are the sums of
the frequency responses in the range 0� to 90� and the frequency response of the orthogonal
�lter are used.

In the experiments, 6% of the feature vectors (see the discussion in Section 2.1.2) were
used for training an LVQ classi�er. The experimental results are illustrated in Figure 3.1.
The classi�cation errors were 5.4% with the decomposition of Figure 2.6(d) and 2.4%
with the dyadic decomposition, indicating that the non-octave band decomposition is
a good alternative. Remember that in this experiment, the dyadic decomposition was
more �exible with respect to orientation. In more thorough experiments in Chapter 6,
it is shown that the alternative decomposition outperforms the dyadic decompositions in
several cases. When the same orientation limitations were imposed on both dyadic and
non-dyadic decompositions, the non-dyadic decomposition yielded better or practically
equal results in all test cases. The problem, however, remains the same for virtually
all decompositions: to achieve a good segmentation quality we need a large number of
sub-bands. This leads to a high computational complexity, as well as large memory
requirements.

3.2 Quadrature mirror �lter banks

In most approaches to multi channel texture segmentation, �lter banks in which the sub-
bands each have the same number of image samples as the un�ltered image are applied.
Hence, after �ltering, the amount of data is increased by a factor corresponding to the
number of frequency channels in the �lter bank. Sub-sampling of the frequency bands so
that the total number of sub-band signal samples equals the number of signal samples
in the input image can be performed without losing any information, as long as the
�lters are designed appropriately [133]. To achieve correct classi�cation we should in
principle not need a redundant representation. For critically sampled �lter banks with

1The reason for this restriction is parallelism to the separable approach of Section 3.2.
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Figure 3.2: General analysis-synthesis filter bank.

perfect reconstruction, as used in image coding [96], the problem with redundancy is
solved. It is examined what kind of segmentation can be obtained by operating on sub-
sampled frequency channels when using critically sampled �lter banks allowing perfect
reconstruction of the input signal. By using this approach, tremendous computational
savings over full rate approaches can be realized.

In Subsection 3.2.1 the basic theory for multi rate signal processing is reviewed and in
Subsection 3.2.2 a local energy function for multi rate texture feature extraction is pro-
posed. Computational characteristics are discussed in Subsection 3.2.3, and experimental
results are given in Subsection 3.2.4.

3.2.1 Multi rate signal decomposition

Figure 3.2 shows a general analysis - synthesis �lter bank. The symbol # L represents
sub-sampling by L, while the symbol " L represents up-sampling by L. Sub-sampling by
L is the process of discarding all but every L'th sample, while up-sampling by L is the
process of inserting L� 1 zeros between each sample.

The �lter bank in Figure 3.2 is critically sampled if L = M , that is, if the sub-sampling
factor is equal to the number of �lters in the �lter bank. A critically sampled �lter bank
has perfect reconstruction if the output of the synthesis �lter bank is equal to the input
to the analysis �lter bank (with a possible delay). There exists an in�nite class of �lter
banks with perfect reconstruction properties.

It is possible to implement the �ltering operations of the �lter banks at low sampling
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Figure 3.3: Tree-structured filter bank. The nodes correspond to filters and sub-samplers.

rate and thereby achieve big savings in computational complexity [2]. The theory of
multi rate �lter banks is covered in detail in [2, 133]. The further discussion is restricted
to separable and tree-structured perfect and approximately perfect reconstruction �lter
banks. A �lter bank is separable if it is possible to apply the �lters in each dimension
separately. A �lter bank is tree-structured if it is built up as indicated in Figure 3.3 where
each node in the tree is a �lter bank.

Two types of �lters will be used, �nite impulse response (FIR) and in�nite impulse
response (IIR) �lters. The IIR �lters used are based on digital all-pass �lters, given by

HLP (z) = A0(z
2) + z�1A1(z

2) (3.1)

HHP (z) = A0(z
2)� z�1A1(z

2); (3.2)

where

Ai(z) =
ai + z�1

1 + aiz�1
; (3.3)

are the �rst order all-pass �lters. First-order �lters were empirically found to be su�-
cient. Two IIR �lter bases will be used in this dissertation, these are �F_2_1_smpl� and
�F_2_1_09� [46], with a0 = 0 and a1 =

1
2
, and a0 = 0 and a1 = 0:6632, respectively. See

Johnston [53] for the coe�cients of the FIR �lters.

3.2.2 Multi rate local energy function

In Section 2.1.1, an experimental setup for multi channel �ltering for texture segmen-
tation with band-pass �lters was presented. To be able to use sub-sampled �lter banks
successfully, a modi�cation to the smoothing �lter in the local energy function is needed.
All other parts, except from the �lter bank, remain the same.

Assuming no aliasing, when we decimate the signal by a factor N , a sinusoid with
period M and frequency f = 1=M will get the period M=N and the frequency N=M =
Nf .2 Hence, the smoothing �lter designed for a given full rate signal will no further be

2Strictly speaking, restrictions for periodicity of discrete signals exist [18]. Particularly, the signals
period must be a rational factor of the sampling interval. However, in this context, this issue is of purely
theoretical interest.
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appropriate for the same signal after sub-sampling. We remember that � in Equation (2.2)
was inversely proportional to the radial frequency f0. Therefore the equation

� =

p
2

2

1

Nf0
(3.4)

may be used, where N is the sub-sampling factor and f0 is the absolute value of the center
frequency of the �lter bank channel.

When a high-pass band of a �lter bank is sub-sampled, the relation between signal
frequency before and after sub-sampling is not as given above, due to aliasing [133].
However, the corresponding relationships are easily developed.

3.2.3 Computational characteristics

The �lter bank basis de�ned by Equations (3.1), (3.2), and (3.3) has several properties
that make it computationally very attractive, especially when subsampling is applied.
First of all, the all-pass �lters of Equation (3.3) have very few parameters. Furthermore,
if subsampling is applied, only the �rst application of the low-pass and high-pass �lters
are at the full rate image and subsequent levels have sub-sampled data as input, see
Figure 3.3. For example, for the decomposition of Figure 2.6(a) it can easily be shown
that for an M �N image there will be only

4MN + 4
M

2

N

2
+ 4

M

4

N

4
= 5:25MN (3.5)

multiplications in the entire �lter bank. Furthermore, for the �lter basis �F_2_1_smpl�,
all of these multiplications are with numbers that are powers of two. Hence, these multi-
plications may be implemented by bitwise shifts.

The �lter bases applied in this work give �lter banks with good image compression
capabilities [46]. If an image being examined is compressed with such a �lter bank [96],
only parts of the decompression have to be performed to extract the features.

Note that due to the subsampling, the complexity of this approach is signi�cantly less
than that of full rate �lter approaches. With the decimated �lter bank, the Gaussian
smoothing �ltering in the local energy function is performed on the sub-sampled dataset.
It is thereby not very computationally complex. The computational characteristics of
the FIR QMF �lter banks are not as good as those of the IIR banks. However, with
sub-sampling the complexity is still far less than that of full rate �lter banks. Last, but
not least, using sub-sampling implies classi�cation with signi�cantly reduced feature data
sets.

3.2.4 Results

In order to study the e�ect of sub-sampling with respect to segmentation accuracy, tests
with both full rate and sub-sampled �lter banks have been performed. Some results are
reported here and more results are given in Chapter 6. Segmentation using the perfect
reconstruction IIR �lter banks from Husøy [46] and the nearly perfect reconstruction FIR
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(a) (b) (c) (d)

Figure 3.4: Segmentation results from experiments with the QMF filters. (a) Results from the full rate “F_2_1_09”,
(b) full rate “f16b”, (c) critically sampled “F_2_1_09”, and (d) critically sampled “f16b” filters. The test image was the
texture mosaic of Figure 1.1(a) and the sub-band decomposition was the one in Figure 2.6(d).

�lter banks from Johnston [53] were tested. The squaring with logarithmic second nonlin-
earity, see Section 2.1.1, is used. Experiments on a large number of combinations of �lters,
images, and sub-band decompositions have been performed [97]. This study concluded
that the FIR �lter �f16b� [53] and the IIR �lter �F_2_1_09� were quite representative of
the di�erent classes of �lters.

Examples of the segmentation of the image in Figure 1.1(a) with these �lters at full
rate are shown in Figures 3.4(a) and 3.4(b). We see that perfect reconstruction �lters
are suited to texture segmentation when no sub-sampling of the channel �lters is applied
(full rate). The classi�cation errors were 2.9% in both cases. The LVQ classi�er [58] was
applied, using 6% of the feature vectors for training.

However, by using full rate �lters we do not achieve the full potential savings in com-
putational complexity. We remember that due to perfect or nearly perfect reconstruction
properties of these �lters, practically all image information is retained in critically sam-
pled sub-bands. Is it possible to use critically sampled �lter banks and achieve good
segmentation? Figures 3.4(c) and 3.4(d) show the results from two experiments. The
classi�cation errors were 10.8% with the �F_2_1_09� �lter and 6.2% with the �f16b� �l-
ter. We see from the results that the segmentation accuracies in the sub-sampled cases are
only slightly degraded relative to the full rate results. Remember that the computational
savings are tremendous. For the current test image, we have a feature set of 2 621 440
feature samples in full rate and only 65 536 samples with sub sampling. This has large
implications on the computational complexity and the memory requirements.

We see that the segmentation based on critical sampling has a stair-case e�ect near
the edges. Further experiments show, as expected, that the stair-case e�ect is reduced if
we use a lower sub-sampling rate, but at a higher computational cost. With a sampling
rate of four times the critical sampling and the �lter �F_2_1_09�, the classi�cation error
was 3.1% with drastically reduced stair-case e�ect, see Figure 3.5.

Segmentation from sub-sampled �lter bank outputs show promising results when the
�lter banks have the perfect reconstruction property. However, when we are segmenting
images, we do not necessarily need the perfect reconstruction property. What if we sub-
sample �lter banks without the perfect reconstruction property? Experiments [104] show
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Figure 3.5: Segmentation result from four times critical sampling of the QMF filter “F_2_1_09” with with the texture
mosaic of Figure 1.1(a) and the sub-band decomposition of Figure 2.6(d).

that signi�cant degradation may occur if subsampling Gabor �lters. Gabor �lters do not
have the perfect reconstruction property when sub-sampled. This, however, does of course
not prove that non-perfect reconstruction �lters yielding good segmentation do not exist.

3.3 Summary

In this chapter a new scheme for sub-band decomposition with the Gabor �lter has been
proposed and tested. Furthermore, the class of QMF �lter banks has been introduced for
multi channel �ltering for texture segmentation. Several QMF and other �lter banks have
the prefect reconstruction property when sub-sampled, i.e., it is possible to reconstruct
the input to the �lter bank from the sub-sampled outputs. Using sub-sampling allows
considerable savings in computational complexity. A computationally inexpensive scheme
for local energy computation and classi�cation using sub-sampling has been proposed in
this chapter. The experiments have illustrated that other sub-band decompositions than
the commonly used octave band decomposition may be viable. Furthermore, it is shown
that it is possible to use critically sampled perfect reconstruction �lter banks at the cost
of only a modest degradation in segmentation quality.
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Chapter 4

Optimal representation �lters

As we have seen in Section 2.2 and Chapter 3, many approaches to texture feature extrac-
tion with �lters apply banks of �lters that are more or less determined irrespective of the
textures to be discriminated. As we will see in Chapter 6, in some cases even �lter banks
with a relatively large number of sub-bands are incapable of yielding adequate segmenta-
tion of some of the test images. Hence, there is no guarantee that the bank of �lters will
work properly for a speci�c set of textures. Another unpleasant consequence of �lter bank
approaches is that they are to varying degree computationally demanding. For these rea-
sons, the design of optimal �lters for texture discrimination is gaining increased interest,
see Section 2.3. Optimization o�ers the potential of reduced feature dimensionality and
hence reduced computational complexity and/or better feature separation.

In this chapter, an optimization approach based on least mean squared linear pre-
diction error �ltering is presented. The linear prediction error �lters are optimized with
respect to the prediction error. This �lter bank design approach is applicable to problems
with arbitrary numbers of textures, and the number of �lters is equal to the number of
textures. Prediction error �ltering is reviewed in Section 4.1, least squares auto regressive
(AR) parameter estimation is presented in Section 4.2, and some experimental results are
given in Section 4.4.

4.1 Prediction error �ltering

Linear prediction is an important topic in digital signal processing having many practical
applications [94]. A linear predictor in image processing is an equation on the form

x̂(m;n) = �
X

(k;l)2N

�(k; l)x(m� k; n� l); (4.1)

predicting a pixel value on the basis of neighboring pixels in the neighborhoodN using the
coe�cients �(k; l). The neighborhood N is not including the pixel itself, (k; l) = (0; 0).
Assuming wide sense stationarity, a least squared error (LSE) predictor is a predictor
minimizing

" =
X
m;n

(x̂(m;n)� x(m;n))2 : (4.2)
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Consequently, the least squares error predictor for a texture will be the predictor yielding
maximum similarity between the texture and the predictor output, in the squared error
sense. Hence, the energy of the image

e(m;n) = x(m;n)� x̂(m;n)

= x(m;n) +
X

(k;l)2N

�(k; l)x(m� k; n� l) (4.3)

is minimized. The image e(m;n) is denoted the prediction error image. It is noted that
Equation (4.3) expresses essentially a linear �ltering operation, thus the term prediction
error �ltering.

Generally the LSE predictors for di�erent textures are di�erent. Hence, for any tex-
ture, the predictor yielding minimum mean error energy will be the predictor designed
with respect to that texture. This may be used for classi�cation, since the predictor
yielding minimum local prediction error energy most likely corresponds to the underlying
texture.

4.2 Least squares AR parameter estimation

If we arrange the x(m�k; n� l) and �(k; l) terms for all (k; l) in N in the vectors x(m;n)
and �, respectively, then Equation (4.3) may be written in vector form as

e(m;n) = x(m;n)� x(m;n)T�: (4.4)

If, for example, the region of support, N , is a 3� 3 rectangle, we have

� =

2
66666666664

�(�1;�1)
�(�1; 0)
�(�1; 1)
�(0;�1)
�(0; 1)
�(1;�1)
�(1; 0)
�(1; 1)

3
77777777775

(4.5)

and

x(m;n) =

2
66666666664

x(m� 1; n� 1)
x(m� 1; n)

x(m� 1; n+ 1)
x(m;n� 1)
x(m;n + 1)

x(m + 1; n� 1)
x(m + 1; n)

x(m + 1; n+ 1)

3
77777777775

: (4.6)
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Figure 4.1: Textures pairs (a) D4-D84, (b) D21-D105, (c) D28-D29, and (d) D9-D24 [14] used in the experiments.
These test textures have zero mean and have been histogram-equalized.

If we de�ne e to be the vector of all e(m;n), ~x to be the vector of all x(m;n), and X to
be the matrix with the x(m;n)T 's as the row vectors we may write the linear equation
set determined by Equation (4.4) as

e = ~x�X�: (4.7)

The � minimizing " can then be found by minimizing eTe. Finding the � yielding the
minimum " entails the solution of

@eTe

@�
= 0; (4.8)

which is found by solving the normal equations [44]

X
T
X� = X

T
~x: (4.9)

The normal equations can be solved e�ectively by Cholesky decomposition or other meth-
ods [38].

4.3 Texture feature extraction and classi�cation

Now, we have established a framework for obtaining prediction error images, e(m;n), one
prediction error image corresponding to each texture. Denote the prediction error image
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for texture number i by ei(m;n). The �rst step of the feature extraction is to compute
the ei(m;n)-images by �ltering. For the parts of an image containing texture number i,
we will have

X
e2i (m;n) �

X
e2j(m;n) 8j 6= i: (4.10)

In order to have a local estimate of this average, the e2i (m;n)-images are smoothed. It is
noticed that this squaring and the subsequent smoothing correspond to the steps in the
local energy function, Section 2.1.1. In the experiments reported here, the Gaussian low
pass �lter, Equation (2.1) with bandwidth empirically selected to be given by �s = 8 was
applied.

Segmentation is obtained by assigning each pixel to the class corresponding to the min-
imum prediction error. In the experiments herein, the region of support of the predictor
is circular with radius four pixels.

4.4 Results

The results given here will only be illustratory, i.e., chosen to illustrate the performance
of the method. In order to make the illustrations simple, only two-texture images will be
given here. Multiple texture examples are given in Chapter 6. The same texture pairs
will be used in this and the next chapter for comparison purposes. Most texture pairs
are well discriminated by this method and the methods of the next chapter, but a few
texture pairs appear to be more problematic. The texture pairs in Figure 4.1 are used
in the experiments. Figure 4.1(a) is easily discriminated by all tested approaches. The
rest of the textures are chosen since they are problematic for some of the approaches, and
thereby illustrate weaknesses well.

Figure 4.2 illustrates the performances of the prediction error energy features. The
upper images are the features corresponding to minimum prediction error �ltering for
the left texture. The images in the second row correspond to the predictor for the right
texture. Since the gray-levels are scaled to utilize the maximum range of the display, it
is impossible to judge the distance between the features from, e.g., Figures 4.2(a) and
4.2(b). To illustrate these distances better, the graphs in the third row of Figure 4.2
are provided. These graphs show the average features per column for the left-texture
predictor (solid) and the right-texture predictor (dotted). The �nal row of Figure 4.2
show the corresponding classi�cation results.

The texture pairs of Figures 4.1(a) and 4.1(b) are the images with visually most distinct
textures. As we see, these two textures are very well discriminated by the approach. The
other two texture pairs are visually more similar and we see from Figures 4.1(k) and
4.1(o) that the predictor outputs are hardly di�erent for the two textures. Hence, no
good classi�cation can be expected and the class maps in Figures 4.1(l) and 4.1(p) have
little correspondence with the desired class maps.

A likely explanation of the breakdown for the last two images is that they are so similar
that the predictor, which is optimal with respect to texture representation, do not yield
discriminable features. A couple of other �ltering approaches optimized with respect
to texture representation have also been presented. These are the eigen�lter approach
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Figure 4.2: (a) Local prediction error energy for D4 in the pair D4-D84 and (b) for D84. (c) The features averaged
per column (solid line corresponds to left texture, dotted to right), (d) and finally the corresponding class map.
(e-h) Similar figures for D21-D105, (i-l) D28-D29, and (m-p) D9-D24. The vertical lines indicates the true texture
boundaries.



36 CHAPTER 4. OPTIMAL REPRESENTATION FILTERS

of Section 2.3.1 and the optimal representation Gabor �lter bank of Section 2.3.2. A
discussion on possible implications of optimal representation versus optimal discrimination
can be found in Section 2.3.1.

4.5 Summary

In this chapter, a new approach to texture feature extraction using optimal linear pre-
dictors has been proposed. The texture features are the local prediction error energies.
Experimental results indicate that these features are suitable for segmentation for some
textures, but inadequate for others. The method is optimal with respect to texture repre-
sentation, thus it does not guarantee any discriminable di�erence in the prediction errors.



Chapter 5

Optimal discrimination �lters

In this chapter, several approaches to the design of linear FIR �lters with optimal energy
separation are proposed. In Section 5.1 the approaches are outlined and in Section 5.2
the feature extraction model is presented. Various two-texture optimal �lter design ap-
proaches are presented in Section 5.3, and in Section 5.4 a multi-texture approach is
presented. In Section 5.5, an optimal �lter design approach for unsupervised segmenta-
tion is presented. The chapter is summarized in Section 5.6. Mathematical details for the
derivations found in this chapter are presented in Appendix A.

The feature extraction techniques developed in this chapter are advantageous in that
they provide good feature separation along with less computational requirements than
many other texture feature extractors. The application examples are on benchmark tex-
ture images, but the approaches should be applicable in most texture applications with a
priori class knowledge.

5.1 Overview

The feature extraction system used in this chapter is illustrated in Figure 5.1. Basically,
the purpose of the �lter h(m;n) is extraction of local frequencies where some of the
textures have low signal energy and other textures have high. If this is accomplished, a
composite texture image can be segmented and the regions classi�ed by analysis of their
energies. Hence, the �rst block of the feature extraction system illustrated in Figure 5.1
is the �lter h(m;n). The output, y(m;n), is computed by

-
x(m;n)

Texture
image

h(k; l)

Filter

-
y(m;n)

f(�)

Nonlinearity

-
z(m;n)

w(k; l)

Smoothing| {z }
Local energy function

-
v(m;n)

Feature
image

Figure 5.1: The experimental setup for the feature extractionexperiments with optimized filters.
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y(m;n) = x(m;n) � h(m;n); (5.1)

where � denotes two-dimensional convolution. Assuming wide sense stationarity [83], the
energy of a signal, y, is de�ned as E fy2g and a local energy measure is obtained by
smoothing y2. That is, the features are computed by nonlinearity,

z(m;n) = f (y(m;n)) = y2(m;n); (5.2)

and smoothing,

v(m;n) = z(m;n) � w(m;n): (5.3)

A thresholding operation is applied for associating a class label with the extracted features.
In the system of Figure 2.1, an optional second nonlinearity was introduced. This

nonlinearity is typically monotonous [132]. However, thresholding a monotonously trans-
formed feature will yield exactly the same result as thresholding the non-transformed
feature. Hence, the second nonlinearity will not have any impact on the classi�cation
result here.

In Section 5.2 a new model for the mean and variance of the features extracted with
the system in Figure 5.1 is presented. This model is used for optimization of a single �lter
with respect to the relative distance between the average feature values,

JU =
(�v1 � �v2)

2

�v1�v2
; (5.4)

for two textures. Here, �v1 and �v2 are the modeled feature means. This criterion was
originally suggested by Unser [130] for designing optimal texture transforms, but has not
been applied for texture �lter design earlier. An exact closed form optimal �lter solution
is detailed in Section 5.3.1. A related optimization approach with respect to the ratio
between the average feature values,

JMS =
�v1
�v2

; (5.5)

was suggested by Mahalanobis and Singh [66]. However, tests included in this chapter
indicate that this is a considerably less robust criterion.

The main drawback with the Unser criterion, JU , and the Mahalanobis-Singh crite-
rion, JMS, is that they do not take the variances of the extracted features into account.
Consequently, a �lter found to be optimal may yield a considerable overlap between the
features. A criterion well known in the pattern recognition literature that takes the feature
variances into account is the Fisher criterion [35],

JF (h) =
(�v1 � �v2)

2

�2v1 + �2v2
; (5.6)

where �2v1 and �2v2 are the feature variances. Now we need estimators for the feature
means, �vi, and variances, �2vi .
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The framework for designing �lters optimal with respect to this criterion is developed
in Section 5.3.2. However, an exact closed form solution to this optimization problem has
not been found, but an approximate closed form optimization solution is developed. Fur-
thermore, the necessary mathematics for gradient search optimization is developed and
some iterative optimization approaches are discussed in Section 5.3.3. In Section 5.3.4
common characteristics of the closed form two-texture solutions with respect to the dif-
ferent criteria are pointed out. A generalized solution is formulated on the basis of these
common characteristics.

Inspection problems like defect versus non-defect detection may in some cases be
formulated as two-texture problems. However, the range of applications of two-texture
approaches is limited. To extend the usefulness, a multi-texture optimal �lter bank design
scheme is developed in Section 5.4, yielding an exact closed form solution based on opti-
mization with respect to the mean values of the extracted features. Finally, an extension
to unsupervised problems is suggested in Section 5.5, and the chapter is summarized in
Section 5.6.

5.2 Feature extraction model

In this section, estimates of the mean and variance of the extracted features using the
feature extraction scheme illustrated in Figure 5.1 are developed. The feature mean and
variance models may be used for analyzing given �lters or, as will be done later in this
chapter, for designing optimal �lters. In Subsection 5.2.1, the feature extraction process
is expressed in a matrix/vector notation similar to the one we saw in Chapter 4. In
Subsections 5.2.2 and 5.2.3, expressions for the feature mean and variance are developed,
and in Subsection 5.2.4 assessed by experiments. We assume that the textures being
�ltered are wide sense stationary, but in Section 5.2.5 modeling of edge responses is
discussed.

5.2.1 Vector formulation

Denote texture number i by xi(m;n) where m and n are the spatial indices to the texture
image. Filtering xi(m;n) by the �lter h(m;n) yields

yi(m;n) = h(m;n) � xi(m;n)

=

Mh�1X
k=0

Nh�1X
l=0

h(k; l)xi(m� k; n� l);
(5.7)

where h(m;n) is an Mh � Nh �lter. This operation corresponds to the �rst block of
Figure 5.1. A more compact representation is obtained by introducing the following
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de�nitions,

h =

2
6666666666664

h(0; 0)
...

h(0; Nh � 1)
h(1; 0)

...
h(1; Nh � 1)

...
h(Mh � 1; Nh � 1)

3
7777777777775

; (5.8)

i.e., the vector formed by lexicographically ordering of the rows of h(m;n), and

xi(m;n) =

2
6666666666664

xi(m;n)
...

xi(m;n�Nh + 1)
xi(m� 1; n)

...
xi(m� 1; n�Nh + 1)

...
xi(m�Mh + 1; n�Nh + 1)

3
7777777777775

: (5.9)

Then, the output at pixel (m;n) for texture i, Equation (5.7), may be rewritten as

yi(m;n) = h
T
xi(m;n): (5.10)

Similarly, the smoothing operation (see Figure 5.1) may be de�ned as

vi(m;n) = w
T
zi(m;n); (5.11)

where w corresponds to the smoothing �lter, w(m;n). This formulation may easily be
extended to �lter masks, h(m;n), of any shape, but for simplicity, only �lter masks with
a rectangular region of support are considered here.

5.2.2 Feature mean

Assume that the input texture is wide sense stationary and that
P

m;nw(m;n) = 1. Then,
using the vector formulation, the expected feature value at the output of the �lter is

�vi = E fvi(m;n)g = E fw(m;n) � zi(m;n)g
= E fzi(m;n)g = E fyi(m;n)yi(m;n)g
= E

��
h
T
xi(m;n)

� �
x
T
i (m;n)h

�	

= (hTRxixih);

(5.12)
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where

Rxixi = E
�
xi(m;n)xTi (m;n)

	
: (5.13)

By writing the elements of Rxixi explicitly, it is readily seen that Rxixi is constructed
from the two-dimensional autocorrelation function of texture xi. The derivative of �vi is
given by [118]

@�vi
@h

=
@(hTRxixih)

@h
= 2Rxixih: (5.14)

5.2.3 Feature variance

If we assume that yi(m;n) is Gaussian (assessed in Section 5.2.4), the variance of the
feature image vi(m;n), �2vi = E f(vi(m;n)� �vi)

2g, may be written

�2vi = 2
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)(h
T
Rxixi(k1 � k2; l1 � l2)h)

2 � 2�yi
4;

(5.15)

where

Rxixi(k; l) = E
�
xi(m;n)xTi (m + k; n+ l)

	
; (5.16)

�yi = �xi1
T
h
4; (5.17)

�xi = E fxi(m;n)g, and 1 = [1 1 � � �1]T . The smoothing �lter, w(m;n), is of size Mw �
Nw. The derivation is given in Appendix A.2, along with the expression for the partial
derivative of �2vi with respect to h.

In Appendix A.4 an alternate and more compact representation of the variance is
given. This representation has, however, not proven successful for �lter optimization yet.

5.2.4 Model assessment

The variance estimate above was based on the assumption that the output of the �lter was
Gaussian. This is an approximation which is generally not true. However, distributions
for several �lters and several real world textures from the Brodatz album [14] were tested
by plotting the histograms of yi(m;n). Examples of some histograms for yi(m;n) are
shown in Figure 5.2.1 As we see, the histograms �t the Gaussian assumption (solid line)
quite well.

How good are the total mean and variance models? In all experiments with the
estimated feature mean, 1:1 matches between estimated and true were found. Slightly
larger errors were encountered with the variance estimation. The true and estimated
variances for a number of textures with several �lters having Gaussian random drawn

1These distributions were generated by optimized �lters of Section 5.3.5, Figure 5.8.
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Figure 5.2: Filter response histograms from filters designed in the experiments illustrated in Figure 5.8, i.e., closed
form optimization with respect to the Fisher criterion. The continuous curves illustrate the corresponding Gaussian
distributions with the same means and variances.
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Figure 5.3: Estimated feature variance (vertical axis) versus true feature variance for a number of random drawn
filters h(m;n) and the Brodatz texture D4.

coe�cients were tested. An example where this is apparent is shown in Figure 5.3. In
this experiment, �lters of size 7 � 7 were designed. The smoothing �lter, w(m;n), was
Gaussian, Equation (2.1), with �s = 8 having a spatial extent ofMw�Nw = 33�33. The
test image was the texture D4 [14]. As we see, the ratio between the true and modeled
feature variance is approximately constant. A large number of textures were applied, and
apparent linear relations were found in all cases, but the ratio was di�erent for di�erent
textures. One possible explanation for this observation is that it is caused by problems
with the estimates of the textures' autocorrelation functions. Since the autocorrelation
function is typically estimated from an image of �nite size, there is a certain variance in the
estimate depending on the image size. Furthermore, real world textures are typically non-
stationary, thus estimating the autocorrelation with the wide sense stationary assumption
imposes some error in the autocorrelation estimate. Hence, reliable mean and variance
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estimates can only be expected if the autocorrelation function of the texture is estimated
from a large stationary image.

The estimate for the mean value of yi(m;n), �yi, was of a similar quality as the mean
estimate for the features, vi(m;n). However, since the expression for �2vi contains �yi

4 (see
Equation (5.15)), even a small deviation in the estimate for �yi may yield a considerable
error in the estimate of �2vi . Due to the linearity of the �lter, �yi is a linear function
of the mean of the input texture, see Equation (5.17). Hence, if the feature variance is
small compared to the mean of the input texture, the variance estimate is likely to be
unreliable. This is not considered to be a major limitation because if the mean values of
two homogeneous patterns di�er signi�cantly, they are easily discriminated by smoothing.
In such a case, texture techniques are not necessary. On the other hand, if the means are
close, the average mean value may be subtracted prior to design and �ltering.

5.2.5 Texture edge and boundary model

When a �lter is optimized with respect to any of the proposed criteria, it is assumed
that the textures are wide sense stationary. However, wide sense stationarity is at best
approximated within a texture, but clearly, the edges between the textures impose non-
stationarities. No optimization with respect to edge e�ects is done.

If the feature extraction system responds very strongly to the edge between two tex-
tures, the detected edge position will be biased and the region corresponding to the largest
expected feature value will become too large. An example where this is apparent is shown
in Figure 5.4, taken from the experiments of Section 5.5. In Figure 5.4(a) we see the fea-
ture image corresponding to an optimized �lter. The true texture boundary is indicated
by a black line. If examined carefully, we see that the feature response is stronger along
the texture edge. Consequently, the class map generated by thresholding, Figure 5.4(b),
is biased and the center texture is consistently too small. In this subsection, a technique
for modeling the feature response near the texture edges is proposed. This model may be
utilized for predicting the edge localization bias and determining means for correcting it.

From Section 5.2.2, we know that the mean feature value of texture i may be modeled
as

�vi = h
T
Rxixih; (5.18)

assuming wide sense stationarity. When all elements of xi(m;n) are taken from one
texture, Rxixi is constructed from the two-dimensional autocorrelation function of the
texture xi(m;n). However, when computing the expected feature value somewhere on the
edge between two textures, the WSS assumption is not any more appropriate. We then
have

�vedge(m;n) =
Nw�1X
k=0

Nw�1X
l=0

w(k; l)E fz(m� k; n� l)g

=
Nw�1X
k=0

Nw�1X
l=0

w(k; l)hTRxx(k; l)h:

(5.19)
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Figure 5.4: Illustration of edge modeling and compensation. (a) Feature image with biased edge response and (b)
corresponding minimum error class map. (c) Region map images after edge effect compensation by morphological
dilation. (d) Edge modeling of the feature values across a texture edge. The horizontal axes represent pixel numbers
relative to the edge. The vertical lines indicate the true texture boundaries and the horizontal lines indicate the
selected feature threshold values. (e) Descriptions of the line styles in (d): Center texture right of background
texture (—), center left of background (� � � ), center below background (��), and center above background (��).
Lines in the images indicate the true texture boundaries.

If the elements of Rxx(k; l) are written explicitly for a given edge location, it is readily
seen that Rxx(k; l) may be created from the auto- and cross-correlation functions of
the two textures. Using this, we can estimate the feature responses along edges of any
desired orientation and shape. Examples of such edge response estimates are shown in
Figure 5.4(c).

The class maps are typically determined from the optimal features by thresholding.
The minimum error threshold in this case is illustrated by the horizontal line in Fig-
ure 5.4(c). If we look at these graphs, we see that vertical edges are biased by 8 pixels
and horizontal by 11. To overcome this problem, the center region is extended with mor-
phological dilation [39] with a rectangular kernel extending the region 8 pixels vertically
and 11 horizontally, i.e., an (8 + 1+ 8)� (11+ 1+ 11) = 17� 23 rectangular kernel. The
resulting class map for the example is shown in Figure 5.4(d), and the match with the
true texture boundary is very good.

The strong feature response at the texture edges are due to the fact that the arti�cial
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texture boundary has abrupt pixel value transitions. Hence, from Fourier theory, we know
that the edge has considerable high spatial frequency content. In this experiment, the
texture �lter had high-boost properties. Consequently, the boundary was emphasized. It
is likely that many real world texture mosaics have less abrupt edges, yielding a smoother
feature transition. Furthermore, in this experiment, the smoothing �lter, w(m;n), was a
rectangular �lter.2 However, it is recommended to use a Gaussian smoothing �lter instead
of a rectangular, since the Gaussian will yield better edge accuracy. Consequently, for
real world texture mosaics using Gaussian smoothing �lters, the edge bias is probably less
distinct. Hence, edge modeling may not be necessary in all circumstances.

5.3 Two-texture optimization approaches

In this section, several two-texture one-�lter optimization approaches will be presented.
In Subsection 5.3.1 an exact closed form solution for a �lter maximizing the relative
average feature distance is developed, in Subsection 5.3.2 an approximate closed form
optimal solution with respect to the Fisher criterion is developed, and in Subsection 5.3.3
iterative approaches to optimization with respect to the Fisher criterion are discussed.
Common characteristics of the closed form solutions are pointed out in Subsection 5.3.4
and �nally in Subsection 5.3.5 some experiments are presented.

5.3.1 Optimization with respect to relative average feature dis-
tance

A classi�cation algorithm is only successful if the input features for the di�erent classes
are discriminable. Optimizing with respect to the relative distance between the average
features,

JU(h) =
(�v1 � �v2)

2

�v1�v2
; (5.20)

is one way of attempting this. Optimization with respect to JU is easily developed and
entails the solution of

@JU (h)

@h
= 0: (5.21)

The chain rule for di�erentiation yields

@JU (h)

@h
=

@JU (h)

@�v1

@�v1
@h

+
@JU (h)

@�v2

@�v2
@h

: (5.22)

Combining Equations (5.12), (5.14), and (5.22), we get the eigenvalue equation

(Rx2x2
�1
Rx1x1)h = �h; (5.23)

2This choice was made in order to make a distinct edge modeling example feature image. A large edge
bias is easier illustrated than a subtle one.
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where

� =
(hTRx1x1h)

(hTRx2x2h)
: (5.24)

The optimal �lter coe�cient vector is found as the eigenvector of (Rx2x2
�1
Rx1x1) with the

maximum corresponding criterion value JU(h). The proof that this is a valid solution to
the optimization problem, i.e., that all eigenvectors h will satisfy Equation (5.24) where
� is the corresponding eigenvalue is given in Appendix A.1.

It is noted that this approach yielded an exact closed form optimal solution. This
guarantees that the global optimum is attained, in contrast to some of the other ap-
proaches that will be presented in this chapter. However, the major conceptual drawback
with this method is the fact that the variances are not included in the criterion. Hence,
the optimized �lter may yield a large feature mean separation, but with large feature
variances. Hence, the density functions for the features for the two textures may have a
considerable overlap, yielding a poor classi�cation.

Optimization with respect to the Mahalanobis-Singh approach, Equation (5.5), pro-
ceeds similarly [66], but yields far less robust features as indicated by the experiments,
Subsection 5.3.5. One plausible explanation why the Unser criterion, JU , yields better
features than the Mahalanobis-Singh criterion is obtained by rewriting the criterion as
JU(h) = �v1=�v2 + �v2=�v1 � 2. Even if it is inherently di�cult designing a �lter yielding
high feature values for texture 1 and low for texture 2,3 the Mahalanobis-Singh criterion
will lead to the selection of a �lter attempting to emphasize texture 1, i.e., maximize
�v1=�v2. However, in this case, the Unser criterion may lead to the selection of a �lter
emphasizing texture 2 so that the term �v2=�v1 is large.

5.3.2 Optimization with respect to the Fisher criterion

A good feature extractor should not only yield a large distance between the mean values
of the extracted features, but also yield low feature variances. This is exactly what is
expressed by the Fisher criterion [35],

JF (h) =
(�v1 � �v2)

2

�2v1 + �2v2
; (5.25)

well known in pattern recognition.

As with the previous approach, in order to �nd the optimal �lter, the partial derivative
of the criterion, @JF (h)=@h, is equated to zero. However, by inserting the expressions for
the mean, variance, and their derivatives, Equations (5.12), (5.14), (5.15), and (A.16), a
general closed form solution has not been found. Then we have two alternatives, either
to do some approximation and �nd an approximate closed form solution or to use some
iterative search for the optimum.

3This may for example be the case if the energy of texture 1 is generally low compared to texture 2.
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By approximating the textures as separable [48]4 autoregressive �elds [83] of order
one, AR(1),5 a simpli�ed variance expression is obtained in Appendix A.3,

�2vi � 2�i(h
T
Rxixih)

2
; (5.26)

where �i is a scalar with empirically @�i=@h � 0. Substituting the mean and approximated
variance expressions and the corresponding derivatives into @JF (h)=@h yields

�
�2(h

T
Rx2x2h)

2
+ �1(h

T
Rx1x1h)(h

T
Rx2x2h)

�
Rx1x1h

=
�
�1(h

T
Rx1x1h)

2
+ �2(h

T
Rx1x1h)(h

T
Rx2x2h)

�
Rx2x2h:

(5.27)

This equation may be simpli�ed to

�
Rx2x2

�1
Rx1x1

�
h = �h; (5.28)

where

� =
(hTRx1x1h)

(hTRx2x2h)
: (5.29)

It is noted that this solution is identical to the eigen-problem in the previous approach.
The optimal �lter coe�cient vector is found by calculating the eigenvectors of the matrix�
Rx2x2

�1
Rx1x1

�
and selecting the vector maximizing the criterion JF (h). This approach

is similar to the optimization with respect to JU(h) in that

1. the eigenvectors of
�
Rx2x2

�1
Rx1x1

�
are found and

2. the eigenvector yielding maximum criterion is selected.

However, di�erent criterion functions are used to select the eigenvectors in the two ap-
proaches. Hence, di�erent eigenvectors may be selected.

The separable AR(1) approximation is a very rude approximation, but at least it
enables us to �nd a closed form solution which experimentally proves to be very useful.
The discussion of the optimization attempt based on the alternative variance expression
in Appendix A.4 should be considered for further research on this problem.

5.3.3 Iterative Fisher optimization

An alternative to �nding the closed form solution to an approximate Fisher criterion
function, as in the previous subsection, is to use some iterative approach optimizing a
less simpli�ed criterion function. Gradient search is one potential optimization technique.
The fact that we have expressions for the derivative of the criterion function is a distinct
advantage with the gradient search technique. However, besides time consumption, the

4A separable image may be expressed by separate one-dimensional generating equations in the vertical
and horizontal dimensions.

5A one-dimensional AR(1) function x(n) may be written x(n) = �ax(n � 1) + w(n), where w(n) is
white noise (often called innovation process), and a is a constant.
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Figure 5.5: Exact iterative optimization: (a) Illustration of the principle of linear relaxation. (b) Computation time
versus number of parameters in the system.

major drawback with gradient search is that it is likely to converge to a local optimum.
Tests with random start vectors indicated that this is indeed the case. On the other hand,
success using the closed form solution as starting point was obtained with results given
in Subsection 5.3.5. Experiments with simulated annealing and annealing evolution (a
combination of genetic algorithms and simulated annealing) have also been conducted [77,
78], but with less success.

Another iterative approach is exact deterministic technique, as used by Ramampiaro
[95]. In that approach, the Fisher criterion is reformulated and represented by a quadratic
programming problem. This allows search for the optimum by the branch and bound
algorithm [69]. The branch and bound algorithm uses a linear relaxation. An example
of a linear relaxation of a contour f(x; y) is shown in Figure 5.5(a). This relaxation is
used to compute the bounds on the object function. The solution is found by successively
tightening the bounds and hierarchically partitioning the domain into several subspaces.

The complexity of the solution increases rapidly with the number of parameters, as
illustrated in Figure 5.5(b). Both the sizes of the �lter h(m;n) and w(m;n) contribute to
the number of parameters [95]. Optimization with realistic sizes of the �lters was practi-
cally impossible due to the computational complexity. In the experiments the technique
was in practice limited to optimization of �lters no larger than 3�3 with 3�3 smoothing
�lters. Such small smoothing �lters are clearly inadequate and in the experiments larger
�lters were applied, although the design was with modeling of small smoothing �lters.
This limits the utility of the method, however, one interesting conclusion may be drawn
from the experiments [95]: Using no prior knowledge of the closed form solution, the
iterative technique yielded �lters with about the same criterion values as the closed form
solutions. This was, for example, far from the case with the gradient search, when random
start vectors were used. Hence, we may conclude that the optimization approach has a
large potential, but that further work is required to make it practically applicable.
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5.3.4 Uni�ed approach

As we have seen, the closed form solutions presented thus far yield the same eigen-problem,
(Rx2x2

�1
Rx1x1)h = �h, where the optimal �lter coe�cient vector is the eigenvector with

maximum criterion value. Indeed, the same eigenproblem is also the solution to the
generalized criterion function

J =
�1�v1

2 + �2�v1�v2 + �3�v2
2 + �4�

2
v1

+ �5�
2
v2

�1�v1
2 + �2�v1�v2 + �3�v2

2 + �4�2v1 + �5�2v2
h; (5.30)

where the �is and �is are arbitrary scalar constants. All the criterion functions considered
thus far are special cases of this formulation. Given the same assumptions and following
the same steps as in Section 5.3.2, the closed form optimization yields the eigenproblem

�
Rx2x2

�1
Rx1x1

�
h =

(hTRx1x1h)

(hTRx2x2h)
h: (5.31)

As we see, this solution is independent of the �i's and �i's. The proof is straightforward,
but tedious. Note that if we omit the variance terms, the only assumption we have to make
to obtain the closed form solution is that the input textures are wide sense stationary.

5.3.5 Experiments

Several homogeneous texture pairs have been used as test images with the methods pre-
sented in this chapter. The ones selected for presentation illustrate the performances well.
The test images are shown in Figure 4.1. In all experiments, the analyzed textures have
zero mean and have been histogram equalized. An Mh � Nh = 7 � 7 �lter, h(m;n), is
designed, letting the smoothing �lter, w(m;n), be Gaussian, Equation (2.1), with �s = 8
and of spatial extent Mw � Nw = 33 � 33. Note that the size of the smoothing �lter
is a tradeo� between feature variations and edge accuracy. This smoothing �lter was
determined empirically.

The results with the Unser criterion are shown in Figure 5.6 and the Mahalanobis-
Singh criterion in Figure 5.7. The Fisher criterion closed form and gradient search op-
timized results are shown in Figures 5.8 and 5.9, respectively. In the feature plots, the
true texture border is indicated by a discontinuity in the surface. The class maps were
made by thresholding with a threshold yielding minimum classi�cation error. The re-
sults are summarized in Table 5.1 and a few feature histograms are shown in Figure 5.10.
The gradient search overall doubled the estimated Fisher criterion value over the closed
form solution. However, due to the generally marginal classi�cation error, typically only
marginal improvements were observed on the classi�cation error. In one case the classi-
�cation accuracy was even reduced. See Section 5.2.5 for a further discussions on edge
responses.

As we can easily see, the Mahalanobis-Singh criterion optimal features have consider-
able overlap in Figures 5.7(e) and 5.7(g), while the Unser criterion optimal features have
too much overlap in Figure 5.6(g). Clearly, these optimization approaches yield features
that are non-discriminable for the D9-D24 texture.
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Figure 5.6: Features optimal with respect to JU , Equation (5.4) for the textures (a) D4-D84, (c) D21-D105, (e)
D28-D29, and (g) D9-D24 and their corresponding class maps (b), (d), (f), and (h). The true texture boundaries
are indicated by discontinuities on the feature energy surfaces and the horizontal and vertical axes of the texture
images, Figure 4.1, are indicated by “Hor.” and “Vert.” on the surface plots.
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Figure 5.7: Features optimal with respect to JMS , Equation (5.5) [66] for the textures (a) D4-D84, (c) D21-D105,
(e) D28-D29, and (g) D9-D24 and their corresponding class maps (b), (d), (f), and (h).
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Figure 5.8: Features optimized with closed form solution for JF , Equation (5.25), for the textures (a) D4-D84, (c)
D21-D105, (e) D28-D29, and (g) D9-D24 and their corresponding class maps (b), (d), (f), and (h).
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Figure 5.9: Features optimized with gradient search for JF , Equation (5.25), using the closed form solution as the
starting point, for the textures (a) D4-D84, (c) D21-D105, (e) D28-D29, and (g) D9-D24 and their corresponding
class maps (b), (d), (f), and (h).
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Figure 5.10: Feature histograms visualizing feature separation for texture pair D28-D29 for filters designed with
respect to (a) JU , (b) JMS , (c) JF closed form, and (d) JF gradient search.

Criterion D4-D84 D21-D105 D28-D29 D9-D24

Unser 1.3% 1.4% 2.7% 26.4%
Mahalanobis-Singh [66] 1.3% 1.4% 24.6% 23.9%
Fisher, closed form 1.4% 7.4% 4.6% 7.3%
Fisher, gradient 1.9% 1.6% 3.0% 5.2%
Fisher, exact iterative Mh �Nh = 3� 3 6.0%
Min. histogram overlap 1.3% 1.4% 2.7% 7.3%
Dunn [30] 2.8% 1.0% 25.4% 18.7%

Table 5.1: Classification errors for all experiments reported in this chapter.
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Figure 5.11: Features corresponding to optimal filters selected yielding minimum histogram overlap for the textures
(a) D4-D84, (c) D21-D105, (e) D28-D29, and (g) D9-D24 and their corresponding class maps (b), (d), (f), and (h).

Not even the Fisher criterion is ideal for all cases, as is illustrated in the results for
D21-D105, Figure 5.8(c). For this image, we see that the features extracted according
to the JU and JMS criteria are signi�cantly better separated than the features extracted
according to the JF criterion with closed form solution. The reason for the poor perfor-
mance of the Fisher criterion in this case is unclear. However, it is certain that the Fisher
solution utilizes larger lags in the autocorrelation function than the other approaches.
Larger lags are more susceptible to noise due to the size of the training data and due in-
homogeneities. This may yield inaccurate variance estimates, and consequently inaccurate
criterion evaluation.

As we will see later, the Unser criterion actually yields best features in most cases,
with the Fisher criterion in second place.6 However, it is evident that none of the criteria
presented thus far are better than the rest for selection of the eigensolution in all cases.
An alternative approach may be to apply all �lters corresponding to the eigenvectors of�
Rx2x2

�1
Rx1x1

�
and select the one yieldingmaximum separation of the feature histograms.

This solution is motivated by the uni�ed solution in Subsection 5.3.4. The results using
this approach are shown in Figure 5.11 and in Table 5.1. This approach will be equal to
or better than any of the closed form experiments in all cases. However, �lters optimized
without the closed form solution, e.g., gradient search, may be better. The texture pair
D9-D24 is an example of this. Here, the gradient search yields 5.2% error, while the best
closed form solution yields 7.3%.

A limited experiment with the exact iterative optimization, Section 5.3.3, with respect
to the Fisher criterion has also been performed. The results are shown in Figure 5.12. Due

6Probably due to the estimation inaccuracies.



54 CHAPTER 5. OPTIMAL DISCRIMINATION FILTERS

1
250

500 1
125

250

Vert.Hor.   

 F
ea

tu
re

1
250

500 1
125

250

Vert.Hor.   

 F
ea

tu
re

(a) (c)

100 200 300 400 500

50
100
150
200
250

100 200 300 400 500

50
100
150
200
250

(b) (d)

0 500 1000 1500 2000 2500 3000
−5

0

5

10

15

20

25

30

35

40

45

Upper bound

Lower bound

(e)

Figure 5.12: Features optimized with exact iterative optimization for JF , Equation (5.25) for texture D9-D24. The
optimal filter is of sizeMh�Nh = 3�3, assuming a rectangular smoothing filterw(m;n) of size onlyMw�Nw = 3�3.
(a) Feature surface and (b) class map using only the 3 � 3 rectangular smoothing filter. (c-d) The same using
the same smoothing filter as in the other experiments, but still designing for the 3 � 3 smoothing filter. (e) The
development of the bounds in the branch and bound algorithm as a function of number of iterations.

to the rapidly increasing complexity, the �lter was restricted to the size Mh�Nh = 3� 3,
assuming a rectangular smoothing �lter of size Mw � Nw = 3� 3. This smoothing �lter
is clearly too small, as can be seen from Figures 5.12(a) and 5.12(b). To improve the
results, the smoothing �lter applied was increased to be of the same size as in the other
experiments and the results are shown in Figures 5.12(c) and 5.12(d). The development
of the bounds on the criterion value in the branch and bound iterations is shown in
Figure 5.12(e).

To illustrate what the optimal �lters may look like, examples of amplitude responses
are given in Figure 5.13. Two examples of amplitude spectra illustrated as gray-level
images in conjunction with the amplitude spectra of the two corresponding textures are
shown in Figure 5.14. This texture set, D21-D105, was chosen due to the clarity of
the spectral peaks. If we consider the spatial frequency properties of an optimal �lter, we
would intuitively expect it to emphasize frequencies discriminating the textures well. That
is, frequencies where one texture has strong components and the other weak. If we study
Figure 5.14 carefully, we can see that this is the case for this example. For this texture
set, the Fisher criterion did not yield very good features, as we intuitively understand
from visual inspection � the Unser criterion is highlighting a more discriminative region
of the frequency spectrum.

Results from the Gabor �lter optimization approach by Dunn and Higgins [30] (Sec-
tion 2.3.3) are given in Figure 5.15 for reference. The Gabor �lters are sine modulated
Gaussians and in the experiments �lters with Gaussians with widths given by � = 8 pixels
are designed and applied. The nonlinearity and the smoothing �lter were the same as in
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Figure 5.13: Amplitude response for the filter optimal with respect to JF , Equation (5.25), closed form solution, for
the texture pairs (a) D4-D84, (b) D21-D105, (c) D28-D29, and (d) D9-D24.
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Figure 5.14: Amplitude spectrum (log-scale) (a) for texture D21 and (b) for texture D105, and amplitude responses
of the filters optimized with respect to (c) JU , Equation (5.4) and (d) JF , Equation (5.25).

the other experiments. As we can see from the �gures, this approach was incapable of
performing successful segmentation of the di�cult images in Figures 4.1(c) and 4.1(d).

In an extensive experiment, the classi�cation error was calculated for all approaches
for 276 texture pairs. For computational reasons, the Gradient optimized �lters were
excluded from this analysis. Assume that errors below 5% correspond edge e�ects and are
�acceptable�. Then it was found that the Unser criterion did yield unacceptable features
in 4% of the cases, Mahalanobis-Singh [66] in 29%, Fisher in 13%, the histogram-approach
in 1%, and the Dunn [30] approach in 14%. The Mahalanobis-Singh [66] approach was
clearly less robust than the other approaches. Some problems were also encountered with
�lters optimized with respect to the Fisher criterion and with the Dunn [30] approach.
The most likely cause of the problems with the Fisher-optimal �lters is the sensitivity of
the variance estimate with respect to non-stationarities. The performances of the Unser-
and Fisher-criterion optimized �lters were generally complementary. That is, when one
failed, the other succeeded in nearly 98% of the cases. The Unser criterion was yielding
best features of these in about 60% of the cases.

The focus of this section and the experiments herein have been on segmentation of
benchmark images. However, the introduced techniques have also been applied to other
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Figure 5.15: Features extracted with optimal Gabor filter [30] for the textures (a) D4-D84, (c) D21-D105, (e) D28-
D29, and (g) D9-D24 and their corresponding class maps (b), (d), (f), and (h).

problems. A broad comparison of the techniques proposed here with techniques covering
most approaches to �ltering for texture separation is reported in Chapter 6. It turns
out that these approaches are superior. Furthermore, Gulsrud et al. provide examples of
these approaches successfully applied to detection of stellate lesions [41], circumscribed
masses [41], and micro-calci�cations [40] in mammograms.

5.4 Multi-texture optimal �lter banks

In the previous section, we saw some optimal �lter design approaches for two-texture
discrimination. This may be interesting in some inspection application for discriminating
normal from abnormal. However, many inspection problems and the majority of texture
segmentation and classi�cation problems involve more than two textures. Consequently,
extensions of the solution to be applicable for multiple textures are desirable. To have
reliable features for more than two textures, it is very likely that more than one �lter is
needed. The design and application of multiple �lters for multiple texture problems is
addressed in this section.

The straightforward approach for generalizing two-texture optimization approaches to
solutions for more than two textures is to design one �lter for each possible pairing of
two textures in the problem. This approach was for instance applied to the �lter design
method of Dunn et al. [31] by Randen and Husøy [104]. This is a viable approach as long
as the number of textures is moderate. However, as the number of textures increases, the
number of �lters gets very large, e.g. 10 textures give 45 �lters, and 20 textures give 190
�lters. Hence, we need another way of handling such problems.
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Building on the two-texture approaches, a hierarchical feature extraction scheme will
be proposed, where each �lter separates one group of textures from another. The textures
within the groups are separated by subsequent �lters recursively. The problems that need
to be solved are:

1. How do we design a �lter for optimal feature separation between two groups of
textures? This issue is addressed in Subsection 5.4.1.

2. How do we form texture groups allowing robust feature extractors to be constructed?
This issue is addressed in Subsection 5.4.2.

Finally, the section is concluded in Subsection 5.4.3 with experimental results.

5.4.1 Optimal texture-group �lters

We recall from Equation (5.12) that the mean value of the features extracted from tex-
ture xi(m;n) by the �lter h(m;n) can be written as �vi = (hTRxixih). If the textures
x1(m;n) � � �xI(m;n) are �ltered by the same �lter, the overall mean feature value for all
textures will be

�v =
1

I
(�v1 + � � �+ �vI )

=
1

I

�
(hTRx1x1h) + � � �+ (hTRxIxIh)

�

= h
T 1

I
(Rx1x1 + � � �+RxIxI )h

= h
T
Rxaxah;

(5.32)

where Rxaxa is the average Rxixi. This expression is identical to the expression for the
mean of one texture if we replace Rxixi with the average Rxixi's, Rxaxa, of all the textures
in the group. Hence, by replacing Rx1x1 and Rx2x2 with the Rxaxa's for the two texture
groups in the approaches of Section 5.3.1, the same �lter design approaches may be used.
Including the exact closed form solution, this relation can easily be shown. A similarly
simple expression for the variance of a group of textures has not been found, even with
the assumptions made in Appendix A.3. Consequently, a closed form solution for the
Fisher criterion for multiple textures is not found. Still we may use iterative search, but
due to complexity issues this is not very practical and has not been tested.

If a texture is non-stationary (non-homogeneous), it may in some cases be considered
as being composed of multiple di�erent textures. Then the autocorrelation function es-
timated over the entire texture image will be approximately equal to the average of the
autocorrelation functions of its components, at least for small lags. Hence, Rxixi for the
entire texture is approximately equal to the mean Rxixi's of the components. A conse-
quence of Equation (5.32) is that the feature mean estimated using the autocorrelation
function for the entire texture is approximately equal to the average feature means of its
components. The same is not true for the variance.
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5.4.2 Texture grouping

If the textures in one group share some characteristics that are less prevalent in another
group, good �lters may probably be designed. In order to make such a grouping, some
measure of the similarity is needed. It can not be expected that very dissimilar textures
may be grouped with success. Of course, �lters corresponding to all possible group pairs
of the textures may be designed and the expected feature statistics computed for each
texture to determine which grouping is best. With many textures, such an approach
becomes exhaustive. For instance, with 16 textures there are 215 � 1 = 32767 di�erent
group pairs. Hence, another way of determining the group pairs is desired.

In order to form two texture groups that may be successfully separated, we must
ensure that the maximum of some distance measure between any two textures within a
group is less than the minimum distance between any two textures between the groups.
More formally, assume that the I textures xi1(m;n) � � �xiI (m;n) are one texture group
and the J textures xj1(m;n) � � �xjJ (m;n) are another. The conditions for any group pair
to yield successful �lters are then

max fdik;ilg < min
�
dip;jq

	 8 k; l; p < I; q < J (5.33)

and

max fdjk;jlg < min
�
djp;iq

	 8 k; l; p < J; q < I: (5.34)

The measures dik;il and djk;jl are within group distances and dip;jq and djp;iq are between.
As similarity measure, the criterion value for the optimal �lter for the two textures is used,
e.g. if the �lter is optimized with respect to the Unser criterion the similarity criterion is
d = �JU .

A disadvantage with the above conditions, is that the textures are fragmented into a
lot of groups since typically only small groups satisfy conditions (5.33) and (5.34). To
be able to separate two groups, one �lter is needed. With many groups the number of
group pairs will be large, hence a large number of �lters must be applied. To reduce the
number of �lters, textures are therefore added to the groups as long as all the modeled
feature means for one of the groups are above the means for the other. In this approach,
no account is made for the variances. However, this may easily be added.

5.4.3 Experiments

A result from this approach with the Unser criterion for the textures D4, D9, D19, D21,
D24, D28, D29, D36, D37, and D38 [14] is shown in Figure 5.16. There is just a moderate
amount of misclassi�ed regions, even though some of the textures are visually very similar.
The texture grouping yielded 17 texture group pairs where four were duplicates, i.e., 13
�lters were designed. The �ltering hierarchy is illustrated in Figure 5.16(c). Note that due
to the hierarchical nature of the solution, it is not necessary to compute �lter responses
for all image positions. It is, for instance, not necessary to apply the �lter separating
between classes 0 and 5 to regions of the image that are already recognized as belonging
to one of the classes 1 or 6. As a consequence, the e�ective number of �lters is less than 13
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Figure 5.16: Multi-texture filter optimization experiment. (a) Ten-texture image, (b) segmentation by the multi-texture
approach, and (c) texture grouping hierarchy where each black disc corresponds to one filter. The numbers in (c)
refer to texture number, where the textures in (a) are numbered 0 to 4 from left to right in the first row and 5 to 9 in
the second.
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in this case, which is very low compared to many �lter bank approaches, see Sections 2.2
and 3.2. Further results are reported in Chapter 6. From these results, we see that this
approach yields very good segmentation compared to most other �ltering approaches.

In an arti�cial mosaic of textures as the one in Figure 5.16(a), the edges between
textures are very discontinuous, i.e., having large high-frequency contents. The feature
extraction �lter may have high-pass characteristics. Hence, it may have a boosted response
at the edge instead of a smooth transition between the texture regions. In combination
with the local energy function, this implies reduced edge accuracy. This e�ect is evident
e.g. around the second texture from the right in the top row of Figure 5.16(b). Such a
boosted response will probably not occur to a great extent in a real world mosaic, since
texture edges in real world images are likely to be much smoother. However, if strongly
discontinuous edges are present, this problem can be alleviated by edge modeling and
compensation as in described in Section 5.2.5 and illustrated in Section 5.5. Other alter-
natives are neighborhood examination [139] and application of smaller �lters or smaller
smoothing windows in the regions near the edges.

5.5 Unsupervised optimal �lters

Most optimal �lter design approaches are restricted to supervised problems, but the work
by Teuner et al. [127] shows that optimal �lter design may be useful even for unsupervised
problems. In their approach, the image is partitioned into cells and decomposed by a
pyramidal Gabor transform with dyadic decreasing cell sizes. The cells are examined
to �nd the most signi�cant spectral components. Cells that are similar with respect to
spectral content are grouped. The corresponding frequencies form the basis for designing
the Gabor �lters. However, as we have seen, the Gabor �lter may in some cases be too
restricted to yield appropriate features. In this section an unsupervised texture feature
extraction and segmentation technique using the schemes of Section 5.3 or 5.4 is proposed.
These �lters are not designed using a single signi�cant frequency per �lter, but rather
using the autocorrelation functions of the textures. Consequently, the pyramidal Gabor
transform analysis of Teuner et al. [127] is not appropriate to get the texture properties
for designing these optimal �lters. A block-based clustering scheme where cells of the
image are clustered by a cell similarity measure related to the �lter design parameters
is proposed in Sections 5.5.1 and 5.5.2. Once the cells are clustered, the autocorrelation
functions are estimated for the major clusters and the corresponding optimal �lters are
designed. Experiments with the approach are reported in Section 5.5.3.

This section is intended to be an example of a possible extension of the optimization
approaches in this chapter to unsupervised problems. Several modi�cations and improve-
ments are possible. Only two-texture problems with the Fisher criterion function are
considered in the experiments, but application of other criterion functions and extension
to multiple texture cases are readily possible.
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5.5.1 Cell similarity function

The �rst step in the unsupervised feature extraction and segmentation scheme proposed
herein is block-based clustering of the input image. The image is divided into equally
sized cells. Cells that are similar according to some similarity measure are assumed to
belong to the same cluster. It is desirable to compare cells globally to determine if they
are similar and should be merged. However, due to the nature of the cell comparison
technique developed in this section, the similarity is calculated pairwise between cells.
Since the number of cell-pairs increases rapidly with the number of cells, the similarity is
only computed for neighboring cells. When the image is divided into a presumably small
number of clusters of cells, all clusters are compared on a global basis and similar clusters
are merged. Finally, the auto correlation functions are estimated from the clusters and
used for �lter optimization as in Section 5.3.2.

As we saw in Section 5.3.2, the optimal �lter for a texture pair is found from one
of the eigenvectors of the matrix

�
Rx2x2

�1
Rx1x1

�
. If Rx1x1 = Rx2x2 , all the eigenvalues

of
�
Rx2x2

�1
Rx1x1

�
are equal to one, so if Rx1x1 and Rx2x2 are estimated from the same

texture, all eigenvalues of
�
Rx2x2

�1
Rx1x1

�
are expected to be very similar. On the other

hand, if Rx1x1 and Rx2x2 are estimated from two di�erent textures, the eigenvalues of�
Rx2x2

�1
Rx1x1

�
will be more spread. Hence, if we estimate Rx1x1 and Rx2x2 from two

cells in an image, a large spread will indicate that two cells probably contain two di�erent
textures and a small spread will indicate similarity.

A suitable function measuring the spread of the eigenvalues is the ratio of the geometric
to the arithmetic mean of the eigenvalues [5]

di;j =
1
N

PN

n=1 �n�QN

n=1 �n

� 1

N

: (5.35)

This function is equal to unity if all eigenvalues are equal (indicating cells containing equal
textures) and approaches zero as the eigenvalue spread increases (indicating di�erent
texture cells). The threshold value � is introduced to decide whether or not two cells
contain similar textures. If di;j < �, the two cells are assumed to contain di�erent textures
and if di;j > �, they are assumed to contain the same.

Distance histograms were computed using 20 di�erent textures from Brodatz [14].
Cells from the same texture were obtained by extracting cells from di�erent sub-images
of the texture images. Cell sizes of 32� 32 were used in the experiments. The histograms
for cells from the same texture and from di�erent textures are shown in Figures 5.17(a)
and 5.17(b), respectively. The error of assuming similar when we have di�erent textures
and assuming di�erent when we have similar textures is plotted in Figure 5.17(c) as a
function of the threshold.

For cell sizes 128 � 128, 64 � 64, and 32 � 32 pixels, the optimal thresholds, �, are
0.935, 0.845, and 0.825, corresponding to error probabilities of 4.3%, 13.7%, and 17.6%.7

Hence, the similarity functions have di�erent optimal threshold values for di�erent cell

7128�128 and 64�64 cells are clearly too large for the images used in this dissertation. Nevertheless,
the �gures illustrate the point well � decreasing cell sizes yield increased decision errors.
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Figure 5.17: Histograms of the cell similarity measure with cell size 32�32 pixels for (a) cells containing similar
textures and (b) cells containing different textures, and (c) classification error vs. cell similarity.

sizes. The error increases as the cell size decreases, due to an increased variance in the
parameter estimates.

5.5.2 Labeling connected cells

A cell has four horizontal and vertical neighbors and four diagonal neighbors. Hence, a
complete comparison of all the neighbors involves computing eight similarity values. The
image is scanned cell by cell from left to right and from top to bottom. If all the labeled
neighbors of a cell have similarity values below �, the cell is not similar to its surrounding
cells and is therefore assigned a new label. If two or more labeled neighbors are similar
(i.e., di;j greater than �), one of the labels is assigned to the current cell and a note of the
equivalences is made. If only one neighbor is similar, its label is assigned to the current
cell.

After a complete scan of the image, the similar label pairs are represented in similarity
classes and unique labels are assigned to each cluster. However, one problem still remains.
If a texture has been split into several parts, the method identi�es the texture as di�erent
textures. To overcome this problem, all regions are compared to each other using the
average autocorrelation functions. Region pairs having a similarity measure above the
threshold are merged.

If a cluster contains just one or two cells after the cluster merging, it is assumed that
these cells cover transition zones between neighboring texture regions. Hence, the cells
are omitted in the subsequent �lter design. The number of classes is consequently equal
to the number of clusters composed by more than two cells.

5.5.3 Experiments

In all experiments, an empirically selectedMw�Nw = 20�20 averaging (i.e., rectangular)
�lter is used as smoothing operator. This smoothing operator has approximately the same
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cut-o� frequency as the Gaussian smoothing �lter used in the previous experiments. The
experiments will illustrate both the unsupervised segmentation and the edge modeling
and compensation of Section 5.2.5. One of the reasons for selecting a di�erent smoothing
�lter here than in the previous experiments was to illustrate the edge e�ects more clearly.8

Furthermore cell sizes of 32� 32 pixels are used in the cell clustering steps.

As described in Sections 5.5.1 and 5.5.2, the cell clustering is a two-step process. In
the �rst step, each cell is only compared to its neighbors. However, the input image may
contain the same texture in several disconnected regions of the image. Furthermore, since
the autocorrelation estimates for small cells have high variances, cells belonging to the
same class may be identi�ed as belonging to two di�erent clusters. Consequently, some
homogeneous texture regions may be split into several clusters.

In the experiments here, images constructed from textures textures D55 and D56,
Figure 5.18(a), and by D17 and D6, Figure 5.18(b), from Brodatz [14] are used. The
results of applying the �rst cell clustering step are shown overlayed. In all �gures in this
section, the left �gure will be the results corresponding to Figure 5.18(a) and the right
�gure will be the results corresponding to Figure 5.18(b).

To overcome the problem of fragmented texture regions illustrated in Figure 5.18(b), a
merging procedure was suggested in Section 5.5.2. In this step, all clusters are compared to
each other and clusters found to be similar are merged. The results after this merging are
shown in Figures 5.18(c-d). Note especially that the background texture, which was split
into two large clusters in Figure 5.18(b), has been merged to one cluster in Figure 5.18(d).
The merged clusters are used as basis for determining the autocorrelation functions of the
textures in the images. These autocorrelation functions are then used to determine the
�lters optimized with the closed form approximate Fisher criterion solution, described in
Section 5.3.2. The extracted feature images are shown in Figures 5.18(e-f).

Using a minimum error threshold classi�er,9 the class maps are as shown in Fig-
ures 5.19(a-b). As we can clearly see from Figures 5.18(e-f) and 5.19(a-b), the edges are
severely biased due to the feature extraction responses at the edges. Modeling the edge
responses as described in Section 5.2.5, we get the scan lines of the expected feature val-
ues for horizontal and vertical texture edges illustrated in Figures 5.19(c-d). Through the
modeling it is found that the center texture region is expected to be 11 pixels too small at
each vertical border and 8 at each horizontal border for the image of Figure 5.18(a). That
is, the curves of Figure 5.19(c) cross the threshold 11 and 8 pixels o� the edges. Corre-
spondingly, the center texture of Figure 5.18(b) is too large by 3 pixels at vertical borders
and 5 pixels at horizontal borders. Incorporating these numbers into a morphological
dilation kernel as described in Section 5.2.5, we get the class maps of Figures 5.19(f-g).
We can clearly see that we now get texture boundaries that are very close to the true
texture boundaries.

The approach by Teuner et al. [127] has also been applied to the dataset used in this
chapter [5] and the results were as illustrated in Figure 5.20. We clearly see that the
proposed approach is better for these two images. Further experiments, supporting this
�nding, are given by Alvestad [5]. Notice that in the approach by Teuner et al., more

8The rectangular �lter has worse edge properties than the Gaussian low-pass �lter.
9The error is minimized with respect to supervised classi�cation of the cell clusters.
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Figure 5.18: Unsupervised experiments. Texture images used in the experiments; (a) D55 and D56 [14] and (b) D6
and D176 [14]. The clustering results for the cell clustering are shown overlayed. (c-d) The clustering after merging
similar cell clusters. (e-f) The feature images corresponding to Fisher-optimal filtering, discriminating the two major
clusters of (c-d).
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Figure 5.19: (a-b) Class map images resulting from minimum error thresholding of the feature images of Fig-
ures 5.18(e-f). The lines in the images indicate the true texture boundaries. (c-d) Edge modeling of the features of
Figures 5.18(e-f), representing expected feature values across a texture edge. The horizontal axes represent pixel
numbers relative to the edge. The vertical lines indicate the true texture boundaries and the horizontal lines indicate
the selected feature threshold values. (e) Descriptions of the line styles in (c-d): Center texture right of background
texture (—), center left of background (� � � ), center below background (��), and center above background (��).
(f-g) Region map images after morphological dilation.
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Figure 5.20: Unsupervised segmentation results for the images in Figures 5.18(a-b) using optimal Gabor filters as
proposed by Teuner et al.

than one �lter was used, whereas in the proposed approach, only one �lter was used.

As the experiments indicate, the proposed cell clustering technique works well for these
texture images. However, due to the fact that the the cell-clustering is based on region
growing, it is possible that very di�erent cells may be combined into one cluster through
a series of neighbors. A direction for future research is therefore to �nd a more robust
way of clustering cells.

5.6 Summary

In this chapter, estimators for the mean and variance of texture features extracted with
a texture �lter, a quadratic nonlinearity, and a smoothing �lter have been proposed.
The mathematical models for these estimators formed the basis for the following �lter
optimization procedures:

1. Optimal exact closed form two-texture �lter design with respect to the Unser crite-
rion.

2. Optimal approximate closed form two-texture �lter design with respect to the Fisher
criterion.

3. Optimal approximate closed form two-texture �lter design with respect to a gener-
alized criterion. Motivated by this development, a �lter selection scheme selecting
the �lter yielding minimum histogram overlap was developed.

4. Extension to optimal multiple texture �lter bank design.

5. Extensions to unsupervised problems.
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In order to �nd closed form solutions to the optimization problems incorporating the
variance, an approximate variance model had to be used. The two-texture design tech-
niques were thoroughly tested on several texture images. The performances of the design
techniques based on the Unser and Fisher criteria were very good in most cases. Best
performance was, however, achieved with the histogram-based technique resulting from
the uni�ed approach. It is important to keep in mind that none of the criteria are guar-
anteed to have a direct relation to the classi�cation error, the ultimate feature goodness
criterion.

Issues that are not addressed in detail in this dissertation are how to determine the
ideal �lter size and the ideal smoothing �lter size and type. These parameters have impact
on the feature extraction results, and should be addressed in future work.

Generally, compared to using �xed �lter banks as in Sections 2.2 and 3.2, the main dis-
advantages with an optimal approach are the need for better insight and a more complex
design. The main advantages are the optimality, fewer �lters and hence fewer features,
and much simpler classi�cation (thresholding with one feature is far less complex than
applying a neural net or statistic classi�er with multiple features). Furthermore, com-
pared to the commonly used Gabor �lters [50, 31, 30], successful results are obtained with
signi�cantly smaller, i.e., less computationally complex �lters.
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Chapter 6

Texture segmentation: Comparative

experiments

Although similar in concept, several quite di�erent �ltering schemes have been presented,
see Sections 2.2 and 2.3 and Chapters 3, 4, and 5. One of the pioneering approaches
was the approach by Laws [62], Section 2.2.1, where a bank of band-pass �lters was
applied. Subsequent works have focused on di�erent �lter bank bases, di�erent sub-band
decompositions, and on optimization of the �lters for texture feature separation. The
large number of di�erent test images applied, along with di�erent system setups, have
made comparison of the �ltering approaches based on published results very di�cult.

A few comparisons between texture feature extraction schemes have been presented.
Weszka et al. [140] compared the Fourier power spectrum, second order gray-level statis-
tics, co-occurrence statistics, and gray-level run length statistics features. They concluded
that the co-occurrence features were the best of these features. The co-occurrence features
were also the best features in a study by Conners and Harlow [24], when compared with
run length di�erence, gray-level di�erence density, and power spectrum.

du Buf et al. [28], on the other hand, reported that several features, were performing
approximately similarly. They evaluated co-occurrence features, fractal dimension, trans-
form and �lter bank features, dominant local frequency and orientation features, number
of gray-level extrema per unit area, and curvilinear integration features. Filtering features
have been compared to the co-occurrence features in some studies, with di�erent conclu-
sions. Strand and Taxt [123] concluded that the co-occurrence features were performing
best, while Laws [62], Pietikäinen et al. [92], and Clausi and Jernigan [19] had the op-
posite conclusion. Di�erent setups, di�erent test images, and di�erent �ltering methods
may be the reasons for the contradicting results. Ojala et al. [81] compared gray-level
di�erence, Laws �lter, covariance, local binary patterns, and complementary feature pairs.
They concluded that the gray-level di�erence features were performing best and noted a
particularly poor performance of the Laws features.

It is noted that no extensive evaluation of �ltering approaches has been performed.
The aim of this chapter is to provide such a comparative study. The system setup will be
as illustrated in Figure 2.1. In order to make the results comparable, the focus will be on
the �ltering part of this system, keeping the other system parameters to a large extent
the same for all methods. However, some variation is allowed due to inherent properties

69
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Figure 6.1: Composite texture images used in the experiments. (a) 256�256 pixels 5-texture image consisting of
D77, D84, D55, D53, and D24 [14] (the same as shown in Figure 1.1(a)). (b) 512�512 pixels 16-texture image
consisting of D3, D4, D5, D6, D9, D21, D24, D29, D32, D33, D54, D55, D57, D68, D77, and D84 [14]. (c) 256�256
pixels 4-texture image consisting of synthetic Gauss Markov random samples [50]. (d) 256�640 pixels 10-texture
image consisting of D4, D9, D19, D21, D24, D28, D29, D36, D37, and D38 [14].
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Figure 6.2: 256�512 pixels two-texture images used in the experiments, (a) the upper two textures of Figure 6.1(c)
(replicated to be 256�256 pixels each) (b) D4 and D84 [14], (c) D12 and D17 [14], and (d) D5 and D92 [14].

of the approaches. For reference, the �ltering approaches will also the compared with two
classes of non-�ltering features, model based and statistical features. In the experiments,
supervised segmentation results for images with 2 to 16 textures with borders ranging
from simple to di�cult are compared. Special emphasis is put on making the results
realistic, thus the design and test data sets are disjoint. Interestingly enough, this is far
from always the case in experiments on supervised texture segmentation, see Section 2.1.2.
This also makes the experiments di�erent from experiments in earlier chapters.

This chapter is organized as follows. In Section 6.1, the experimental setup is de-
scribed, in Section 6.2, the experimental results are presented and discussed, and in Sec-
tion 6.3 the results are summarized.

6.1 Experimental setup

In the experiments, the di�erent feature extraction approaches are evaluated by perform-
ing supervised segmentation on several test images of varying complexity, Figures 6.1 and
6.2. As feature quality criterion, the classi�cation error, �the most common measure of
performance for a recognition system� [80], is used. All �lter optimization and classi�er
training are performed on 256 � 256 subimages of the texture images that are not part
of the test images. For the classi�er design, features were extracted from these 256� 256
images individually and used for training. However, due to the availability of image data,
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Identi�er Smoothing �lter Classi�er

Laws �lters �s =
1

2
p
2f0

LVQ

Ring/wedge �lters �s =
1

2
p
2f0

and �s = 16 LVQ

Dyadic Gabor �lter bank �s =
1

2
p
2f0

LVQ

Arbitrary Gabor �lter bank �s =
1

2
p
2f0

LVQ

DCT �s =
1

2
p
2f0

LVQ

Co-occurrence N/A LVQ
AR �s = 3 LVQ

Daubechies n �s =
1

2
p
2f0

LVQ

f16b �s =
1

2
p
2f0

LVQ

F_2_1_smpl �s =
1

2
p
2f0

LVQ

F_2_1_09 �s =
1

2
p
2f0

LVQ

Eigen�lter �s = 8 LVQ

Opt. repr. Gabor �lter bank �s =
1

2
p
2f0

LVQ

Prediction error �lter �s = 8 Minimum value selection
Optimal Gabor �lter � =? �s = 2� Threshold
n-�lter optimal Gabor �lter bank �s = 2� LVQ
JMS �s = 8 Threshold
JU �s = 8 Threshold
JF �s = 8 Threshold
BackProp. NN, mask size n N/A Feed-forward neural net

Table 6.1: Details on the smoothing filters and classifiers used in the experiments. For the smoothing filters, the
�s-parameter of a Gaussian lowpass-filter is given. Any f0 is the sub-band center frequency and � is the parameter
of a Gabor filter in the filter bank.

it was not possible to optimize and train on a separate dataset for the images in Fig-
ures 6.1(c) and 6.2(a). This makes the results with these images less reliable, but since
interesting results are seen with these images, they are still kept.

The local energy function used is the one described in Section 2.1.1, i.e., nonlinearity
and smoothing with a Gaussian smoothing �lter. For sub-sampled �lters, the modi�cation
of Section 3.2.2 is used. For �lters not having a narrow pass-band, Gaussian low-pass �lters
with �s = 8 (empirically determined) are used. The nonlinearity used is the squaring
with logarithmic normalization after �ltering, since this combination was found to be
optimal [132]. As described in Section 2.1.2, the classi�er is LVQ [58] in most cases.
However, with the optimal Gabor �lters [30], Section 2.3.3 and the optimal FIR �lters,
Sections 5.3 and 5.4, thresholding is used. With the optimal prediction error �lters,
Chapter 4, the image is classi�ed by assigning the class label associated with the minimum
error predictor. The classi�ers and energy functions applied are summarized in Table 6.1.
The method identi�ers used in this and subsequent tables are de�ned in Table 6.2.

A normalization by a global normalization factor is applied for each feature. The
global normalization factors are determined as the factors yielding unity variance for the
image in Figure 6.1(a).
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Identi�er Max number Description References
of classes

Laws �lters 1 Section 2.2.1 [62]
Ring/wedge �lters 1 Section 2.2.2 [21]
Dyadic Gabor �lter bank 1 Section 2.2.3 [50]
Arbitrary Gabor �lter bank 1 Section 3.1
DCT 1 Section 2.2.5 [79]
QMF 1 Section 3.2
Co-occurrence 1 Section 2.4.1 [42]
AR 1 Section 2.4.2 [128]
Daubechies n 1 Daubechies n-tap wavelet, [25, 16, 60]

Section 2.2.4 [115, 131]
f16b 1 f16b QMF-�lter,

Section 3.2
F_2_1_smpl 1 F_2_1_smpl QMF-�lter,

Section 3.2
F_2_1_09 1 F_2_1_09 QMF-�lter,

Section 3.2
Eigen�lter 1 Section 2.3.1 [1]
Opt. repr. Gabor �lter bank 1 Section 2.3.2 [12, 11]
Prediction error �lter 1 Section 4.1
Optimal Gabor �lter � =? 2 Section 2.3.3 [30]
n-�lter optimal Gabor �lter bank 1 Section 2.3.4 [138, 139]
JMS 2/1 Sections 2.3.5, 5.3, and 5.4 [66]
JU 2/1 Sections 5.3 and 5.4
JF 2 Section 5.3
BackProp. NN, mask size n 1 Section 2.3.7 [51]

Table 6.2: Summary of identifiers used to identify the methods in the result tables.

6.2 Results

The presentation of the result is divided in three parts. First, in Subsection 6.2.1, heuris-
ticall designed, i.e., �xed, �lter banks are considered. Next, in Subsection 6.2.2, critically
sampled �lter banks (including wavelet transform/packets) are discussed. In Subsec-
tion 6.2.3, results with the optimized �lters and �lter banks are discussed. Finally, in
Subsection 6.2.4, a discussion of the test images is given.

6.2.1 Heuristically designed �lter banks

The results for all the heuristically designed feature extractors are presented in Table 6.3.
The best results from the wavelet frame, arbitrarily decomposed Gabor �lter, and QMF
�lter experiments are shown in the rows labeled �Wavelet�, �Arbitrary Gabor� and �QMF�,
respectively. The results from these �lter classes are detailed in Table 6.4.

In order to get an increased insight from the experiments, there are multiple �dimen-
sions� in the results. Some approaches allow variations of the �lter basis and sub-band
decomposition, some are �xed on basis, some on decomposition, and some on both. The
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Test image (�gure number)
Method 6.1(a) 6.1(b) 6.1(c) 6.1(d) 6.2(a) 6.2(b) 6.2(c) 6.2(d)

Laws �lters 18.6% 48.3% 6.3% 41.9% 2.9% 24.8% 3.3% 8.6%

Ring/wedge �lters 14.6% 43.8% 6.1% 44.5% 5.5% 3.0% 4.5% 18.4%

Dyadic Gabor �lter bank 10.7% 60.1% 10.6% 32.3% 0.9% 3.6% 2.0% 11.3%

Arbitrary Gabor (best, Tab. 6.4) 8.2% 54.8% 14.3% 39.7% 1.0% 6.5% 1.2% 15.6%

DCT 13.2% 40.9% 7.0% 38.2% 6.9% 6.4% 2.2% 2.5%

Wavelet fr. (best, Tab. 6.4) 8.7% 38.2% 5.4% 40.9% 0.7% 4.4% 0.4% 4.7%

QMF (best, Tabs. 6.4) 8.7% 36.4% 3.5% 41.7% 0.7% 6.7% 0.8% 6.0%

Co-occurrence 9.9% 49.6% 5.3% 35.3% 2.0% 1.9% 4.8% 3.3%

AR 19.6% 58.0% 13.9% 56.7% 3.5% 11.3% 1.9% 3.0%

Table 6.3: Classification errors for different heuristically designed texture feature extractors. The numbers for the
wavelet frame, arbitrarily decomposed Gabor, and QMF methods represent the best numbers for different setups.

number of feature images also vary much, from eight to 40 features, having considerable
impact on the complexity. The complexity, sub-band decomposition, and �lter basis issues
will be discussed later, but �rst an overall discussion of the results is given.

Overall discussion

No clear hierarchy of classi�cation performances is observed in Table 6.3, thus no ap-
proaches are clear winners. For some images, some approaches are good, for di�erent
images, others are good. No methods are consistently poor, but many methods have
examples with poor relative performance.

Considering Table 6.3, evidently the �old� Laws and ring/wedge �lters not very good.
They never stand out as clear winners, and even fail completely in some cases: The
Laws approach fails for the images in Figures 6.1(a), 6.1(b), 6.2(b), and 6.2(d). The
ring/wedge �lters fail with Figures 6.1(a), 6.1(d), 6.2(a), 6.2(c), and 6.2(d). Also the
commonly referenced dyadic Gabor �lter bank show rather poor performance for some
of the test images, Figures 6.1(c), 6.1(d), and 6.2(d). Similar comments apply to the
arbitrary Gabor �lter bank. The DCT approach did also show poor relative performance
for a few images, Figures 6.1(a), 6.2(a), and 6.2(b). However, no �breakdown� of the DCT
features was observed.

With the QMF and wavelet approaches, multiple experiments were performed for each
entry in Table 6.3. These results are summarized in Table 6.4. The QMF and wavelet
frame approaches are among the best for most images. Examples of the classi�cation
results for the best QMF �lter bank are shown in Figure 6.3. These results correspond
to the textures in Figures 6.1(a) and 6.1(b). Most of the best results were obtained with
the same sub-band decomposition, Figure 2.6(d), but the performances of the �lter bases
were less consistent. Further discussions on bases and decompositions follow later.

The co-occurrence method was quite good for most images, with poor relative results
only for Figures 6.1(b) and 6.2(c). The AR features, on the other hand, were poor for
most images. However, the best �ltering approaches yield classi�cations that are as good
as or better than the co-occurrence and AR methods in practically all cases.

It is a quite common practice in texture segmentation to pick training data from
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Image in Figure 6.1(a)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 14.9% 13.0% 18.6% 8.2%

Daubechies 4 15.6% 18.0% 23.8% 8.7%

Daubechies 6 14.8% 18.6% 30.5% 10.7%

Daubechies 8 14.7% 43.5% 34.4% 12.1%

Daubechies 10 18.2% 24.3% 39.3% 15.9%

f16b 9.5% 13.2% 28.4% 8.7%

F_2_1_smpl 8.9% 15.0% 22.8% 12.3%

F_2_1_09 11.2% 21.2% 80.7% 15.7%

Image in Figure 6.1(b)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 60.4% 60.1% 62.7% 54.8%

Daubechies 4 48.8% 46.7% 60.1% 38.2%

Daubechies 6 46.4% 50.8% 63.3% 39.7%

Daubechies 8 46.5% 53.2% 68.9% 43.8%

Daubechies 10 47.3% 57.4% 72.8% 48.7%

f16b 42.4% 45.9% 55.1% 36.4%

F_2_1_smpl 40.7% 43.8% 60.8% 37.1%

F_2_1_09 44.3% 47.0% 58.8% 39.8%

Image in Figure 6.1(c)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 20.5% 18.2% 17.1% 14.3%

Daubechies 4 8.2% 8.9% 12.7% 5.4%

Daubechies 6 9.8% 12.1% 15.1% 9.8%

Daubechies 8 13.9% 15.5% 23.5% 13.3%

Daubechies 10 18.2% 20.1% 27.0% 18.1%

f16b 7.9% 9.1% 13.9% 3.5%

F_2_1_smpl 10.2% 8.9% 13.7% 4.9%

F_2_1_09 9.6% 10.0% 24.6% 4.6%

Image in Figure 6.1(d)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 45.9% 43.8% 53.7% 39.7%

Daubechies 4 41.2% 44.5% 47.0% 40.9%

Daubechies 6 43.2% 47.0% 50.1% 44.3%

Daubechies 8 44.8% 51.9% 53.5% 45.0%

Daubechies 10 46.4% 51.9% 56.9% 48.5%

f16b 47.0% 48.9% 46.6% 39.8%

F_2_1_smpl 47.2% 46.8% 42.9% 41.7%

F_2_1_09 47.1% 49.4% 49.6% 44.2%

Image in Figure 6.2(a)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 3.0% 1.0% 1.0% 1.1%

Daubechies 4 2.4% 0.7% 2.3% 1.4%

Daubechies 6 1.3% 1.9% 4.0% 2.6%

Daubechies 8 2.5% 3.5% 6.4% 3.4%

Daubechies 10 4.2% 4.8% 7.8% 4.4%

f16b 1.1% 0.5% 1.2% 0.7%

F_2_1_smpl 2.6% 2.5% 3.6% 2.1%

F_2_1_09 2.5% 2.3% 3.4% 2.0%

Image in Figure 6.2(b)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 9.2% 6.9% 7.9% 6.5%

Daubechies 4 15.5% 19.2% 13.1% 5.7%

Daubechies 6 16.1% 20.3% 11.9% 4.7%

Daubechies 8 14.8% 17.8% 13.0% 4.9%

Daubechies 10 15.4% 17.9% 14.5% 4.4%

f16b 16.0% 21.6% 16.7% 8.1%

F_2_1_smpl 15.3% 20.1% 13.8% 7.2%

F_2_1_09 14.8% 21.2% 18.6% 6.7%

Image in Figure 6.2(c)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 2.0% 1.5% 9.5% 1.2%

Daubechies 4 1.3% 1.0% 4.0% 0.6%

Daubechies 6 0.9% 0.7% 4.6% 0.6%

Daubechies 8 1.0% 0.4% 3.3% 1.3%

Daubechies 10 0.9% 0.5% 2.4% 1.2%

f16b 0.3% 0.4% 6.2% 0.8%

F_2_1_smpl 1.5% 2.4% 4.3% 2.3%

F_2_1_09 1.2% 2.3% 6.2% 2.1%

Image in Figure 6.2(d)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Gabor 20.9% 16.5% 27.5% 15.6%

Daubechies 4 13.4% 13.5% 6.5% 8.2%

Daubechies 6 12.3% 11.4% 6.4% 6.1%

Daubechies 8 9.3% 8.0% 6.9% 4.7%

Daubechies 10 9.0% 7.4% 7.2% 5.1%

f16b 11.2% 10.9% 4.1% 8.2%

F_2_1_smpl 10.4% 10.4% 6.9% 7.4%

F_2_1_09 10.6% 10.1% 7.6% 6.0%

Table 6.4: Classification errors for different wavelet, Gabor, and QMF full rate filter banks.



76 CHAPTER 6. TEXTURE SEGMENTATION: COMPARATIVE EXPERIMENTS

50 100 150 200

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(a) (b)

Figure 6.3: Classification results for the QMF “f16b” filter bank for the textures in Figures 6.1(a) and 6.1(b).

the test features, e.g., [32, 51, 104, 123]. This practice has primarily not been used
in these experiments. In order to simulate a real application environment, all classi�er
training has been performed on features from separate subimages. Furthermore, no edge
or texture border speci�c training data are picked. These issues must be kept in mind
when comparing the results with previously published results. For a further analysis of
the impact of this choice, see Section 2.1.2.

Filter basis

Table 6.4 gives the numbers for the performances of the wavelet frames, QMF, and ar-
bitrary Gabor �lter banks. For each column in any of the sub-tables of Table 6.4, the
decomposition is constant. Hence, any variation in performance is due to di�erences in
the �lter basis. For some of the image/decomposition combinations, there is hardly any
impact of the �lter basis at all, e.g., Figure 6.2(a). However, for most multi-texture images
and some two-texture images, there is a noticeable performance variation as a function of
�lter basis. For some images, some �lter bases are consistently poor, e.g. the Gabor �lter
for Figure 6.2(d). In other cases, the performance of some of the bases is very dependent
on the decomposition, see next subsection.

It can be noted that the larger Daubechies bases are rather poor. This may be caused
by two e�ects. First, the stop-band attenuations of the Daubechies �lters are not as good
as for the QMF �lters. Next, the response is not symmetric, yielding alignment problems
with the �lter responses and less accurate texture boundary localization.

Many papers propose �ltering approaches based on the Gabor basis, e.g., [11, 12, 13,
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30, 31, 50, 127, 138, 139]. However, from these experiments, we �nd no evidence that the
Gabor basis is superior. If we may draw any conclusion on the appropriateness of the
Gabor basis from these experiments, it is rather the opposite.

Sub-band decomposition

For some images, there is hardly any impact of the decomposition, while for others, the
impact is considerable. For the image in Figure 6.1(a), the decomposition has large impact,
whereas for Figure 6.2(a), there is hardly any. It appears that for the most complex or
di�cult images, the impact of the decomposition is large, while it is small for simpler
images.

For most images and �lter bases, the best results were obtained with the decomposi-
tion of Figure 2.6(d). The drawback with this decomposition is the high dimensionality
of the feature vectors; 40. This dimensionality imposes high computational complex-
ity. However, for many of the images, the relatively low-dimensional decomposition of
Figure 2.6(a) yielded good results.

Another conclusion that may be drawn from the experiments is that increasing the
depth of a dyadic decomposition do not improve the results. All the decompositions
of Figures 2.6(a-c) are dyadic. Of these, the decomposition of Figure 2.6(a), the most
shallow, is overall best

Complexity issues

When comparing the results, complexity issues should be kept in mind. Clearly, most
of the �ltering approaches are signi�cantly less computationally complex than the co-
occurrence and AR methods. For the �ltering approaches, �ltering and classi�cation are
the main contributors to the total complexity of the system. The DCT approach has low
�ltering complexity (short separable �lter masks) and low feature dimensionality, yielding
relatively low classi�er complexity. However, the results are only moderately good. The
Laws, ring and wedge, Gabor, and some of the wavelet and QMF �lter banks have high
�ltering complexities, whereas the IIR QMF �lters have low complexities.

The Laws approach yields 25 features, the ring/wedge 11, the dyadic Gabor 20, the
DCT 8, and the wavelet, arbitrary Gabor, and QMF �lter banks yield from 10 to 40
features. Low feature count yields low classi�cation complexity.

Summary

From Tables 6.3 and 6.4, no single feature extraction method is consistently superior and
the impression is rather confusing. The main insight we may learn from this, is that when
designing a �lter bank for a particular texture problem, it is advantageous to test multiple
approaches.

An inherent assumption made when �lter banks are used for texture feature extraction,
is that the spectral signatures of di�erent textures are di�erent,1 see Section 2.1. For
problems with many textures or spectrally similar textures, it is reasonable to assume

1Analog discussions do also apply to other representation spaces than the frequency space.
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that the spectral decomposition has a signi�cant e�ect. This intuitive idea is supported
by the experiments, and we see great importance of the bases and decompositions for
di�cult two-texture images and for most multi-texture images.

In many circumstances, the e�ort in testing numerous �lter banks may be too large.
For these applications, one �lter bank should be recommended. This �lter bank should
have a reasonably good performance in most cases. One such choice is the bank with the
QMF �lter �F_2_1_smpl� using the sub-band decomposition in Figure 2.6(d). This �lter
bank has very low �ltering complexity, see Section 3.2.3, but the feature dimensionality
is quite high. An alternative, with lower feature dimensionality and overall second best
results, is the decomposition of Figure 2.6(a).

6.2.2 Critically sampled �lter banks

Considering the wavelet frame approaches, Table 6.4, relative to the results from the
wavelet transform and wavelet packet approaches, Table 6.5, a few conclusions may be
drawn. First of all, the �lter responses for the wavelet transforms and packets are simply
subsampled versions of the ones obtained by the overcomplete wavelet frames. We see
that, as expected, using decimated �lter outputs overall degrades the results slightly. The
major cause is worse edge resolution due to the subsampling. However, the signi�cantly
decreased computational complexity (discussed in Section 3.2.3) should be kept in mind.

Next, we see that the trend in the results is the same with the critically sampled ap-
proaches as it was with the full rate approaches. That is, image, base, and decomposition
combinations that yielded poor relative results in full rate do also yield poor results when
critically sampled, and vice versa.

6.2.3 Optimal �lters

As has been stressed earlier, a heuristically designed �lter bank may yield a tremendous
computational complexity. It may also give unsatisfactory results. It is, for instance,
noted that the best �lter banks in many cases had feature dimensionalities as high as 40.
Some reduction in dimensionality may be obtained by feature selection [52], but for good
results, a relatively high dimensionality is still needed [52].

Another approach is �lter or �lter bank optimization. The results from the optimal
�ltering experiments are presented in Table 6.6. Some of the optimization approaches
are only applicable for two-texture cases, and the multi-texture table entries for these are
marked by �N/A�. The impression with the optimization approaches is much more clear
than it was with the heuristic approaches. Some approaches are less powerful and some
are rather good.

Despite the fact that the training times for the back propagation designed masks were
signi�cant, the results were not useful for any of the images in this test. Useful results
were only obtained for some very simple texture pairs. One example is shown in Fig-
ure 6.4. Improvements using a modi�ed scheme have been reported [51], but has for
implementational and complexity reasons not been tested here.2

2The results produced here were actually produced using the same software that was applied for the
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Image in Figure 6.1(a)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 22.8% 22.6% 22.7% 11.9%

Daubechies 6 17.6% 15.2% 29.7% 12.3%

Daubechies 8 21.4% 27.2% 32.6% 13.9%

Daubechies 10 21.0% 26.0% 36.5% 18.9%

f16b 17.2% 15.2% 25.4% 10.8%

F_2_1_smpl 15.5% 16.5% 26.1% 17.6%

F_2_1_09 17.1% 19.8% 26.4% 21.4%

Image in Figure 6.1(b)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 58.1% 52.5% 66.5% 41.5%

Daubechies 6 56.2% 55.2% 65.8% 44.8%

Daubechies 8 56.7% 58.2% 62.6% 46.8%

Daubechies 10 56.4% 59.1% 65.7% 53.9%

f16b 50.2% 51.5% 54.4% 39.1%

F_2_1_smpl 51.1% 52.9% 58.6% 41.4%

F_2_1_09 52.9% 54.3% 61.3% 45.3%

Image in Figure 6.1(c)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 15.9% 10.4% 11.9% 4.8%

Daubechies 6 15.9% 12.2% 12.3% 6.4%

Daubechies 8 18.1% 17.1% 20.0% 12.3%

Daubechies 10 20.4% 22.7% 28.8% 14.0%

f16b 13.2% 9.5% 12.0% 4.1%

F_2_1_smpl 16.2% 15.4% 24.5% 11.2%

F_2_1_09 16.8% 16.9% 20.6% 12.0%

Image in Figure 6.1(d)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 49.9% 53.0% 52.6% 48.0%

Daubechies 6 47.1% 47.4% 56.4% 46.6%

Daubechies 8 51.0% 53.2% 54.9% 49.7%

Daubechies 10 52.5% 56.9% 58.1% 50.1%

f16b 48.2% 43.3% 45.6% 45.1%

F_2_1_smpl 48.3% 47.0% 51.8% 49.9%

F_2_1_09 50.9% 48.2% 54.6% 49.1%

Image in Figure 6.2(a)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 4.5% 1.3% 0.4% 0.6%

Daubechies 6 4.5% 0.2% 1.2% 1.2%

Daubechies 8 4.9% 2.6% 1.6% 2.2%

Daubechies 10 7.1% 3.6% 3.1% 2.1%

f16b 4.5% 0.8% 0.9% 0.6%

F_2_1_smpl 5.1% 3.4% 5.8% 3.3%

F_2_1_09 4.3% 4.1% 5.8% 2.5%

Image in Figure 6.2(b)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 22.5% 25.7% 23.4% 11.0%

Daubechies 6 22.2% 23.3% 19.7% 11.2%

Daubechies 8 21.5% 25.9% 21.7% 8.5%

Daubechies 10 18.8% 19.8% 20.4% 8.2%

f16b 22.2% 24.2% 17.5% 10.5%

F_2_1_smpl 22.3% 22.4% 19.4% 11.7%

F_2_1_09 20.6% 22.7% 18.4% 10.6%

Image in Figure 6.2(c)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 2.8% 1.1% 2.4% 1.3%

Daubechies 6 2.7% 1.8% 3.6% 1.4%

Daubechies 8 2.2% 1.3% 1.8% 1.3%

Daubechies 10 2.9% 0.8% 1.6% 1.5%

f16b 1.0% 0.8% 1.0% 0.5%

F_2_1_smpl 2.4% 3.1% 6.7% 3.9%

F_2_1_09 2.3% 3.2% 7.1% 3.4%

Image in Figure 6.2(d)

Subband decomp. (�g. no
	
)

Basis 2.6(a) 2.6(b) 2.6(c) 2.6(d)

Daubechies 4 15.5% 15.6% 9.7% 10.0%

Daubechies 6 12.9% 13.2% 12.1% 7.9%

Daubechies 8 10.6% 8.1% 7.3% 6.8%

Daubechies 10 8.5% 8.4% 9.1% 7.3%

f16b 10.7% 11.0% 7.8% 7.8%

F_2_1_smpl 9.5% 9.7% 9.0% 6.9%

F_2_1_09 9.9% 11.4% 11.3% 7.4%

Table 6.5: Classification errors for different wavelet transforms/packets and critically decimated QMF filters.
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Test image (�gure number)
Method 6.1(a) 6.1(b) 6.1(c) 6.1(d) 6.2(a) 6.2(b) 6.2(c) 6.2(d)

Eigen�lter 12.1% 56.1% 6.9% 37.1% 4.2% 4.0% 3.7% 4.7%

Opt. repr. Gabor �lter bank 7.2% 37.2% 18.6% 41.9% 4.8% 5.5% 5.8% 36.2%

Prediction error �lter 14.7% 34.7% 2.0% 44.6% 0.6% 0.9% 4.6% 31.7%

Optimal Gabor �lter � = 2 N/A N/A N/A N/A 5.0% 10.4% 3.6% 10.8%

Optimal Gabor �lter � = 4 N/A N/A N/A N/A 4.7% 5.3% 3.3% 11.6%

Optimal Gabor �lter � = 8 N/A N/A N/A N/A 8.2% 5.7% 5.2% 11.4%

Optimal Gabor �lter � = 16 N/A N/A N/A N/A 13.3% 14.0% 13.7% 24.2%

4-�lter optimal Gabor �lter bank 24.7% 54.0% 24.3% 52.8% 7.0% 4.3% 3.8% 18.7%

6-�lter optimal Gabor �lter bank 16.3% 49.4% 11.2% 50.3% 6.7% 3.8% 3.8% 17.1%

10-�lter optimal Gabor �lter bank 16.1% 40.7% 10.0% 39.9% 6.7% 4.1% 3.9% 12.8%

JMS 16.9% 47.3% 10.0% 59.7% 0.9% 0.7% 8.3% 28.6%

JU 12.7% 45.6% 4.0% 35.9% 0.9% 0.7% 2.1% 5.1%

JF N/A N/A N/A N/A 0.9% 0.7% 2.1% 5.1%

BackProp. NN, mask size 11 47.4% 61.1% 74.1% 69.3% 45.3% 32.1% 30.0% 43.6%

BackProp. NN, mask size 21 72.4% 84.9% 74.7% 76.5% 48.5% 30.8% 28.8% 48.6%

Table 6.6: Classification errors for different optimized texture feature extractors. See Table 6.2 for an overview of
the method descriptions.
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Figure 6.4: (a) Texture pair D8-D84 [14] and (b) supervised segmentation by the back propagation designed
mask [51].

The eigen�lter approach is never emphasized with either remarkably good or remark-
ably bad results. However, it must be remembered that the number of �lters is relatively
high with this approach. For two-texture images, the number of �lters is typically in the
range 14-18, while for multi-texture images it is 40 or close to 40. Hence, the argument
of low complexity versus the heuristic �lters is not applicable.

The optimal representation Gabor �lter bank was the only optimized �ltering approach
doing a really good job on the image of Figure 6.1(a). However, for most of the other test
images, it is only giving similar, and even in some cases signi�cantly worse results than
the best optimal �ltering approaches, despite higher feature dimensionality. The poor
performances for the images of Figures 6.1(c) and 6.2(d) are particularly noted.

original article [51], provided by Kalle Karu. The results should therefore be representative. The software
for the modi�ed scheme was not available.
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The best results for the images in Figure 6.1(b), 6.1(c), and 6.2(a) in this study were
obtained with the prediction error �lters. However, despite these nice results, a remarkably
poor result was obtained with the image of Figure 6.2(d) and a relatively poor result with
the image of Figure 6.1(a). Hence, this approach is not very robust. The cause for the
problem is most likely that the approach is optimal with respect to representation, not
separation, as discussed in Section 2.3.1.

The results from the optimal Gabor �lters and optimal Gabor �lter banks are generally
good, but the results indicate problems with similar textures � especially when using only
one or a few �lters. In particular, the results for the images of Figures 6.1(a), 6.1(c),
6.2(a), and 6.2(d) are noted. On the other hand, these approaches yield one-dimensional
feature spaces for two textures. Hence, class labels may be assigned to the feature values
by thresholding. Thresholding has a very low computational complexity compared to
classi�ers like the LVQ. Furthermore, training the threshold classi�er means determining
one scalar parameter per feature image. This is clearly a simpler task than training the
parameters of, say, the LVQ classi�er.

FIR �lters optimized with respect to JMS show remarkably poor performance for some
images, in particular the texture pair of Figure 6.2(d) is noted. Furthermore, the results
are unacceptable for the images in Figures 6.1(a), 6.1(b), 6.1(d), and 6.2(c). From this,
we may conclude that these �lters are not very robust. The number of resulting �lters for
the images in Figure 6.1 are 4, 46, 3, and 12, respectively.

Considerably better results are obtained by �lters optimized with respect to JU and
JF . For two-texture images, these �lters are clearly the winners of this study. Overall,
they outperform all other approaches, irrespective of number of features, for texture-pair
images. Since these approaches yield only one feature image that may be classi�ed by
thresholding, they are also the least computational demanding for two-texture images.

Even for multi-texture images, �lters optimized with respect to JU are among the best
optimal �lters, but the performance is not of the same extra-ordinary quality. However,
performance issues should be kept in mind. For the multi-texture images of Figure 6.1,
there are 4, 25, 5, and 15 �lters in the �lter bank, respectively. Classi�cation is done
by thresholding each feature image once, thus the classi�cation complexity is low. No
multi-texture approach has yet been developed for the JF criterion.

6.2.4 Discussion of the test images

Clearly, some images yield more di�erences between the methods than others. Speci�cally,
this applies for the images in Figures 6.1(a), 6.1(c), 6.2(b), and 6.2(d). Apparently, the
textures in these images are di�cult to discriminate between, and some of the least robust
or powerful methods experience problems.

6.3 Summary

We have seen how various �ltering approaches yield di�erent results for di�erent images.
No single approach did perform best or very close to the best for all images, thus no single
approach may be selected as the clear �winner� of this study. In addition to the classi�-
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cation error issue is the issue of computational complexity. If we take the classi�cation
error and computational complexity into consideration, the following conclusions may be
drawn:

� Much of the focus in the �lter optimization approaches is on a low feature count,
thus many of the optimalization schemed yield nice computational characteristics.
In most cases, some of the optimal techniques were best or very close to the best
techniques. Especially the �lters optimized with respect to JU or JF had low classi�-
cation errors. Hence, these �lters should be selected for many applications. However,
some problems with multi-texture images can be observed.

� For multi-texture images, the optimal prediction error �lter approach may be a good
candidate. It yields low feature extraction complexity and very low classi�cation
complexity. However, there is a risk that some textures are not discriminable by the
approach.

� If the performances of the optimal �lters or �lter banks are too poor for a speci�c
application, several heuristic �lter banks should be tested. The results are not very
conclusive on which approach to select, but both QMF and wavelet frame �lter
banks should be considered. However, compared to the optimal approaches, this
implies increased computational complexity.

� The classi�cation error increases slightly when using critical sampling, as opposed
to overcomplete representations for the wavelet and the QMF approaches. However,
the computational complexity decreases formidably. A critically sampled representa-
tion may therefore be selected before an overcomplete, if the increased classi�cation
error can be tolerated.

� The dyadic decomposition (also known as wavelet transform decomposition or octave
band decomposition) may yield features with good separating properties. However,
increasing the depth (i.e., adding more sub-bands) do not improve the classi�cation
results. Hence, we may conclude that important texture information is located
in other sub-bands than the low-pass band, supporting the �ndings of Chang and
Kuo [16].

� The computational complexities of the �ltering approaches are generally low com-
pared to the two other approaches tested here. Since the results were equally good
or better for the �ltering approaches, the �ltering approaches should therefore be
preferred.



Chapter 7

Document segmentation and image

queries

In this chapter, two application examples of the QMF �lter bank features of Section 3.2
will be presented. The motivation is to show the applicability of the texture features of
Section 3.2, not to present complete systems with all pre- and post-processing for the
applications. In Section 7.1, an approach to document segmentation is presented and in
Section 7.2 an application to image content search is presented. A common denominator
for the two approaches presented here is that the search is for known textures in images
containing other textures not known a priori. Hence, several commonly used classi�er
design approaches [35] are not applicable here. Furthermore, for the same reasons, the
�lter optimization approaches presented in Chapters 4 and 5 are not applicable.

7.1 Document segmentation

An enormous amount of printed material is available on paper. The digital computer
and computer networks have made it possible to search for and retrieve electronically
stored documents in seconds, no matter where in the world they are stored. This is not
the reality for documents stored as paper copies and there is a considerable interest in
digitizing paper documents.

The straightforward approach to document digitization is to scan the whole document
and store it as a bit-map representation. This approach was taken for the CD-ROM
accompanying the proceedings of the IEEE 1994 International Conference on Acoustics,
Speech & Signal Processing (ICASSP'94). Unfortunately, this requires a huge storage
capacity (even with modern image compression techniques) and does not enable search
for textual content in the documents.

A more e�cient way of representing documents is to separate the text and the graphics
and store the text in a character representation form. Therefore, several approaches
to text-graphics segmentation have been proposed. The most popular approaches may
broadly be classi�ed as either top-down or bottom-up approaches [122]. One of the most
common top-down techniques is the run length smoothing method [17, 135] (also known
as the constrained run length method). With the run length smoothing algorithm, the

83
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document image is processed along vertical and horizontal runs (scan-lines). If the number
of white pixels between two black pixels is less than a threshold, the white pixels are
converted to black. Thereby, white gaps within and between words are converted to
black, while white gaps between columns remain white. A similar discussion applies for
lines. Hence, the run length smoothing method is sensitive to font-size, character spacing,
line and column spacing and to some extent to the orientation of the document.

Another common top-down technique is the recursive projection pro�les method [59,
76, 136] (also known as the recursive X-Y cuts method). The basic idea underlying the
projection pro�les method is that the numbers of black pixels in the columns and rows of
the image are projected onto the horizontal and vertical axes, respectively. Hence column
and line spacings generate detectable valleys in the projection pro�les and it is possible
to extract the block structure of the document. The recursive projection pro�les method
is restricted to rectangular blocks of known orientation.

The bottom-up methods are typically variants of the connected components method
[33]. The connected components method basically extracts connected components, like
a character or a connected part of a drawing. It then performs some kind of analysis
on each connected component and merges connected components that are close to each
other. The drawbacks with the connected components method are that it is character
size dependent, sensitive to inter-line and inter-character spacings, and sensitive to the
digitizing resolution.

In addition to the already mentioned restrictions with these methods, they typically
operate on thresholded images. If the image capturing conditions are di�cult, appropriate
thresholding may be di�cult.

An interesting ability of humans is the ability to tell what is and is not text in a
document viewed from a distance too far away for letter discrimination. This suggests that
textural clues are important for humans in separating text regions from non-text regions.
In this section, an approach to segmentation of text and graphics in scanned documents
is proposed. The approach is based on the assumption that the text in a document
may be viewed as one texture, while the graphics is represented by di�erent textures.
Then, the documents are segmented with a texture segmentation scheme using the sub-
sampled feature extraction scheme of Section 3.2. Both unsupervised and supervised
segmentation schemes are proposed. While most traditional text-graphics segmentation
schemes require a priori knowledge of the input, the unsupervised scheme is independent of
document layout, typeface, font size, scanning resolution, etc. However, the unsupervised
segmentation scheme shows a somewhat limited performance for di�cult documents. By
sacri�cing some of the �exibility, it is shown that the segmentation is improved by using
a supervised classi�er. In Subsection 7.1.1, the unsupervised segmentation scheme is
proposed and in Subsection 7.1.2, the supervised segmentation scheme is proposed. In
both cases experimental results illustrating the performances of the suggested approaches
are presented.

An approach similar to the unsupervised approach [49], uses the Gabor �lter and a
local energy function as the feature extractor, see Section 2.2.3. One major drawback
with the Gabor approach is its computational complexity. The approach presented in [49]
uses a subset of eight �lters from the total set of 20 suggested in [50]. However, even
when this restricted subset is used, a total data amount of eight times the input is used
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by the classi�er. The approach presented here has much lower complexity, without any
observed sacri�ces in segmentation quality.

In another similar approach, supervised segmentation using eigen�lters derived by the
use of neural networks are examined [84]. By this approach, good results are obtained,
realizing some savings over the previous approach. However, the extension to unsupervised
problems is not straight forward.

7.1.1 Unsupervised segmentation

From the results of Chapter 6, it is evident that the critically sampled IIR QMF �lter
banks of Section 3.2 give quite good results. Furthermore, the computational complexities
are lower than for most other �lter bank approaches, see Section 3.2.3. Consequently, a
critically sampled IIR QMF �lter bank, using the �lter structure of Figure 2.6(d), will be
used as feature extractor in these experiments. Furthermore, the sigmoidal nonlinearity
and Gaussian smoothing �lter are used in these experiments. Using the critically sampled
�lter bank implies calculation of only a few feature samples. The total size of the feature
set is therefore identical to the size of the input image. Critical sampling introduces
some edge inaccuracies, see Section 3.2.4, but the computational and memory-requirement
savings are tremendous. The approach by Jain and Bhattacharjee [49], for example,
implies a feature set eight times the size of the input image. An A4 page scanned at 300
dots per inch, for example, consists of more than eight million pixels, thus the size of the
feature set is important.

If the features give rise to correct unsupervised segmentation, we will not have to make
any assumptions about font size, scanning resolution, column layout, orientation, etc., as
we will see in this section. The clustering algorithm chosen is the k-means algorithm [116]
with a predetermined number of clusters.

It has been chosen to use parts of pages scanned from the March 2, 1994, issue of the
newspaper �Stavanger Aftenblad� (SA), Stavanger, Norway as test images. For compari-
son, some images used in [49, 128] have also been included. Figures 7.1(a-c) shows a part
of page 8 in SA and the quite successful segmentation of the document. Except for some
problems with the heading and spurious dots in the text regions, the segmentation is as
desired. Note that no a priori information on font size, scanning resolution, etc. has been
assumed. This example shows the applicability of the method. To further emphasize the
�exibility of the approach, Figures 7.1(d) and 7.1(e) show the segmentation results from
the same page rotated by 55� and at half the resolution, respectively. These �gures show
one important result: the segmentation quality is practically invariant with respect to
scaling and rotation.

How does the method compare with other methods? Figure 7.2 show the same images
as used in [49, 128]. The segmentation results from these images are practically the
same. On these images, the sub-sampling did not yield any particular degradation in the
segmentation result. These results, in combination with the results of Chapter 6, indicate
that there is no practical need for using the signi�cantly more complex Gabor �lter bank
for this application.

Unfortunately, not all documents are as easy to segment as the ones presented thus
far. The text segmentation method is based on the assumption that the text regions may
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(a) (b) (c)

(d) (e)

Figure 7.1: (a) The 1024�1024 pixel scanned image of parts of page 8 from SA, (b) the segments from unsu-
pervised segmentation, and (c) with regions classified as picture excluded. (d) Unsupervised segmentation of the
same page rotated by 55�, and (e) scanned at half the resolution, 512�512 pixels.

be considered as constituting a signi�cantly di�erent texture than the graphics regions.
Therefore it is natural that the method performs worse when the graphics contain textures
similar to the texture in the text region. The texture of parts of the graphics region in the
document in Figure 7.3(a) is quite similar to the texture of text. As a result, we see that
the segmentation, Figure 7.3(b), has included a considerable part of the graphics into the
text cluster. No unsupervised experimental results on similarly di�cult data have been
found in other publications.

It is important to be aware that all experiments in this section were done with no
assumptions on the input image and with no post-processing. Several kinds of post-
processing techniques are possible and should improve the results, especially if we have
information about the format of the input, e.g. that the text is organized in rectangular
columns.
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(a) (b) (c) (d)

Figure 7.2: (a), (c): Test images from [49] and (b), (d) the unsupervised segmentations of the images.

(a) (b)

Figure 7.3: (a) Page 2 from SA and (b) the unsupervised segmentation of the page.

7.1.2 Supervised segmentation

Motivated by the problem with the unsupervised segmentation approach in the previous
section, a somewhat di�erent approach is proposed, utilizing supervised segmentation. A
supervised approach will of course mean a limitation when compared to the �exibility of
the unsupervised approach. However, in many applications it may be assumed that the
font-size, scanning resolution, and page orientation are �xed. This will probably be the
case if for instance a newspaper decides to digitize back issues.

A supervised approach was also presented by Jain and Bhattacharjee [49]. The speci�c
application where the supervised approach was applied was segmentation of bar-code from
text. Their supervised approach was based on training a classi�er using exemplar features
from bar-code and text. However, in a general text segmentation application it is not
possible to assume that the non-text class is this well-de�ned. It will therefore not be
possible to train a classi�er on the non-text regions.

Training and classi�cation

Although it is not possible to assume that the non-text class has �xed properties, it may
be assumed that the text class has �xed and well-de�ned properties. To classify, we need



88 CHAPTER 7. DOCUMENT SEGMENTATION AND IMAGE QUERIES

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

(a)

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

(b)

Figure 7.4: Histograms of distance from codebook for feature vectors from (a) text and (b) image for page 8 of SA.

to calculate some kind of measure of similarity with the prototype text class. The training
feature vectors were represented by a set of cluster center vectors obtained by clustering
with the k-means clustering algorithm [116].

The means and variances of each cluster are computed from the features. The distance
from the query pattern is computed by the squared weighted Euclidean distance to the
closest cluster center. This measure is given by

d = (v�m)T diag (C)�1 (v �m) ; (7.1)

where v is the investigated feature vector, m is the cluster mean, and C is the cluster
covariance matrix. The idea of clustering and distance computation is similar to the basic
ideas of the Kohonen Self Organizing Map and the Learning Vector Quantization [58].

A feature vector, corresponding to one pixel or a small region of the image, is classi�ed
as belonging to the target pattern if the distance is below some threshold. An empirical
distance threshold of 50 from the mean was selected. This choice was appropriate when
the features were scaled to approximately the range 0 � � �255. It is important to keep in
mind that techniques like Bayes decision rule [29] may not be employed to determine an
optimal threshold for classi�cation as text because we do not know the non-text properties.

Experimental results

Two documents have been chosen for the reported supervised experiments. First, the
results with page 8 from SA are shown, a page that was successfully segmented by the
unsupervised approach. Then it is illustrated how the method performs for a more di�cult
page, page 2 of SA.

Page 8 of SA, Figure 7.1 (a), contains four di�erent kinds of text; normal text, boldface
text in the article introduction, and headings of two sizes. Attempts to classify the
document according to each of these text types have been made, using codebooks for each
of the four kinds of text. If a feature vector is close to several of the text classes, it is
classi�ed as the class with the closest prototype.

How good is the separation between text and non-text regions? Figures 7.4(a) and
7.4(b) show the distance histograms between the text codebook and the text and graphics
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(a) (b)

Figure 7.5: Supervised segmentation of page 8 from SA, (a) shown as regions (black is non-text regions, dark gray
is normal text, medium gray is boldface text and light gray and white are large and small headings, respectively) and
(b) the input image masked through the segmentation result (non-text regions masked out).
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Figure 7.6: Histograms of distance from codebook for feature vectors from (a) text and (b) image for page 2 of SA.

(a) (b)

Figure 7.7: Supervised segmentation of page 2 from SA, (a) shown as regions and (b) the input image masked
through the segmentation result (non-text regions masked out).
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features, respectively. We see that the histograms are well separated. From the histograms
we understand why the threshold of 50 is appropriate.

The segmentation results from page 8 are given in Figure 7.5. As we see, the segmen-
tation is mainly correct, but with some small regions misclassi�ed. These misclassi�ed
regions should be possible to detect and remove with various post-processing techniques,
which are not addressed here. The promising results from the supervised approach were
expected, since the results with the unsupervised approach were good.

The main motivation for developing a supervised approach was improvement of the
results for the more di�cult documents, like page 2 of SA. The feature distance histograms
for this page are given in Figure 7.6. As we could expect, we see that the histograms have
more overlap, but a text classi�cation distance threshold of 50 still seems reasonable. The
segmentation results are given in Figure 7.7. We see that only small parts of the graphics
region are classi�ed as text, while large parts were classi�ed as text in the unsupervised
approach. Hence, the results are much better with the supervised approach than with the
unsupervised approach.

7.2 Query by image content

One of the major contributions of computers to everyday life is the ability to conduct
fast and reliable text pattern searches. Text pattern searches allow us to �nd names in
databases, books based on their keywords, etc. Searching non-textual data such as images
based on contents (e.g., color and texture), on the other hand, is far more complex. How-
ever, the increased utility of computer vision and pattern recognition algorithms, along
with the availability of more powerful computers at low cost, make such an application
increasingly feasible. In an image database system, features may be computed in ad-
vance and the di�cult issues are feature storage and comparison. In searches in images
not stored in an integrated database, such as searches over a network, pre-computed fea-
tures will typically not be available and the feature extraction complexity is of paramount
importance.

Query by image content is a relatively new research area and an increasing number
of approaches to querying by color and texture are reported. Picard et al. [88, 90, 91]
focus their work on user interaction and adaptive feature selection. Claiming that no
single feature extraction scheme is suitable for all image types, they apply a �society of
models�. Some works on retrieving a set of most similar sub-images based on matched
�lters [89], Markov random �eld parameters [37], and Gabor features [70] have been
presented. Taking a more global perspective, Pentland et al. [86] and Flickner et al. [34]
present complete systems, integrating many aspects of query systems. Except for the
work by Liu and Picard [64] on modeling the human visual system, not much work on
feature tuning for image queries has been reported.

In this section, a feature extraction scheme for color and texture content search is sug-
gested and tested on a large number of real world images. In Subsection 7.2.1 the feature
extraction and classi�cation scheme is proposed and in Subsection 7.2.2 experiments are
given.
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Figure 7.8: Subset of the test images used for image content search/labeling, downloaded from [73].

7.2.1 Methodology

In this work, a method for color and texture search is developed. The texture features will
be extracted by the computationally attractive critically sampled IIR QMF �lter bank
scheme presented in Section 3.2. Color is very important for many query patterns. In this
case, the color is represented in the feature space by the two chrominance components of
the NTSC color representation [48]. The texture features are extracted from the luminance
component.

How are the color and texture features combined in the classi�cation? The straight-
forward approach is to combine them into one vector by appending the individual feature
vectors. However, for �lter banks with many sub-bands, this would imply high dimension-
ality in the texture feature sub-space while the color sub-space is limited to dimensionality
two. Hence, large distance variations in color would only yield a low relative variation in
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the overall distance measure. Another scheme, yielding identical weight on color and tex-
ture, would be to classify using the color and texture feature vectors separately, yielding
one color-based class map and one texture-based class map. An overall class map could
then be formed by logical �and� of these two class maps. Both of these approaches were
tested with relatively poor results.

Yet another approach is to append the color and texture features into one vector and
balance the contributions from the color and the texture. The balancing may be done in
the distance measure. A modi�cation of the codebook design approach of Section 7.1.2,
using a balanced squared weighted Euclidean distance measure, is applied. The distance
measure is

d =
1

22
(vC �mC)

T diag (CC)
�1 (vC �mC)

+
1

N2
(vT �mT)

T diag (CT)
�1 (vT �mT) ;

(7.2)

where the C and T subscripts denote the sub-vectors and sub-matrices corresponding to
the color and the texture features, respectively and N is the dimensionality of the texture
feature vector. By this normalization, it may easily be shown that linear scaling of the
distance in the color and texture domains a�ect the total distance measure identically.

In an image database system, query times of a few seconds, even if the database consists
of thousands of images, are desirable and have been reported [90]. However, although the
complexity of the proposed feature extraction scheme is very low, see Section 3.2.3, even
loading all those images will violate the complexity constraints. A possible solution to
this problem is to store a small amount of feature information for each image and apply
a fast similarity match [9, 90, 141]. Another alternative is to classify the regions of the
images o�-line and store class labels. This will be illustrated by experiments in the next
subsection. Hence, if a user requests images with hair, the class labels are examined and
images with hair are returned. The problem of integration with higher-level information,
e.g. context information, will not be treated here.

7.2.2 Experiments

An example of indexing regions with grass using the 98 vacation images in the MIT
VisionTexture database [73] will be given. Some of the MIT images are shown in Figure
7.8. One of the most challenging tasks in the experiments was the selection of good
training image regions. Eventually the images 008, 013, 020, 022, 024, 036, 043, 071, 078,
and 095 were used as training images. When testing on any of the training images, the
leave-one-out scheme was used.

How do we determine which sub-band decomposition is most appropriate for the prob-
lem? The selection of sub-band decomposition is clearly a tradeo� between the �curse of
dimensionality� [29] and the need for adequate feature separation. Furthermore, classical
feature analysis and selection schemes, like the scheme of Whitney [142], are not adequate
for this problem due to the lack of a de�nition of the �everything else� class.

In the experiments, several sub-band decompositions were tested along with the dyadic
Gabor features [50, 70], Section 2.2.3. The distance distributions along with the corre-



7.3. SUMMARY 93

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 7.9: Sub-band decompositions of the filter banks used in the image content search experiments.

sponding overlaps were computed and are shown in Figure 7.10. From the overlap percent-
ages, we can see that the �lter bank structure of Figure 7.9(h) yields the most powerful
features. We also see that it compares favorably with the computationally much more
complex Gabor [50] features, Figure 7.10(l).

It is particularly interesting to see that some of the texture features hardly add any
discrimination at all, and some even makes the results worse! From Figure 7.10(k) we
see that the overlap without any texture measure applied at all is 20.2%. Many texture
measures give results that are only slightly better. The �lter structures of Figures 7.9(e)
and 7.9(j) even makes the results worse, 29.5% and 33.8% overlaps.

In Figure 7.11 some classi�cation results with this feature extractor are shown. Dif-
ferent intensities indicate di�erent thresholds for the distance measure. As can be seen,
if the results are studied in detail, the system detects regions with grass well. Some false
detections of walls and leaves can be seen, but from a pure texture and color point of view,
the falsely detected areas are very similar to certain types of grass. The experiments were
restricted to grass as an illustrational example.

The results also tell us that as the dimensionality of the texture features becomes too
large (e.g. Figures 7.9(j) and 7.10(j)), the performance degrades. This indicates that it
becomes increasingly di�cult to design a good codebook with the increased number of
feature variables � the �curse of dimensionality� [29].

7.3 Summary

In this chapter, applications to content based image search and document segmentation
of the critically sampled QMF �lter bank scheme of Section 3.2 have been presented.
The �rst application was an approach to document segmentation using an unsupervised
classi�er. This approach uses no a priori knowledge of the input, as opposed to most
traditional text-graphics segmentation schemes. Still, satisfying results are obtained in
many cases. The second approach was a supervised classi�cation approach, yielding near
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Figure 7.10: Histograms of feature distance to closest grass codebook vector for grass (solid) and non-grass
(dashed) for different feature sets. The horizontal axes correspond to distance measure and the vertical to relative
densities. Minimal overlap is optimal. Histograms (a) to (j) correspond to the filter structures in Figure 7.9, (k)
corresponds to no texture filter bank at all (using only the luminance in addition to the color), and (l) to the dyadic
Gabor filter bank [70]. The percentages of histogram overlaps are indicated.

perfect segmentation even for di�cult documents where the unsupervised approach had
poor segmentation.

Furthermore, a feature extraction and classi�cation scheme for color-texture pattern
search in digital image databases has been proposed. The color was represented by the two
chrominance components in the NTSC scheme, while texture was represented by QMF
�lter bank features. The color and texture features were combined and their contributions
balanced using a modi�ed weighted Euclidean distance measure. The scheme was tested
on the problem of labeling or �nding regions in images with grass.

The focus of the applications has been on proving the applicability of the critically
sampled QMF �lter bank.1 The issues of pre- and post-processing and integration of other
types of information have been treated more super�cial. This is not to indicate that these
problems are less important, but rather that they are beyond the scope of this work.

1Both this and the previous application, document segmentation, are problems where only a subset
of the possible texture classes are known a priori. Hence, the optimization approaches of Chapters 4 and
5 are not applicable.
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Figure 7.11: Segmentation results for the images of Figure 7.8.
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Chapter 8

Automated seismic interpretation

The trade with petroleum is of considerable importance for the world economy and ex-
ploration and production of petroleum is a large business. Most petroleum resources are
buried under the surface of the earth. Imaging properties of the subsurface is consequently
a major task in petroleum exploration. Seismic analysis is one of the principal tools for
mapping the subsurface properties.

In this chapter, solutions to two major problems in petroleum exploration, fault and
stratigraphic boundary pattern recognition, will be proposed. In contrast to the previous
chapters of this dissertation, the application is no longer texture analysis. However, parts
of the approaches are related to texture approaches.

In Section 8.1, an introduction to petroleum exploration with re�ection seismics will
be given. In Sections 8.2 and 8.3, solutions to the problems of fault and stratigraphic
boundary interpretation are proposed and discussed. Finally, in Section 8.4, the chapter
is summarized.

8.1 Introduction to petroleum exploration with seismic

Denham [27] gives the following introduction to seismic re�ection exploration: �Seismic
re�ection exploration � the study of the earth using sound waves re�ected from beneath the
surface � is the dominant method in exploration geophysics. [...] Exploration geophysics
is merely a tool we use to look at the geology of a part of the earth we can neither sample
nor visit in person. The geological understanding which we build using geophysics and
other geological tools is itself only a tool used to detect a probable oil or gas �eld. Seismic
interpretation is the interface between the exact [...] and inexact [...]. The earth is so
complex that we never have a complete picture.� In this section, a brief introduction
to geology, petroleum exploration, seismic signals, and seismic signal processing will be
given. For more extensive coverage of geology and seismics, several books and articles are
available, e.g., [27, 54, 57, 119].

97
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8.1.1 Geophysical background

Practically all occurrences of known oil and gas are in sedimentary rock. A sedimentary
rock is formed by the accumulation, diagenesis, and solidi�cation of organic material,
mud, silt, sand, and other clastic materials. As new material is sedimented atop, pressure
increase forms sedimentary rock bodies.

Provided adequate temperature, organic sediments starts forming oil and gas. These
sedimentary layers are denoted source rock. The oil and gas may �ow through permeable
media. Since the density of petroleum is less than the density of water, it will be replaced
by water if it is allowed to escape. If no sealing cap is present, it will escape to the surface
of the earth. However, if there is a combination of a sealing cap and a porous medium,
the petroleum may be trapped and accumulate in a reservoir. The quest for oil and gas
is the search for such reservoirs in the ground. Typical porous media are sandstone and
limestone while the most common caps are non-permeable sedimentary layers, e.g., shale,
and structural seals, stemming from faults generated by tectonic or deformation forces.

Permeability is also a necessity for successful production, since reservoirs are produced
by a few wells draining a very large volume (a petroleum reservoir may be several kilo-
meters in extent). Some sediments are in nature permeable, but permeability may also
stem from breaks in a sealing cap.

The focus of this chapter will be on automatic identi�cation of faults and stratigraphic
properties important for the �ow (permeability) and sealing of petroleum. However,
before the attention is focused on these problems, an introduction to seismic signals,
signal gathering, preprocessing, and inversion will be given.

8.1.2 Seismic surveying

Seismic surveying is one of the major techniques used for constructing an image of the
subsurface for the detection of oil and gas reservoirs. In a seismic survey, a source is
emitting sound waves through the (sedimentary) layers of the earth. Any interface be-
tween layers of rock with di�erent speeds of sound and densities will re�ect some of the
incoming sound pulse back to the surface. The sound source may be a dynamite ex-
plosion, a pneumatic air gun, a massive vibrating object, or similar. The recorders are
typically geophones, measuring vibration in the earth, or hydrophones, measuring sound
pulses in water. An illustration of a sea survey con�guration with boat, sound source,
and receivers is shown in Figure 8.1. Re�ections with long re�ection times (typically up
to a few seconds) basically correspond to deep interfaces (up to a few thousand meters)
or large re�ection angles. The maximum resolution of the recorded seismic signal is in
the range of beteween a meter and a tenth of a meter.

Traditionally, seismic surveys gave two-dimensional cross sections of the earth. How-
ever, most seismic surveys today provide three-dimensional mappings of the earth, e.g. by
closely spaced two-dimensional cross sections. This provides for improved noise removal
and a better understanding of the sediments. Another recent trend is 4D seismic, where
multiple seismic surveys are conducted over time (fourth dimension) in order to monitor
and map the drainage of the reservoirs.

Analysis tools and techniques with considerably better resolution are available for
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Figure 8.1: Principle of offshore seismic surveying.

wells. Some examples are sonic measurements, radioactive measurements, and core sam-
ples. However, wells are very costly to produce, typically in the range of ten million US
dollars per well. Consequently, the number, and therefore the density, of wells is very low,
especially during exploration. In practice, seismic and well measurements are the only
applied techniques for imaging the subsurface in petroleum exploration.

8.1.3 Seismic processing

The processing steps leading up to an image of the sub-surface may be divided in two parts;
1) seismic processing for data enhancement and 2) seismic inversion. In this subsection,
a few of the most important enhancement techniques are brie�y reviewed. Inversion is
treated brie�y in the next subsection.

The ideal signal source would be a source emitting a Diracs delta pulse into the
earth, i.e., a pulse with in�nitesimal duration and in�nite amplitude. However, this is
not practically attainable and the submitted waveform is only approximating the Diracs
delta pulse. Furthermore, the source is not 100% repeatable. To compensate for these
problems, the recorded seismic re�ection signals are deconvolved with the recorded source
waveform.

The transmission medium, the earth, is a similar distortion source. Of particular inter-
est is the fact that high frequencies are damped, resulting in blur and reduced resolution.
This is particularly a problem for re�ections with long travel times. To compensate for
this problem, the seismic signal may be deconvolved with a modeled unit pulse response
of the transmission medium.

Yet another problem with the data quality is the low signal to noise ratio of the signal
due to several noise sources. If the noise is random and data independent, averaging
multiple measurements of the same property will yield reduced noise. This is utilized in a
technique denoted stacking, where multiple measurements from the same re�ection point
are averaged.

A multitude of other data quality improvement techniques with various tradeo�s also
exist. A more complete presentation is given by Kearey [57].
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Figure 8.2: (a) Illustration of problem with dipping layers. (b) Multiple reflection paths yielding the same arrival time.

8.1.4 Seismic inversion

If the internal structure and physical properties of the earth were known, the magnitude
of the recorded seismic measurement could be predicted accurately. However, in seismic
data analysis, the problem is the converse, namely to deduce some aspects of the earth's
internal structure on the basis of the measurements. This is a problem with a non-
unique solution since many di�erent geological con�gurations could produce the observed
measurements.

The basic survey model, presented in Section 8.1.2, was developed with an assumption
of horizontal re�ectors. Since the angle of incidence is equal to the re�ection angle,
the re�ection point is midway between the source and the receiver if the re�ectors are
horizontal. For dipping re�ectors, however, this simple relation is no longer valid, see
Figure 8.2(a), and without knowledge of the dip, the re�ection point is unknown. The
solution is to carefully examine the data to determine the most probable dip angles of the
major re�ectors and compensate for the dip by a process called migration.

Travel times and amplitudes are the only measured properties of the seismic signal.
The travel time is a function of the sound velocity in the transmission medium and the
length of the signal path. However, there are many possible paths from source to receiver
having the same travel time. Of particular interest is multiples � re�ections �bouncing�
between multiple re�ectors. An example sketch of multiple re�ections is illustrated in
Figure 8.2(b). The e�ect of multiple re�ectors may be that the multiples from strong
re�ectors completely drown the information from weaker re�ectors. In order to remove
multiple re�ections, the �rst arrivals are analyzed. Then a probable multiple re�ection
path is modeled and the modeled multiple response is subtracted from the measured
seismic response.

The discussion given here is not a complete analysis of all inversion techniques. Com-
pensation techniques for problems as refractions, di�ractions, etc. also exist, see [27, 54,
57, 119].

8.2 Fault identi�cation

At a large scale, the initial sedimentation pattern was horizontal, but deformation by
folding and faults, as illustrated in Figure 8.3, might make structural traps. These fold-
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Figure 8.3: Illustration of principle behind two types of structural traps, fold and fault.

ings and faults are formed by tectonic forces, i.e., by movements from deep within the
earth's crust (e.g. earthquakes), �ow of salt or shale1 from deeper layers, or di�erential
compaction. A fault may generate a �uid channel through a sealing layer or seal a per-
meable layer and is therefore of signi�cant importance in the quest for oil and gas. It will
typically be represented by an abrupt change in the seismic response and may therefore
be detected by methods for detection of abrupt changes. The �nal goal of fault analysis
is an interpretation as shown in Figure 8.4(a).

A technique for fault analysis was presented by Alam and Caragounis [3], where the
seismic horizons were auto-traced and faults identi�ed by discontinuities in the extracted
horizons. However, by experience, auto-traced horizons are not very reliable. Conse-
quently, the fault detection may be biased by errors in the horizon identi�cation. Ba-
horich and Farmer [7] recently presented a patented [8] technique for fault feature ex-
traction (highlighting) by local coherence analysis. The coherence method is based on
the idea that two adjacent traces2 separated by a fault are poorly correlated, using at-
tributes from the cross correlation as fault features. However, the windowing in the cross
correlation causes a smeared response. A third approach to fault enhancement has been
presented by Schwab et al. [117], in where an optimized horizontal linear prediction error
�lter is applied to the seismic. This �lter will yield high amplitude at discontinuities, e.g.
faults. Techniques for adapting the predictor to the underlying orientation of the seismic
re�ectors have not been presented, thus making it very sensitive to varying dip of the
re�ectors.

A fault feature extraction technique based on the orientation estimate is developed
and tested in Subsection 8.2.1. A technique for transforming the fault features into a fault
interpretation is required and a discussion of methods is given in Section 8.2.2.

1Salt is heavier but less compressible than most other sedimentary materials. As pressure increases,
other materials are compressed more than the salt and their densities increase. This make them heavier
than salt and the salt starts to prograde towards the surface. A similar situation may occur with water
�lled porous shale or clay where the water is not allowed to escape during the pressure increase.

2A trace is the term used for one column of seismic samples in the seismic volume, i.e., a vertical
one-dimensional signal.
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Figure 8.4: (a) Example seismic cross section with manual fault interpretation. (b) Illustration of the local orientation
the cross section.

8.2.1 Fault feature extraction

If a fault intersects a strong seismic re�ector, the re�ector typically becomes discontinuous
and is characterized by an abrupt change in the seismic signal. A convolution mask (�lter)
like

2
4
�1 0 1
�1 0 1
�1 0 1

3
5 (8.1)

will intuitively enhance abrupt changes in seismic sections, while suppress smooth regions
(the average is zero) horizontally. This �lter, known as the Prewitt [48] �lter, is often
used for enhancement of vertical edges in image processing. A similar version exists for
enhancement of horizontal edges. An alternative �lter is the Sobel [48] �lter,

2
4
�1 0 1
�2 0 2
�1 0 1

3
5 : (8.2)

Both masks perform approximate partial derivative estimation.
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An edge in image processing is the transition from a bright region to a dark region, or
vice versa. For any such vertical edge, any of these masks will have either a large positive
or a large negative value. For a fault, on the other hand, the arrangement of bright
and dark samples is more complex and the response may change from large positive to
large negative in a small neighborhood. However, compared to non-faulted regions, the
magnitude of the response is overall large.

As we can see from the seismic section of Figure 8.4(a), we do not always have vertical
fault planes intersecting horizontal seismic re�ection patterns. Since the re�ectors have
similar characteristics as edges, any edge enhancement mask having some component per-
pendicular to the re�ectors will also enhance the re�ectors. Hence, to enhance faults and
not re�ectors, the edge enhancement mask must be tuned to be parallel to the re�ection
layers. The layer orientation may be estimated using the same technique as proposed by
Kass and Wittkin [56] and improved by Rao and Schunck [113]. This approach basically
used vertical and horizontal partial derivative of Gaussian �lters for orientation estima-
tion, followed by directional smoothing. An illustration of the estimated directionality of
the seismic section in Figure 8.4(a) is shown in Figure 8.4(b).

Rotating a discrete �lter mask by an arbitrary angle is not straightforward. To ac-
complish the rotation, a linearly interpolated continuous representation may be modeled,
rotated, and re-sampled. One local orientation value is estimated for each pixel and the
edge mask should be tuned accordingly. That is, the edge mask should adapt to the local
orientation. However, the generation of a new mask for each pixel is computationally
complex. A faster approach is to generate a set of masks for a range of orientations o�-
line, store them in a look-up table, and apply the mask tuned to the closest orientation.
However, an even more computationally e�cient approach is to use a separable edge �l-
ter. In a separable implementation, the edge mask tuned to the angle � may be given by
cos(�)h0 + sin(�)h�

2
, where h� is the edge mask tuned to the angle �. By this approach,

only two separable �lters are necessary in the feature extraction stage.

All of these approaches were evaluated, with only insigni�cant di�erences in feature
quality. A result from the separable approach is illustrated in Figure 8.5(a). The perceived
quality or clarity of the extracted features can be improved by some kind of smoothing
of the features. Figure 8.5(b) shows the image of Figure 8.5(a) smoothed by a two-
dimensional Gaussian low-pass �lter with �s = 3 along the fault direction and �s = 0:5
perpendicular.

Any of the images of Figure 8.5 are highlighting the faults signi�cantly better than
the original seismic image. Hence, they may aid manual fault identi�cation, which is a
major and di�cult task. Furthermore, as we will see in the next subsection, the features
may also be used for automatic or semi-automatic fault identi�cation.

Some other approaches to fault feature extraction have also been attempted, with
less success. Approaches using appropriately tuned Gabor �lters, Section 2.2.3, other
band-pass �lters derived from the QMF banks of Section 3.2, the optimal texture �lters3

of Section 5.3, and the phase di�erence highlighting technique by Bovik et al. [13] have
been attempted. However, all the results were worse than the results with the edge
enhancement �lters. Some of the experiments are reported in [98]. Application of edge

3With optimal texture �lters, the fault was modeled as an instantaneous texture.
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Figure 8.5: (a) Orientation adaptive separable Sobel mask response magnitude for the seismic cross section of
Figure 8.4 and (b) a directionally smoothed version.

enhancement techniques without strong orientation properties, like the Laplacian [48] and
SUSAN [121], have also been evaluated. However, due to strong edge characteristics of the
seismic re�ectors, all applied non-oriented techniques tended to emphasize the re�ectors
much more than the faults.

8.2.2 Fault surface identi�cation from the extracted features

In order to have an automatic fault identi�cation system, some approach for converting
the fault features into fault surfaces in 3D or fault lines in 2D is needed. The ideal
situation is to have a fully automatic system, transforming the fault features into fault
surfaces with no user interaction. If it is assumed that the faults may be represented as
lines of linked straight segments in 2D cross-sections, the Hough transform [39, 45] may be
used to detect the segments. A signi�cant e�ort was done to utilize the Hough transform
technique for this approach, using the technique from [10]. The best result was as shown
in Figure 8.6(a). For implementational reasons, the image was divided into overlapping
blocks, and one line segment detected per block. This causes some false detections that
may easily be removed. However, we still see that multiple faults or fault segments are
missed by the approach.
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Figure 8.6: Interpreted faults from the image of Figure 8.5(a). (a) Fully automatic identification using the Hough
transform. (b) Semi-automatic identification using minimum cost path.

A more successful alternative may be to do semi-automatic detection of the faults, i.e.,
detection requiring some user interaction. One way of converting the fault features into
fault lines or fault surfaces is to let the user select seed points that the system uses for
tracing the faults. Verwer et al. [134] suggest a technique for using linear programming to
�nd a minimum cost path between two seed points. Results using this approach are shown
in Figure 8.6(b). As we can see, all the major faults were traced successfully, although
the lines are still somewhat jagged.

The major e�ort in manual fault identi�cation is not the interpretation of a single
seismic cross section, but the interpretation of hundreds of cross sections. Furthermore,
it is reasonable to assume that the fault lines in neighboring sections are fairly close in
position, shape, and orientation. Hence, another approach to semi-automatic identi�ca-
tion is to use deformable template matching. This approach was taken by Østebø [82],
but some further adjustments are required to make this approach robust enough.



106 CHAPTER 8. AUTOMATED SEISMIC INTERPRETATION

(a) (b) (c) (d)

Figure 8.7: Some important stratigraphic boundaries: (a) Erosional truncation, upper boundary formed by ero-
sion. (b) Toplap, upper boundary formed mainly as a result of non-deposition. (c) Onlap and (d) downlap, lower
boundaries formed by sedimentation on initially inclined surfaces.

8.3 Stratigraphic boundary identi�cation

Most oil and gas discovered has been found in structural or mainly structural traps [27]
and the undiscovered potential in such traps is probably decreasing. Another kind of
traps, stratigraphic traps, is now receiving increased attention. A stratum is �a tabular or
sheet-like mass, or a single and distinct layer, or [...] sedimentary material [...], visually
separable from other layers above and below by a discrete change in character [...] or by a
sharp physical break in deposition, or by both.� [72, 74]. Stratigraphic analysis [85] is the
analysis of strata and their boundaries. The analysis of stratigraphic traps is generally
more di�cult than structural trap analysis. Hence, it may be expected that the proportion
of undiscovered stratigraphically trapped reservoirs is larger than for structural trapped
reservoirs.

A stratigraphic trap occurs when the reservoir rock is surrounded by an impermeable
seal and the depository layers did not have a horizontal structure. A river delta is a typical
example of a non-horizontal deposition region. Crucial in the detection of stratigraphic
traps is the identi�cation of boundaries between di�erent strata. An important class of
boundaries are boundaries where one stratum terminates into another stratum [85, 75],
see Figure 8.7. Seismic stratigraphic termination analysis is the analysis of termination
patterns in the seismic signal. The straightforward approach to termination analysis is to
do manual or automatic interpretation of all layers and analyze their terminations.

No explicit works on automated termination detection have been found, but implicit
stratigraphic feature detection is reported with the coherence cube approach [7]. In this
section, an approach to automated termination detection is proposed.

As with the fault feature extraction, the approach by Rao and Schunck [113] is uti-
lized for orientation estimation. Given the local orientation estimate, �ow lines following
the local orientation are constructed. Starting at any position, the �ow line is the curve
through that position having the orientation of the local angle estimates in its path. The
technique was applied to the image in Figure 8.8(a). In an illustrative experiment, �ow
lines sparsely covering the image were generated, Figure 8.8(b), and we can clearly see how
the �ow lines follow the orientation and indicate regions with terminations. A slightly dif-
ferent way of utilizing the method was applied in the experiments leading to Figure 8.8(c).
In this experiment, the density of �ow lines was increased signi�cantly. When two �ow
lines (in this experiment; when two �ow lines with seeds in the same column in the image)
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Figure 8.8: (a) Example seismic cross-section and (b) flow lines overlaid the seismic section, indicating the dom-
inating local orientations. Terminating flow lines are marked by small circles. (c) Termination density, the arrow
pinpoints an interface which is successfully highlighted by the technique.
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converges to the same pixel position, that position is marked as a termination. For each
termination, the value in an accumulator array with each cell corresponding to one pixel
was increased by one and this accumulator array was smoothed and scaled appropriately
for display. In this illustration, we can see the sequence boundaries of the di�erent layers
highlighted by black, e.g., around the pinpointed interface (about 100 samples from the
top).

In the implementation used in the experiments, the step size in the �ow line tracking
was always one and the �ow lines were represented as connections of line segments. The
orientation of each line segment was taken to be the orientation in the sample position
closest to the start of the line segment.

In summary, with the �ow line technique proposed in this subsection, a solution to
the problem of seismic stratigraphic termination detection is proposed. As we see, the
technique is suited to the detection of terminating strata in the seismic images.

8.4 Summary

In this chapter, a review of the basic principles of geology, seismic data acquisition, and
seismic data processing was given. Then the problem of fault identi�cation was intro-
duced. An approach to fault feature extraction using the edge enhancement �lter masks
tuned by the orientation of the seismic layers was proposed. It was shown that these
features were powerful for fault highlighting. The fault analysis part was concluded with
discussion and experiments on making a meaningful geometric description of the fault
surface based on the extracted features.

Next, the problem of detection of terminating strata from seismic signals was intro-
duced. A technique for termination detection based on local orientation estimates was
suggested. In this approach, the local orientation was traced by �ow lines. Flow line
intersections correspond to terminating strata.

All the techniques for seismic analysis presented herein are founded on proven signal
processing theory. No explicit use of horizon interpretation and other higher level seismic
interpretation is made. This is expected to yield a system that degrades gracefully with
the quality of the data and which is not biased by the interpretation.

For implementational reasons, all experiments, and therefore all discussion given in
this chapter, have been made with the assumption that the input is a two-dimensional
seismic cross section. Since the seismic data is inherently three-dimensional, this is a
limitation to the power of the techniques. However, all techniques presented may readily
be extended to three dimensions.



Chapter 9

Summary and conclusions

9.1 Major contributions of this work

The major contributions of this work are listed below.

1. In Section 3.2 a new class of �lter banks, QMF �lter banks, is proposed for texture
feature extraction. Furthermore, a framework for feature extraction with multi rate
(sub-sampled) �lter banks is proposed. It is seen in several experiments that the
features derived from the QMF �lters yield good segmentation quality.

2. A new approach to texture �lter design based on linear prediction error �lters is pro-
posed in Chapter 4. The approach is optimal with respect to representation. Hence,
it is not optimal with respect to discrimination. Most texture images are success-
fully discriminated by the approach, but the method is unsuccessful for some images.
The results are more or less of the same quality as with several non-optimized �lter
bank approaches, but with a considerably lower computational complexity.

3. In Section 5.2 and Appendix A, a new model for estimating the mean and variance
of texture features extracted with linear FIR �lters and local energy functions is
developed. The model is applicable for analyzing the performance of a given �lter
or for �lter optimization.

4. Multiple new two-texture optimal one-�lter design approaches are presented in Sec-
tion 5.3. Exact closed form optimization to mean feature value criteria and approx-
imate closed form solutions to mean and variance criteria, in particular the Fisher
criterion, are developed. Experiments in Section 5.3 and in Chapter 6 indicate that
these new techniques are very good.

5. The mean value optimization approaches are extended to multiple-texture cases in
Section 5.4. Experiments show very good results compared to other optimal and
non-optimal �ltering approaches. Advantages with the two- and multiple-texture
optimization approaches are that they yield features that may be extracted with rel-
atively low computational complexity. Furthermore, these features may be classi�ed
with low complexity.
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6. The new methods proposed here along with methods broadly covering most cate-
gories of �lters and �lter banks used for texture feature extraction are evaluated in
Chapter 6. In the experiments, the focus is put on making the results as comparable
as possible. Model based and statistical features are also included in the test for
reference.

7. Experiments on document image segmentation and content based image queries are
reported in Chapter 7. In these experiments, it is shown that the decimated version
of the QMF �lter bank of Section 3.2 is a powerful texture feature extractor for real
world images.

8. In Chapter 8, a method for estimating the local orientation in seismic data is dis-
cussed. A method for utilizing this estimate for detecting patterns corresponding
to terminating sedimentary layers in seismic data is proposed. Furthermore, an
approach to fault feature extraction in seismic signals based on the orientation es-
timate is proposed and tested. Finally, methods for interpreting fault planes from
the fault features are discussed.

9.2 Major conclusions from this work

Several conclusions may be drawn from the experiments reported in this dissertation.
Below is a summary of the major conclusions:

1. It may from the experiments in Chapters 3 and 6 be concluded that the dyadic
decomposition in most cases is not optimal for texture feature extraction with �lter
banks. This supports similar �ndings reported by Chang and Kuo [16].

2. Numerous works have concentrated on tuning Gabor �lters or �lters derived from
the wavelet transform for texture recognition. In this work, other �lter bases have
been shown to yield comparable or better results. Hence, restricting the �lter basis
to the Gabor or wavelet derived �lters will limit the potential of the �ltering.

3. By applying sub-sampled perfect reconstruction �lter banks, good segmentation
performance can be achieved with signi�cant savings in computational complexity.
However, with sub-sampling, some increase in edge inaccuracy is observed.

4. Several �lter optimization approaches are evaluated and optimal �lter designs do
in many cases yield features that are superior compared to non-optimized �lters.
Furthermore considerable reductions in computational complexity are obtained by
many optimal �lter approaches.

9.3 Suggestions for further research

1. Due to mathematical constraints, a few assumptions and approximations had to
be made to obtain the closed form optimal solutions of Chapter 5. These were
Gaussian assumption, in some cases restrictions to criterion functions incorporating
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only the feature mean, etc. Further e�ort should be put on working around these
assumptions and approximations.

2. A few attempts to �lter optimization with respect to the Fisher criterion have
been made in Sections 5.3.2 and 5.3.3. Approximate closed form, gradient search,
simulated annealing, annealing evolution, and exact iterative solutions have been
proposed. Other iterative or closed form solutions should also be targeted. Fur-
thermore, approaches based on the alternate expressions and derivations of Ap-
pendix A.4 should be examined further.

3. The ultimate criterion in texture segmentation is the classi�cation error rate. All
optimization approaches in this dissertation have been with respect to criteria that
are only indirectly related to the error rate. The optimal solutions are conse-
quently not optimal with respect to the error rate. The only reported approaches
on optimization with respect to the error rate are some Gabor �lter design ap-
proaches [31, 30, 138, 139] and a neural net approach [51]. The �rst approach is
restricted in the class of �lters, while the second is limited by the lack of a global
optimum and closed form solution. Further e�ort should be put on minimum error
optimization.

4. The multi-texture optimization strategy developed in Section 5.4 is based on forming
pairs of textures and designing �lters for these pairs. Alternate optimal �lter bank
design schemes should be developed, to see if even better results may be obtained.

5. The section on unsupervised optimal �lter design, Section 5.5, did show good results.
However, more e�ort should be put on testing the approach and developing the block
clustering scheme further.

6. The experiments on document segmentation and content based image search were
focused on the texture feature extraction. Several issues of pre- and post processing
remain unresolved. The features proposed here are very advantageous with respect
to computational complexity. More e�ort should be made in combining these fea-
tures with proper pre- and post-processing systems.

7. The seismic interpretation approaches presented in Sections 8.2 and 8.3 were limited
to two dimensions. For most of the techniques, extensions to multiple dimensions
are readily available with only a moderate increase in complexity (e.g. most �ltering
approaches were separable). Extensions to multiple dimensions should be developed
and tested.
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Appendix A

Mathematical details

In this appendix, the mathematical details for some of the derivations presented earlier
in this dissertation are given. In Appendix A.1 a validation of the existence of the eigen-
solutions found earlier is given, in Appendix A.2 the details of the feature variance model
are developed, and in Appendix A.3 an approximation of the variance expression useful in
the closed form solutions is developed. Finally in Appendix A.4 a compact representation
of the variance model is discussed along with an approach to �nd an upper bound of the
Fisher criterion and some ideas for future optimization research.

A.1 Validation of existence of optimal solutions

Are we guaranteed that all solutions to the eigenproblems, Equations (5.23), (5.28), and
(5.31), are valid solutions? That is, are we guaranteed that the solution to

�
Rx2x2

�1
Rx1x1

�
h = �h (A.1)

will yield a solution vector h such that

(hTRx1x1h)

(hTRx2x2h)
= �; (A.2)

where � is the corresponding eigenvalue? Since (hTRx2x2h) is a scalar, � is unmodi�ed
by dividing and multiplying by (hTRx2x2h), i.e.,

� =
(hTRx2x2h)�

(hTRx2x2h)
=
h
T
Rx2x2�h

(hTRx2x2h)
: (A.3)

Combining this with Equation (A.1), we get

� =
h
T
Rx2x2

�
Rx2x2

�1
Rx1x1

�
h

(hTRx2x2h)
=

(hTRx1x1h)

(hTRx2x2h)
; (A.4)

which is identical to the requirement of Equation (A.2). Hence, all eigensolutions are
valid solutions, provided that Rx2x2 is non-singular and (hTRx2x2h) 6= 0.
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A.2 Variance expression

For the notations of this appendix, refer to Figure 5.1. The variance of the feature image,
vi(m;n), is

�2vi = E
�
(vi(m;n)� �vi)

2	

= E
�
v2i (m;n)

	� 2E fvi(m;n)g�vi + �vi
2

= E
�
w

T
zi(m;n)zTi (m;n)w

	� �vi
2

= (wT
Rziziw)� �vi

2;

(A.5)

where

Rzizi = E
�
zi(m;n)zTi (m;n)

	
: (A.6)

The matrix Rzizi is readily constructed from the autocorrelation function of the image
zi(m;n), given by

rzizi(k; l) = E fzi(m;n)zi(m+ k; n + l)g
= E

�
y2i (m;n)y2i (m+ k; n+ l)

	
:

(A.7)

With this fourth order moment, no closed form solution for criteria incorporating the
variance has yet been found. However, if we assume that yi(m;n) is Gaussian, we may
write this as [83]

rzizi(k; l) = 2cyiyi
2(k; l) + 4cyiyi(k; l)�yi

2 + ryiyi
2(0; 0); (A.8)

where cyiyi(k; l) is the covariance function [83] of yi(m;n). Further

cyiyi(k; l) = E f(yi(m;n)� �yi) (yi(m+ k; n+ l)� �yi)g
= ryiyi(k; l)� �yi

2;
(A.9)

where ryiyi(k; l) is the autocorrelation function of yi(m;n). Hence, we have

rzizi(k; l) = 2
�
ryiyi(k; l)� �yi

2
�2

+ 4
�
ryiyi(k; l)� �yi

2
�
�yi

2 + ryiyi
2(0; 0)

= 2ryiyi
2(k; l)� 2�yi

4 + �vi
2:

(A.10)

Furthermore, we have

ryiyi(k; l) = E fyi(m;n)yi(m + k; n+ l)g
= E

�
h
T
xi(m;n)xTi (m+ k; n+ l)h

	

= (hTRxixi(k; l)h);

(A.11)

where

Rxixi(k; l) = E
�
xi(m;n)xTi (m + k; n+ l)

	
: (A.12)
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Note that from Equation (5.13), we have Rxixi = Rxixi(0; 0). Combining Equations (A.5),
(A.6), (A.10), and (A.11) we are able to estimate the variance of the extracted features,
�2vi . This estimate is based on the autocorrelation function of the texture, rxixi(m;n),
the �lter, h(m;n), and the smoothing �lter w(m;n). Summarizing the derivations of this
section, we may write the expression for �2vi explicitly as

�2vi = (wT
Rziziw)� �vi

2

=
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)rzizi(k1 � k2; l1 � l2)� �vi
2 (A.13)

and

�2vi =
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)2ryiyi
2(k1 � k2; l1 � l2)� 2�yi

4 + �vi
2 � �vi

2

(A.14)

yielding

�2vi = 2
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)(h
T
Rxixi(k1 � k2; l1 � l2)h)

2 � 2
�
�xi1

T
h
�4
;

(A.15)

where 1 = [1 1 � � �1]T and w(m;n) is the smoothing �lter, which is of sizeMw�Nw. A dis-
cussion of compact representations for this variance expression is found in Appendix A.4.
Using the matrix/vector di�erentiation rules of Searle [118] we get the partial derivative

@�2vi
@h

= 8

Mw�1X

k1=0

Nw�1X

l1=0

w(k1; l1)

Mw�1X

k2=0

Nw�1X

l2=0

w(k2; l2)(h
T
Rxixi(k; l)h)

�
Rxixi(k; l)h+Rxixi(k; l)

T
h
�

� 8
�
�xi1

T
h
�3

�xi1:

(A.16)

A.3 Approximate variance expression

From Appendix A.2, Equation (A.13), we know that it is possible to write the variance
as

�2vi =
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)rzizi(k1 � k2; l1 � l2)� �vi
2; (A.17)

but as described in Section 5.3.2, this is not found to yield a closed form solution. However,
if we approximate rzizi(k; l) by r̂zizi(k; l), where

r̂zizi(k; l) = �i1r̂zizi(k � 1; l) 8 k > 0 (A.18)
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and

r̂zizi(k; l) = �i2r̂zizi(k; l � 1) 8 l > 0; (A.19)

where �i1 and �i2 are scalar parameters and r̂zizi(0; 0) = rzizi(0; 0), we may write

rzizi(k; l) � r̂zizi(k; l) = �
jkj
i1 �

jlj
i2rzizi(0; 0): (A.20)

Note that the approximations in Equation (A.18) and (A.19) correspond to modeling the
image as separable and autoregressive (AR) [83] of order one.1 With this approximation,
we may write

�2vi �
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)�
jk1�k2j
i1 �

jl1�l2j
i2 rzizi(0; 0)� �vi

2

= rzizi(0; 0)
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)�
jk1�k2j
i1 �jl1�l2ji2 � �vi

2:

(A.21)

To keep expressions manageable the following is de�ned

�i =
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)
Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)�
jk1�k2j
i1 �

jl1�l2j
i2 ; (A.22)

thus �2vi � �irzizi(0; 0)� �vi
2. Applying (A.10) and assuming zero mean input, we get

�2vi � 2�iryiyi
2(0; 0) + ryiyi

2(0; 0)� �vi
2

= 2�i(h
T
Rxixih)

2
+ (hTRxixih)

2 � (hTRxixih)
2

= 2�i(h
T
Rxixih)

2
:

(A.23)

To �nd an optimal solution, we need the partial derivative of this approximation of �2vi with

respect to h. As we see, the approximation of �2vi consists of two elements, (hTRxixih)
2

and �i, that are both functions of h. The relative perturbations of (hTRxixih) and �i
as functions of small perturbations of h were tested. The �i's were determined to yield
minimum deviation between Equations (A.15) and (A.23). These tests indicated that the
relative perturbations of (hTRxixih) were generally much larger than the relative pertur-
bations of �i. Hence, approximating �i as constant will only perturbate the derivative of
�2vi minimally and we get the approximation

@�2vi
@h

� 8�i(h
T
Rxixih)Rxixih: (A.24)

When substituted into @JF=@h = 0, these approximate expressions yield the approximate
optimal closed form solution given in Section 5.3.2.

1Generally, making the approximations in Equation (A.20) makes the estimate of rzizi(k; l) less accu-
rate. The approximations are, however, justi�ed by the useful results they give.
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A.4 Reformulation of the feature extraction model

For realistically sized �lters, the expression for �2vi , Equation (A.15), contains four large
summations. In Appendix A.4.1 an alternate and more compact expression for the feature
variance is developed. The development yields a technique for �nding an upper bound on
the Fisher criterion, detailed in Appendix A.4.2. In Appendix A.4.3, a discussion on the
application of this approach for one-dimensional optimal �lter design is given.

A.4.1 Alternate expressions for feature mean and variance

In the development of the feature variance estimator, Section A.2, it was assumed that

yi(m;n) = h(m;n) � xi(m;n); (A.25)

where � represents two-dimensional convolution. Furthermore

ryiyi(k; l) = E fyi(m;n)yi(m + k; n+ l)g

�
1X

m=�1

1X
n=�1

yi(m;n)yi(m+ k; n+ l)

= yi(k; l) � yi(�k;�l)
= h(k; l) � xi(k; l) � h(�k;�l) � x(�k;�l)
= (h (k; l) � h(�k;�l)) � (xi(k; l) � x(�k;�l))
= rhh(k; l) � rxixi(k; l);

(A.26)

known as the Wiener-Lee theorem [65, page 85]. As has been illustrated many times, it
is possible to write a 2D convolution as a vector multiplication. Consequently, the above
expression may be rewritten

ryiyi(k; l) = rhh
T
rxixi(k; l): (A.27)

Combining this with Equations (5.12) and (A.11), we get

�vi = ryiyi(0; 0) = rhh
T
rxixi(0; 0): (A.28)

Using Equation (A.10) we get

rzizi(k; l) = 2ryiyi
2(k; l)� 2�yi

4 + �vi
2

= 2
�
rhh

T
rxixi(k; l)

�2 � 2�yi
4 + �vi

2

= 2rhh
T
rxixi(k; l)rxixi

T (k; l)rhh � 2�yi
4 + �vi

2

= 2rhh
T
Rriri(k; l)rhh � 2�yi

4 + �vi
2:

(A.29)
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Hence, using Equation (A.17) and remembering that it is assumed that
P

w(k; l) = 1,
we get

�2vi =

Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)

Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)rzizi(k1 � k2; l1 � l2)� �vi
2

=

Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)

Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)2rhh
T
Rriri(k1 � k2; l1 � l2)rhh � 2�yi

4 + �vi
2 � �vi

2

= rhh
T

 
Mw�1X
k1=0

Nw�1X
l1=0

w(k1; l1)

Mw�1X
k2=0

Nw�1X
l2=0

w(k2; l2)2Rriri(k1 � k2; l1 � l2)

!
rhh � 2�yi

4:

(A.30)

The huge matrix summation in the expression above is purely input signal dependent.
Hence, if we denote the matrix sum by Axi, we may write

�2vi = rhh
T
Axirhh � 2�yi

4 (A.31)

and if we assume zero mean input, we get

�2vi = rhh
T
Axirhh: (A.32)

A.4.2 Upper bound on the Fisher criterion

The derivatives of the mean and the variance with respect to rhh are

@�vi
@rhh

= rxixi(0; 0) (A.33)

and

@�2vi
@rhh

= Axi
T
rhh +Axirhh = 2Axirhh; (A.34)

respectively. Then the derivative of the Fisher criterion becomes

@J(rhh)

@rhh
=

2 (�v1 � �v2)
�
@�v1
@rhh

� @�v2
@rhh

� �
�2v1 + �2v2

�
�
�2v1 + �2v2

�2 �
(�v1 � �v2)

2
�
@�2v1
@rhh

+
@�2v2
@rhh

�
�
�2v1 + �2v2

�2

=
2 (�v1 � �v2) (rx1x1(0; 0)� rx2x2(0; 0))

�
�2v1 + �2v2

�
�
�2v1 + �2v2

�2

� (�v1 � �v2)
2 (2Ax1rhh + 2Ax2rhh)�
�2v1 + �2v2

�2 :

(A.35)

Equating to zero yields

(rx1x1(0; 0)� rx2x2(0; 0))
�
�2v1 + �2v2

�
= (�v1 � �v2) (Ax1 +Ax2) rhh (A.36)
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and consequently the optimal rhh is

rhh =
�2v1 + �2v2
�v1 � �v2

(Ax1 +Ax2)
�1 (rx1x1(0; 0)� rx2x2(0; 0)) : (A.37)

The factor
�
�2v1 + �2v2

�
= (�v1 � �v2) is a scalar and multiplying rhh by a scalar is equivalent

to multiplying h(m;n) by a scalar. Since it may easily be shown that scalar multiplication
with h(m;n) do not change the Fisher criterion value, the scalar may be neglected in the
optimization.

Note that given a valid rhh, �nding the corresponding �lter h(m;n) is a question
of solving an equation set with the coe�cients of h(m;n) as the unknowns. However,
not every rhh corresponds to a �lter h(m;n). The computation of rhh, which for �lters of
quadratic size has almost four times the number of coe�cients of h(m;n), imposes complex
symmetry properties. These properties imply that only particular rhh's do correspond to
any �lter h(m;n).

Although an optimal �lter design approach using these derivations has not been found,
it must still be noted that the criterion value corresponding to rhh in Equation (A.37) is
the maximally attainable criterion value for any rhh. Hence it is an upper bound for the
Fisher criterion for any �lter h(m;n).

A.4.3 One-dimensional or separable optimal �lter design

In the case of a one-dimensional �lter h(m;n), i.e., a �lter where the spatial extent either
vertically or horizontally is one, the symmetry relation on rhh is much simpler. In this
case, an optimal rhh corresponding to to a �lter h(m;n) may be found. This may lead
to an optimal solution for one-dimensional �lters (applicable for one-dimensional textures
or as separable �lters for two-dimensional textures). However, this approach involves
the non-trivial problem of solving a large quadratic equation set. This problem is not
solved in this dissertation, but still the formulation is given for completeness and as an
introduction for further research.

For a real valued, one-dimensional �lter h(m); m = 0 � � �M�1, the correlation function
is de�ned to be

rhh(k) = E fh(m)h(m + k)g : (A.38)

Then it follows that rhh(k) = rhh(�k), hence rhh(k) is symmetric around zero. Since, in
the one-dimensional case, rhh is de�ned by

rhh = [rhh (�(M � 1)) � � � rhh(M � 1)]T ; (A.39)

it then follows that rhh is symmetric. If we de�ne

rhh
0 = [rhh (�(M � 1)) � � � rhh(0)]T ; (A.40)

we may rewrite the expressions for the mean and variance as

�vi = ryiyi(0; 0) = rhh
0T
rxixi

0(0; 0) (A.41)
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and

�2vi = rhh
0T
Axi

0
rhh; (A.42)

The transformations from rxixi(0; 0) to rxixi
0(0; 0) and from Axi to Axi

0 are trivial. Note
that we now have a vector rhh

0 with the same number of elements as there are coe�cients,
M , in the �lter we want to optimize.

Inserting the new expressions for the mean and variance into the Fisher criterion
expression, di�erentiating with respect to rhh

0 and equating to zero, yields

rhh
0 =

�2v1 + �2v2
�v1 � �v2

(Ax1
0 +Ax2

0)
�1

(rx1x1
0(0; 0)� rx2x2 0(0; 0)) : (A.43)

This, as we see, is on the same form as the previous solution, Equation (A.37). We now
have a scheme for optimization of one-dimensional texture �lters according to the Fisher
criterion. The only assumptions made in this solution are that the �lter response, y,
is Gaussian and that the input textures are wide sense stationary. The issue of �nding
h(m;n) from rhh

0 still remains to be solved, a problem involving the solution of the large
quadratic equation set given by rhh(k; l) = h(k; l) � h(�k;�l).
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