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Creating Representations for Continuously
Moving Regions from Observations

Erlend Tøssebro1 and Ralf Hartmut Güting2

Abstract

Recently there is much interest in moving objects databases, and data models and query lan-
guages have been proposed offering data types such asmoving pointand moving region
together with suitable operations. In contrast to most earlier work on spatio-temporal data-
bases, a moving region can change its shape and extent not only in discrete steps, but contin-
uously. Examples of such moving regions are oil spills, forest fires, hurricanes, schools of
fish, spreads of diseases, or armies, to name but a few.

Whereas the database will contain a “temporally complete” representation of a moving
region in the sense that for any instant of time the current extent and shape can be retrieved,
the original information about the object moving around in the real world will most likely be
a series of observations (“snapshots”). We consider the problem of constructing the com-
plete moving region representation from a series of snapshots. We assume a model where a
region is represented as a set of polygons with polygonal holes. A moving region is repre-
sented as a set ofsliceswith disjoint time intervals, such that within each slice it is a region
whose vertices move linearly with time. Snapshots are also given as sets of polygons with
polygonal holes. We develop algorithms to interpolate between two snapshots, going from
simple convex polygons to arbitrary polygons. The implementation is available on the Web.

1 Introduction

Databases have for some time been used to store information on objects which have positions or extents i

There are also many applications of databases which store information about how such objects change ov

Spatial objects that move or change their shape over time are often referred to as moving objects. In [BGE

abstract model for representing moving objects in databases is described. In an abstract model, geometric

are modeled as point sets. For continuous objects like lines or regions, these point sets are infinite. This me

these models are conceptually simple, but cannot be directly implemented. A discrete model, on the othe

can be implemented but is somewhat more complex. A discrete model for spatio-temporal objects, which

on the abstract model in [BGE+00], is described in [FGNS00].

Early research on spatio-temporal databases concentrated on modeling discrete changes to the databas

ples of such models can be found in [W94], [CG94], and [PD95]. More recent research also address

dynamic aspect, that is, that objects may change continuously without explicit updates. One example of

model is presented in [SWCD97]. However, this model covers only the current and expected near future

objects, and not the histories of the objects, and it also does not deal with moving regions. Constraint da

can also be used to describe such dynamic spatio-temporal databases. One study of constraint databas

explicitly addresses spatio-temporal issues is [CR97]. [CR99] contains a framework in which all spatio-tem

objects are described as collections ofatomic geometric objects. Each of these objects is given as a spatial obje

and a function describing the development of this object over time. For the continuous functions, affine ma

(allowing translation, rotation and scaling) and subclasses of these are considered. However, to the a
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knowledge, [BGE+00] and [FGNS00] describe the only comprehensive model describing spatio-tempora

types and operations.

The model in [FGNS00] describes a way to represent continuously moving, amorphous objects in a data

such a manner that it is possible to produce a “snapshot” of the object at any time within the time interval in

it exists. However, most data about moving objects will come in the form of snapshots taken at specific

This paper addresses the problem of creating this type of representation from a series of snapshots of a

amorphous region. Important types of such regions in the real world would be oil spills, forest fires, fish sc

and forests. (Forests change continuously because of deforestation, climatic changes, etc.).

This problem is similar to the problem of interpolating or blending shapes, which has been studied in the

puter graphics community, because both problems involve creating plausible in-between shapes at a

between the two states given. One example of such a shape interpolation algorithm is given in [SG92]. Thi

rithm was created to solve the problem of creating a smooth blending between two figures in an animated

A comparison between the algorithm given in [SG92] and our algorithm is given in Section 8.

A problem which occurs when the moving region consists of several disjoint parts is to discover which part

first snapshot corresponds to which part in the second snapshot. Because the region parts may have chan

their positions and shape, it may not be obvious to a computer which of them to match. One region part m

have split into two between the two snapshots.

In Section 2 the representation of regions and moving regions from [FGNS00] is described. Section 3 then

duces the basic algorithm for building this representation for convex regions. In Section 4, a way of represe

non-convex area as a tree of convex areas with convex concavities is described. This structure is later

apply the technique described in Section 3 for non-convex regions. Section 5 describes strategies for disc

which regions, or components of regions, in one snapshot correspond to which regions in the other snapsh

is important both for creating representations for multi-component regions and for matching parts of the tre

resentation of Section 4 correctly. Section 6 describes the algorithm for interpolating between arbitrary pol

an important subproblem is the matching of concavities between snapshots. In Section 7, the quality of the

for different types of regions is discussed. Section 8 is a comparison between our work and [SG92], and Se

contains the conclusions to this paper.

2 Representing Regions and Moving Regions

In this section we review the structure and representation of static and moving regions defined in [FGNS00

this representation needs to be created by our algorithms. We start by considering a (static) region, as a

region needs to be consistent with it. Indeed, a moving region, evaluated at any instant of time, yields a re

A regionmay consist of several disjoint parts calledfaces, each of which may have 0 or more holes. At the di

crete level, the boundaries of faces as well as holes are described by polygons. Hence a region looks as s

Figure 1.

This structure is defined in terms ofsegments, cycles, andfaces. We sketch the structure of the formal definition

in [FGNS00]; more details can be found there.

Seg = {(u, v) | u, v ∈ Point, u < v}

A segment is just a line segment connecting two points which need to be distinct.

Cycle = { | ...}S Seg⊂
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A cycle is a set of line segments forming a closed loop which does not intersect itself, hence it correspon

simple polygon.

Face = {(c, H) | , , such that...}

A faceconsists of a cyclec defining its outer boundary, and a set of cyclesH defining holes. These holes must b

inside the outer cycle, and must be pairwise disjoint.H may be empty.

Region = { | }

A region is a set of disjoint1 faces.

A moving regionis described - like the other “moving” data types in [FGNS00] - in the so-calledsliced represen-

tation. The basic idea is to decompose the temporal development of a value into fragments calledslicessuch that

within a slice this development can be described by some kind of “simple” function. This is illustrated in Figu

Hence each slice corresponds to a time interval; the time intervals of distinct slices are disjoint. For a m

region, the “simple function” within a single slice is basically a region (as defined above) whose vertices

linearly in such a way that at any instant of time within the slice a correct region is formed. Such a slice is s

in Figure 3.

Figure 1: A region

1. Edge-disjoint means that two faces may have common vertices, but must otherwise be disjoint (i.e., they may n
edges).

Figure 2: Sliced representation
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The structure represented within a single slice of a moving region is called aregion unit. This structure is defined

bottom-up in terms ofmoving points, moving segments, moving cycles, andmoving facesanalogously to the defi-

nition of a region. Again we sketch the formal definitions from [FGNS00].

MPoint = {(x1, x1, y0, y1) | }.

A moving point is given by four real coordinates. The semantics of this four-tuple, that is, the function for re

ing the position of the moving point at any point in time is

In the three-dimensional (x, y, t)-space, a moving point forms a straight line.

A moving segment is defined by:

A moving segment consists of two moving points which are coplanar, i.e., lie in the same plane in the (x, y, t)-

space. Hence in 3D a moving segment is a trapezium (Figure 4a). The segment may degenerate at one e

time interval into a point, hence we may have a triangle in the 3D space. This means that a moving segme

not rotate as time passes. One can create a (rough) representation for a line segment which rotates by cre

moving segments, each of which is the line segment in one snapshot and becomes a point in the other (Fig

Figure 3: A slice of a moving region representation

Figure 4: (a) A moving segment. (b) Two moving segments representing a rotating line segment.

x

t

y

x0 x1 y0 y1, , , real∈

p t( ) x0 x1 t⋅+ y0 y1 t⋅+,( )=

MSeg s e,( ) s e MPoint, s e coplanar s e,( ),≠∈,{ }=

t

x

y

t
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y

(a) (b)

MCycle s0 ..., sn 1–,( ) n 3 si MSeg∈,≥{ }=
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An MCycleis the moving version of theCycle. It contains a set of moving line segments. None of these may in

sect in the interior of the time interval in which theMCycle is valid. TheMCyclemust yield a validCycle in all

instants in the interior of the time interval.

This is a moving version of theFace. TheMFacemust yield a validFacein all time instants in the interior of the

time interval.

A region unit consists of a time interval and a set of moving faces such that evaluation at any instant of time

interior of the time interval yields a valid region value.

3 The Easy Case: Interpolating Between Two Convex Polygons

The problem is now to compute from a list of region snapshots a moving region representation. This redu

the problem of computing a region unit from two successive snapshots.

In this section we first consider the most simple case of the problem which occurs if each of the two snaps

a single convex polygon without holes. In this case one can apply an algorithm that we call the “rotating p

algorithm. It can be described as follows. Input are two convex cycles at different instants of time.

To create one moving segment, start with a segments in one of the polygons and create a plane perpendicula

the time axis through it. Then rotate that plane around segments until it hits a segment or a point from the othe

polygon1. If in the other polygon there exists a segments’ which is parallel tos, then the plane will hit this seg-

ment, and the algorithm will create a proper trapezium-shaped moving segment betweens ands’. If there is no

parallel segment, then the plane will hit a pointp. Then a degenerate moving segment will be created which st

out as the original segments and ends as pointp, thus forming a triangle in space-time.

This algorithm can be implemented in a computer in the following fashion: Take the segments in both pol

and sort them according to their angle with respect to thex-axis (for instance). Then go through the two lists i

parallel, starting with the segment with the smallest angle in either list. For a given segment check the ne

ment in the other list. If the angle of this segment is equal to the angle of the chosen segment, create a prop

ing segment connecting the two and mark both segments as done. If the angle is different, take the first poin

other segment, use it as the second “segment”, and mark only the chosen segment as done. After the mov

ment is formed, take the unmarked segment from either list with lowest angle as the next segment.

An example of the matchings generated by this algorithm is given in Figure 5. Because the angle of segmc is

greater than the angle of segmenta, and less than the angle ofb, the segmentc is matched to the point between

segmentsa andb.

We now give a more formal description of this algorithm (Figure 6). The representation of a line segment (Seg) is

extended to contain an angle as well as the two end points. Also a functionmake_moving_point(Figure 7) is used

to create a moving point from two static points.

Computing the angles between all segments and thex-axis takes O(n) time, wheren is the total number of seg-

ments. Finding the segments with the lowest angle can also be done in O(n) time. Assuming the segments in th

two snapshots are already ordered so that adjacent segments are also neighbours in the list, finding the n

1. It should be rotated in such a direction that the part which moves towards the other object hits the other objec
same side as the segment is on the first object.

MFace c H,( ) c MCycle H MCycle⊂,∈{ }=

URegion i F,( ) i Interval F MFace such that ...⊂,∈{ }=
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Figure 5: Example of matching created by the rotating plane algorithm

algorithm rotating_plane(s1, s2, t1, t2)
input: Two convexcycles, s1 ands2, which represent snapshots of the moving cycle at the distinct times

t1 andt2, respectively.
output:  An mcycle which yields the twocycles at the given times.
method:

let s1 = {s1, 1, ...,s1, n}; let s2 = {s2, 1, ...,s2, m};
let um be a list ofSegs; um := ;
for eachsi, j do

compute the angle betweensi, j and thex-axis, and store it insi, j.angle;
um:=

end for;
MCycle r := ;
while ( ) do

l1 := thesi, j with the lowest angle, ;
l2 := thesk, l, , with the lowest angle, ;
if no suchl2 existsthen

l2 := thesk, l, , with the lowest angle
end if;
if  ( ) then

let l1 = (a, b); let l2 = (c, d)
elselet l1 = (c, d); let l2 = (a, b)
end if;
let mp1 andmp2 beMPoints;
if (angle ofl2) = (angle ofl1) then

mp1 := make_moving_point(a, c, t1, t2);
mp2 := make_moving_point(b, d, t1, t2);
um:= um\ { l1, l2}

else
mp1 := make_moving_point(a, c, t1, t2);
mp2 := make_moving_point(b, c, t1, t2);
um:= um\ { l1}

end if;
MSeg ms := (mp1, mp2);
r :=

end while;
return r

end rotating_plane

Figure 6: Algorithmrotating_plane
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ment with the lowest angle can be done in constant time (test the next segments in both snapshots and

smaller one). Adding a new moving segment to the resultr can also be done in constant time. Because both of

last two operations must be performed once for every segment, the total time for them is O(n). Therefore, this

algorithm takes O(n) time. Note that in the implementation the removal fromumand checking for membership in

um is done by modifying or checking a variable associated with each line segment rather than by phy

removing or checking in a set. This also applies to the other algorithms below which use a set of unm

objects.

If the segments are unsorted or sorted by a different criterion than ordering along the border of the cycle,

them by angle takes O( ) time, and hence the running time of the algorithm will grow to O(

Theorem 1: Given two convex cyclesc1 andc2 at timest1 andt2, algorithmrotating_planecomputes a region

unit connecting these two cycles. If the two cycles consist of a total ofn segments and the cycles are represent

in (e.g. clockwise) order, then the algorithm requires O(n) time. If the two argument cycles are not given in orde

then O( ) time is required.

A problem with this interpolation method is that it is poor in handling rotation. If a long, thin object rotate

degrees between snapshots, the interpolation in the middle between them will be more or less quadratic,

probably have a much larger area than the object has in either snapshot. For this reason, one must ensur

snapshots are so close to each other in time that only a small amount of rotation has happened between 

So far we can handle a single convex polygon in both snapshots, the most simple case. Two major pr

remain:

1. Treating concavities.

2. Treating regions with more than one face. Here the problem is to match faces from the first snapsh

rectly with faces from the second snapshot. Another version of this problem is one face with several

One face with one hole can be treated by interpolating separately between the outer cycles from t

snapshots and the two hole cycles and then subtracting the “moving hole” from the “moving outer c

But if there are several holes, the algorithm must discover which holes correspond.

These problems are addressed next.

4 Representing Non-Convex Polygons by Nested Convex Polygons

We now focus on treating a region which still consists of a single face without holes, i.e., a single cycle, but

needs not be convex any more. The basic idea is to reduce this problem to the previous one by viewing a n

vex polygon as being composed recursively from convex components.

function make_moving_point(a, b, t0, t1)
input : Two points,a andb, and two distinct timest0 andt1.
output: A moving point which is ata at timet0 and atb at timet1.
method:

dx := (b.x - a.x) / (t1 - t0);
dy := (b.y - a.y) / (t1 - t0);
mp := (a.x - , dx, a.y - , dy);
return (mp)

endmake_moving_point

Figure 7: Functionmake_moving_point

dx t0⋅ dy t0⋅

n n( )log⋅ n n( )log⋅

n n( )log⋅
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This section first describes a representation in which a general cycle is stored as nested convex polygons.

ond subsection describes an algorithm for generating this representation from aCycle.

4.1 The Convex Hull Tree

This is a way to store arbitrarily shaped regions by storing convex regions with convex holes. These c

regions and convex holes may then be treated independently by the rotating plane algorithm, allowing it to

for objects with concavities as well.

In an abstract view of the convex hull tree, each nodep represents a convex cyclec without holes. Each descen

dantd of p represents a hole to be cut out fromc to form the cycle represented by the subtree rooted ind. This

general method may be used both for storing real holes and for storing concavities in the object. A concav

simply be represented by a hole which includes a part of the boundary of the cycle. See Figure 8.

In the implementation of the convex hull tree, a cycle is stored in the following manner: Each node contain

of line segments representing the convex hull of the cycle. For each of the segments in this representatio

were added to make the cycle convex, a link to a child node is stored. This child contains the convex hull

area which should be extracted to get the real cycle. If the extracted area contains concavities itself, then t

will have children of it’s own with extracted areas.

An example of a cycle with several concavities and a convex hull tree representation of this cycle is sho

Figure 9. In this figure, the cycle itself is represented by the thick lines. The segments of medium thicknes

added to make it convex. The other segments were added to make nodes further down in the tree represen

areas. The top node of the tree representation to the right in the figure contains the segments of the conv

The line style is the same in the nodes as in the drawing of the region.

This structure as it is described here cannot store holes, because a hole is not connected to a segment in t

node. However, one could permit the root1 node to have links to subnodes which are not connected to any par

lar segment. These would then represent holes.

4.2 Computing a Convex Hull Tree from a Polygon

To build a convex hull tree for an arbitrarily shaped polygon, use the following steps:

1. Start at the root node and the entire polygon.

Figure 8: A convex hull tree

1. This should not be permitted for nodes other than the root. If the hole is in the object itself, it should be linked
root. If the hole is in a concavity, then the object is no longer a single region, but several disjoint regions.
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given

cause
2. Create the convex hull of the polygon.

3. Store a segment list representation of the convex hull into the node.

4. For each of the segments which were added to make the polygon convex, create a new node.

5. For each of these holes with new nodes, go to step 2.

The algorithm for building a convex hull tree (Figure 10) uses two new types,CHTNodeandCHTLineSeg. CHT-

LineSegis a line segment (Seg) which in addition to the two end points may store a link to a childCHTNode. The

CHTNodetype is the same as theCycletype, with the exception that it storesCHTLineSegsinstead of normal line

segments.

Our implementation uses the Graham scan from [G72] to compute the convex hull in O( ) time for a

polygon withn vertices. This must be performed once for the whole object and once for each concavity. Be

Figure 9: A region with concavities and its convex hull tree representation.

algorithm build_convex_hull_tree(polygon)
input: A Cycle polygon.
output: A CHTNode which is the root of the convex hull tree forpolygon.
method:

CHTNode cl := ;
Cycle ch := the convex hull ofpolygon; let ch = {cs1, ...,csn};
for each  do

if ( ) (that is, it was added to make the polygon convex)then
cp := csi and the segments inpolygon which were replaced bycsi;
cch := build_convex_hull_tree(cp)

else
cch:= ⊥

end if;
cl := cl ∪ {( csi.u, csi.v, cch)}

end for;
return cl

endbuild_convex_hull_tree

Figure 10: Algorithmbuild_convex_hull_tree
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the number of vertices in all the concavities at each level of the tree is less than or equal ton, the total time for

computing convex hulls is bounded by O( ), whered is the depth of the convex hull tree.

The line segments in the convex hull will be returned in counterclockwise order by the procedure for comp

the convex hull. If the line segments in the given polygon are also ordered in this way, discovering which

ments from the convex hull are not in the original region and discovering which segments they have replac

be done in linear time by going through both lists in parallel, and testing for equality. When the two segmen

not equal, go through the list from the original polygon and put segments into a separate listL until a segment

with end point equal to the end point of the segment from the convex hull is found. ListL will then contain the

segments which were replaced by the segment in the convex hull. The only problem with this algorithm is fi

where in the two lists to start, because the starting segment must be in both sets. This can be done by

which segments are in the convex hull and which are not during the construction of the convex hull, and the

ing the lines in the region beginning with the first until one is found which is on the convex hull. This takesn)

time. Finding which element of the hull is equal to this segment can then also be done in O(n) time. Marking

whether the segments are in the convex hull or not does not change the asymptotic running time of the G

scan. Because this linear running time is less than the time taken by the Graham scan, the running time

entire algorithm is equal to the running time of the Graham scan.

Theorem 2: For a given polygon with n vertices, the convex hull tree can be built in O( ) time, whed

is the depth of the resulting tree.

To recreate the polygon which is represented by a convex hull tree, start with the root node and do the fol

• For each segment in the node which does not have a child, return that segment.

• For each segment in the node which has a child, go to that subnode and use this procedure on tha

5 Matching Corresponding Components

We now address the problem of matching components in one snapshot with components of the other which

in three flavors:

• Given observations of a moving region consisting of several faces, which faces in the older snapsho

spond to which faces in the newer one?

• Given a moving face with several holes, which holes in the old snapshot correspond to which holes

new?

• Given a moving face (cycle) with concavities and two snapshots of it, which concavities in the old and

snapshots correspond to each other?

Figure 11 illustrates the problem. It becomes aggravated by the fact that components may split or merge b

snapshots.

In all three cases we need to find matching pairs of cycles (i.e., simple polygons). From now on we assum

two sets of cyclesC andD are the given input for this problem.

5.1 Requirements for Matching

Before discussing strategies for matching, we should understand the quality criteria for such strategies.

1. It seems obvious that matching should work correctly for any component that has not moved at all.

2. Components that have moved a small distance relative to their size should be matched correctly.

dn nlog⋅

dn nlog⋅
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3. It should be possible to match components that have had minor changes to their shape and size.

4. A matching algorithm should discover that a component has been split into fragments or merged

them.

5. A matching strategy should offer criteria to judge the quality of observations. In other words, it sh

allow one to decide whether two successive snapshots are close enough in time, or too far apart.

Generally, it seems reasonable to require that a matching strategy is guaranteed to produce correct matc

the components of a moving region if the frequency of observations is increased. This can be formulate

more precisely as follows:

Definition 3: Let mr be a moving region with several components, and letS1 andS2 be two observations of it at

timest and . A matching strategy is calledsafe, if it is guaranteed to produce a correct matching of the co

ponents ofmr if . In other words, there exists an  such that the matching is correct for all

5.2 Strategies for Matching

Strategies for matching include the following:

1. Position of centroid. For each cycle, compute its centroid (center of gravity). This transforms each s

cycles into a set of points. A closest pair in the point setsC’ and D’ is a pair of points (p, q) such thatq is

the point inD’ closest top andp is the point inC’ closest toq. For each closest pair, match the correspon

ing cycles.

2. Overlap. For each pair of cyclesc in C andd in D compute their intersection areau and take the relative

overlap, that is,overlap(c, d) = size(u)/size(d) andoverlap(d, c) = size(u)/size(c). Theoverlaprelationship

can be represented as a weighted directed graph (i.e. ifoverlap(c, d) = k, for k > 0, then there is an edge

from c to d of weightk). Then there are several options:

a. Fixed threshold. Introduce a thresholdt (e.g.t = 60%). Two cyclesc andd match ifoverlap(c, d) >

t andoverlap(d, c) > t .

b. Maximize overlap. For all cycles (nodes) order their outgoing edges by weight. For a nodec let

succ1(c), ..., succn(c) be its ordered list of successors. Matchc with d if d = succ1(c) and c =

succ1(d).

So far we have considered the matching of single cycles. However, the overlap graph allows us to recogn

natural way transitions where cycles split or merge. See Figure 12. Herec splits intod, e, andf (or is a merge ofd,

e, andf). This can be deduced from the fact that for each of the three fragments the overlap withc is large (above

Figure 11: Matching components of moving region observations: (a) faces, (b) holes, (c) concavities
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50 %, say) whereas forc the overlap with eitherd, e, or f is relatively small, but thesumof their overlaps is large.

This leads to strategies for matching a cycle with a set of cycles:

c. Fixed threshold, set of cycles. As in (a), introduce a thresholdt (e.g.t = 60%). Matchc with {

| overlap(c, d) > t} ∪ {  | overlap(d, c) > t}.

d. Maximize overlap, set of cycles.Order outgoing edges by weight as in (b). Matchc with { succ1(c)}

∪ {  | c = succ1(d)}.

What is a good strategy in the light of the requirements of Section 5.1? Using the centroids, although sim

not a safe strategy. This is because centroids may lie outside their cycles so that centroids even of disjoin

may coincide. This can lead to entirely wrong matchings. The overlap techniques are safe because o

approach 100% for region observations when . Of course, snapshots have to be close enough to

reasonable results.

In the remainder of this paper, we will restrict attention to considering a single cycle with concavities, repres

in a convex hull tree. The full paper [TG01] covers the general case with multiple faces and holes. Howev

techniques for matching components are already needed in the restricted case for matching concavities

snapshots of a single cycle. Also, we need to treat transitions such as the splitting/merging of concavities

5.3 Matching Two Convex Hull Trees

To support the matching of concavities, we compute for two given convex hull trees an overlap graph. Its

are the nodes of the convex hull trees; to store the edges, the data structure for nodes is extended to store

of pointers to other nodes; each pointer has an associated weight indicating the overlap.

type OverlapEdge = { (node, weight) | node∈ CHTNode, weight∈ real}

CHTNodesubtype CHTNodeWO = { (..., O) | O⊂ OverlapEdge}

In the description of algorithmcompute_overlap_graph(Figure 13) we assume that the two argument convex h

trees have been constructed using nodes of typeCHTNodeWO(“convex hull tree node with overlap”) and that in

each node the setO of overlap edges has been initialized to the empty set. This is a trivial modification of a

rithm build_convex_hull_tree.

The algorithm traverses the tree, computing the overlap for pairs of nodes of different trees at the sam

whose parents overlap. If the two nodes overlap at a percentage higher thancriterion, then the nodes are linked.

The intersection of two convex polygons withl andm edges can be computed in time O(l + m) (see e.g. [PS85,

Theorem 7.3]). If the two polygons represented in the convex hull trees have a total ofn edges, then the running

time for compute_overlap_graphcan be bounded by O(d ⋅ f2 ⋅ n), whered is the depth of the tree andf the maxi-

Figure 12:  Cyclec splits into three cyclesd, e, andf.
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mal fanout, since on each level of the tree there are less thann edges and overlap computation is called for ea

combination off sons of a node. – Our implementation described in Section 7 uses a function for computin

intersection of two polygons that comes withjava 1.2(java.awt.area) and the authors do not know what algorithm

is used there.

6 Interpolating Between Two Arbitrary Polygons

We are now ready to address the problem of interpolating between two general, possibly non-convex po

We assume these polygons are represented by convex hull trees for which the overlap graph has been co

The basic idea is, of course, to use therotating_planealgorithm from Section 3 on each matching pair of nodes

the two convex hull trees. Let us consider what can happen for a concavity from one snapshot to the next

algorithm compute_overlap_graph(cht1, cht2, criterion)
input: Two convex hull treescht1 and cht2 with nodes of typeCHTNodeWOand the real number

criterion, which controls how much two convex hull tree nodes must overlap to be considered a
match.

output: cht1 andcht2 are updated to contain overlap edges for matching pairs of nodes.
method:

overlap := intersection(cht1, cht2); //intersection of convex polygons in the roots
overlap1 := (area(overlap)/area(cht1))*100;
overlap2 := (area(overlap)/area(cht2))*100;
if (overlap1 > criterion) and (overlap2 > criterion) then

OverlapEdge oe1 := (cht2, overlap1);
OverlapEdge oe2 := (cht1, overlap2);
cht1.O := cht1.O ∪ {oe1}; cht2.O := cht2.O ∪ {oe2};
for each sons1 of cht1 do

for each sons2 of cht2 do
compute_overlap_graph(s1, s2, criterion)

end for
end for

end if
endcompute_overlap_graph

Figure 13: Algorithmcompute_overlap_graph

Figure 14: Transitions for cancavities: (a) unmatched concavity, (b) two matching single concavities
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The first case (see Figure 14 (a)) is that the concavity doesn’t find a “matching” partner in the other polyg

this case we consider the trapeziumt involving its parent edgepe which is most likely a triangle (drawn fat in

Figure 14). All the edges of the concavity are connected by triangles with the pointp in the other polygon in

which trianglet ends.1 So the concavity appears to spring fromp or to disappear intop depending on which snap-

shot is first in time.

Technically, trapeziums are first constructed for the two convex outer polygons, which includes the creatiot.

Then, trapeziums (triangles) are constructed for the concavity, including its parent edge, so thatt is created once

more. Then the union is formed of the first set and the second set of trapeziums,subtracting their intersection.

This leads to the complete removal of trapeziumt.

The second case (Figure 14 (b)) is that there is a single matching partner for the given concavity in the othe

gon. Then trapeziums are constructed recursively for the two concavities. Again, this also yields the trap

involving the parent edges of the two concavities so that these can be removed from the result when form

union with the trapeziums from the next higher level.

The third, most involved case occurs if the concavity matches more than one concavity in the other po

(Figure 15).

In this case, before the interpolation is performed, the setC of concavities matching the one concavity is firs

joined into a single convex polygon. This is done as a transformation on the convex hull tree, which is illus

in Figure 16.

The algorithm for performing the transformation shown in Figure 16 is calledjoin_concavities(Figure 17). It uses

a functionrecreate_polygon(Figure 18) implementing the strategy for reconstructing a polygon from a con

hull tree sketched at the end of Section 4. Some of the notations used injoin_concavities are shown in Figure 16.

Finally, the overall algorithm for interpolating between two polygons is given in Figure 19, Figure 20,

Figure 21. The strategy for matching concavities is actually a mixture of strategies 2c and 2d: The overlap g

constructed applying a fixed threshold (criterion). But then a concavityc is matched to all concavities connecte

by an overlap edge for which it is the maximally overlapping concavity.

The analysis of the complexity of this algorithm is a bit more involved and for lack of space omitted here. I

full paper [TG01] an upper bound of O(d2 n log n) is derived, whered is a bound on the depth of the convex hu

trees andn the total number of edges of both polygons.

1. If t is indeed a trapezium which happens if there is a segments parallel tope in the other polygon, then one of the end

points ofs is selected arbitrarily to play the role ofp.

Figure 15: Transitions for concavities: one concavity matches several concavities
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Figure 16:  Rebuilding the convex hull tree to join concavities

algorithm join_concavities(chts, chtp, bl)
input: A set of convex hull tree nodes with overlap graph,chts, which represents the concavities to be

joined, the convex hull tree node with overlap graphchtp, which is the parent node of the nodes in
chts, and a set of lines,bl, which represents the lines between the concavities.

output:  A single convex hull tree node which is the union of the others.
method:

let chtu be an empty set of line segments;
for each  do

chtu := chtu∪ recreate_polygon(cht)
end for;
let dset be an empty set of line segments;
dset:= dset∪ bl;
for each  do

if l ∈ chtp.Sdo
chtu := chtu \ { l};
chtp.S := chtp.S \ { l};
dset := dset∪ bl;

end if
end for;
let cl be the line segment that needs to be added todset to make it a cycle;a

chtu:= chtu∪ bl;
chtu:= chtu∪ { cl};
let res be the cycle formed by the line segments inchtu;b

resch = build_convex_hull_tree(res)
let rlp be aCHTLineSeg containing the line segmentcl and a reference to theCHTNodeWO resch;
chtp.S := chtp.S∪ { rlp};
return resch

end join_concavities

Figure 17: Algorithmjoin_concavities

a. dsetnow contains all the line segments in the parent that point to the cycles that should be joined. It also contai
lines between them. Because the lines in the parent form a convex polygon, adding only a single line makes this
tion of line segments a cycle.

b. Note that the line segments inchtuare not necessarily a cycle, because the linecl may cross some of the other lines. The
implementation contains code that handles this particular case in all functions that normally take cycles as inpu
implementation always ignores the line which a node has in common with the parent.

(a) (b) (c) (d)
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7 Experimental Results

All algorithms described in this paper have been implemented in Java. The implementation is available

Web athttp://www.idi.ntnu.no/~tossebro/mcinterpolator/interpolator.html . There

is an applet that allows one to interactively enter two snapshots and then see the interpolation, then a ver

download that creates from two snapshots a VRML file which can be studied through a VRML viewer. The

mented source code is also available.

The experimental results described next have been derived from this implementation. Matching multiple r

and joining separate regions (discussed in the full paper [TG01]) have not been implemented yet. The curre

gram also has no support for holes which are not concavities. The implementation works for all regions

remain in one piece and do not move much relative to one another. (The more movement or rotation there

lower the quality of the resulting triangle representation will be.) The representation created by the algorith

passed to the extensible database graphical user interface created by Miguel Rodríguez Luaces, which u

create interpolated values between the two snapshots. All the interpolations shown in this document were

by this program.

An extension which handles multiple regions, regions with holes and regions which split and merge is plan

be built on top of the existing program.

algorithm recreate_polygon(cht)
input : A convex hull tree, possibly with overlap graph,cht.
output: The cycle represented bycht.
method:

let res be an empty set of line segments;
for each ls ∈ cht.Sdo

if  (ls contains link to child node)then
res := res∪ recreate_polygon(ls.child)

else
res := res∪ { ls}

end if
end for;
return res

end recreate_polygon

Figure 18: Algorithmrecreate_polygon

algorithm create_moving_cycle(poly1, poly2, t1, t2, criterion)
input: Two polygons,poly1 andpoly2 represented asCycles, two times,t1 andt2, representing the times

whenpoly1 andpoly2 are valid, and acriterion specifying how much overlap is required to consider
two objects to match.

output: An MCycle resulting from the interpolation of the two polygons.
method:

cht1 := build_convex_hull_tree(poly1);
cht2 := build_convex_hull_tree(poly2);
compute_overlap_graph(cht1, cht2, criterion);
return trapezium_rep_builder(cht1, cht2, t1, t2)

endcreate_moving_cycle

Figure 19: Algorithmcreate_moving_cycle
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For the artificial test cases which were used to test the program for bugs, the results have in most cases

fairly good, such as in Figure 22. However, the algorithm is very sensitive to overlap, and the smaller conc

may be erroneously matched to points if they have moved a large distance relative to the size of the con

This problem may be reduced by reducing the threshold overlap, that is, how much should two concavitie

lap to be considered to match. The danger of reducing this criterion is that concavities might be matched

ously if they overlap by a small percentage (The program always matches the object to the first obj

combination of objects which match by more than the criterion). The overlap percentage was lowered s

times during testing. The first tests were conducted with an 80% overlap requirement, while the last tests

algorithm trapezium_rep_builder(cht1, cht2, t1, t2)
input: Two convex hull trees with overlap graph represented by their roots,cht1 and cht2, and two

times,t1 andt2, when the polygons represented bycht1 andcht2 are valid.
output:  An Mcycle resulting from the interpolation of the two polygons.
method:

children1 := the children ofcht1; children2 := the children ofcht2;
MCycle mc := rotating_plane(cht1, cht2, t1, t2); // convex hull tree node is a subtype ofcycle.
um := children1 ∪ children2; // “unmatched children”

// Step 1: Find partners incht2 for children inchildren1
for eachchild ∈ children1 do

ol := the list of concavities that overlapchild (according to the overlap graph);
// restrictol to concavities for whichchild is the maximally overlapping one
for eachc ∈ ol do

col := the list of concavities that overlapc;
if not (child is the element ofcol with greatest overlap)then ol := ol \ {c} end if

end for;
if ol ≠ ∅ then

lsbc := {the line segments that lie between the concavities inol};
concavity := join_concavities(ol, cht2, lsbc);
cr := trapezium_rep_builder(child, concavity, t1, t2)
mc := (mc∪ cr) \ (mc∩ cr);
um := um\ { child}; um := um \ ol;

end if
end for;

// Step 2: Find partners incht1 for yet unmatched children inchildren2
for eachchild ∈ (children2 ∩ um) do

ol := the list of concavities that overlapchild (according to the overlap graph);
for eachc ∈ ol do

col := the list of concavities that overlapc;
if not (child is the element ofcol with greatest overlap)then ol := ol \ {c} end if

end for;
if ol ≠ ∅ then

lsbc := {the line segments that lie between the concavities inol};
concavity := join_concavities(ol, cht1, lsbc);
cr := trapezium_rep_builder(child, concavity, t1, t2);
mc := (mc∪ cr) \ (mc∩ cr);
um := um\ { child}; um := um \ ol;

end if
end for;

Figure 20: Algorithmtrapezium_rep_builder, Part 1
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requirement of 10%. 5% may be even better in some cases, but with such a small overlap criterion, there is

ger of matching the concavities wrongly due to small overlaps with other concavities. Note that this prob

more likely to occur for high snapshot distances. With a very small snapshot distance, the concavities have

little, and overlaps between “non-matching” concavities will be unlikely. With a greater snapshot distance,

overlaps may be significant. Figure 23 shows two interpolations, one with a criterion of 40% and one with a

rion of 10%. The one with 10% clearly looks better than the one with 40%, especially the right part o

figure.

Another problem which has occurred in a few cases is that the convex hull trees have become slightly differ

very similar regions, causing some strange behavior by the matching algorithm. A specific example of

shown in Figure 24, where changing the position of a single point causes a line which previously belonged

convex hull of the region to instead belong to the concavity. In this particular example, concavitya will be

matched to pointb. When the larger concavities are first matched, the thin line in concavitya will be matched to

point b by the rotating plane algorithm. When concavitya is then added, and no matches are found for it, all t

lines in it will be matched to pointb. This interpolation artifact is clearly seen in the interpolations shown in

right part of Figure 24, where the interpolation has two “teeth” instead of the single ending in the two snap

To get a good-looking result, the two lines from the real region in concavitya would have to be matched to the

// Step 3: Connect still unmatched children with points (Figure 14 (a))
for eachchild ∈ ((children1 ∪ children2) ∩ um) do

li  := the line in the parent containing the pointer tochild;
ml := the moving line segment inmc which containsli ;
cp := one of the points inml but not inli ;
for each line segmentl in recreate_polygon(child) do

ms := a moving line segment connectingl as andcp (a triangle);
mc := mc∪ {ms}

end for;
changeml such that it no longer containsli, but only one end point fromli.  If
this turns it into a moving point, remove it entirely

end for;
return mc

end trapezium_rep_builder

Figure 21: Algorithmtrapezium_rep_builder, Part 2

Figure 22: Interpolation of regular object

First snapshot Second snapshot Interpolated value
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two linesc andd in the other snapshot. The program does not discover this matching because of the differen

tions of these two lines in the convex hull tree.

However, this problem is most often caused by using objects with few lines and sharp angles, and is theref

likely to happen with real objects. For instance, in the first example in Figure 24, a real object would pro

have a rounded corner, which would have caused a small concavity which might be matched to concavitya in the

rightmost figure. In the few remaining cases the concavities will likely be so small and/or thin that it will be

to observe the error. However, for test data which use relatively few lines, this will continue to be a problem

8 Related Work

As mentioned in the introduction, algorithms for creating interpolations between two snapshots already exis

of these, [SG92], was designed to help creators of animated movies by generating intermediate shapes

two snapshots of cartoon figures. This is a very similar problem to the shape interpolation done by the r

plane algorithm and convex hull tree in this paper. From the examples they have presented, it seems th

approach is better at preserving shape and avoiding some strange behaviors than ours. It is also definitely

rotation, which it seems able to detect and account for. The problem, however, is that the user of the syste

specify seven constants which are used in the interpolation. They present a table with the numbers they ha

in each of their examples, and for four of the constants they are all different. This probably means that ther

set of numbers that works universally. In our approach, one of the goals is that this process should go com

automatically, without any user interaction at all. Also, the preservation of shape is not that important fo

application, because the goal is to store a representation for amorphous objects and not objects with a fai

shape, such as the dancing person used as an example in [SG92]. Another problem is the running time. If

Figure 23: Test object with original snapshots and interpolated values

Figure 24: Convex concavity becomes non-convex.

First snapshot Second snapshot Interpolation, overlap
criterion 40%.

Interpolation, overlap
criterion 10%.

a
b
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specifies an initial correspondence between two points, their algorithm runs in O(n2) time. However, if the user

doesn’t specify this, it runs in O(n2 log n) time. The average case running time of our approach, however, is c

to O(n log n). Thed variable is somewhat dependent onn, because more details may be shown. However, it w

grow only very slowly.

9 Conclusions

This paper has presented an approach to building the moving region representation described in [FGNS00

series of snapshots of an amorphous region. The combination of rotating plane algorithm and overlap grap

to work well for most regions of this type, although there seem to be better approaches if an interpolation be

two snapshots is all that one wants. However, if one instead wants to interpolate between five hundred sna

our approach seems to be a good one, because it doesn’t demand any user interaction and has a reaso

ning time. The algorithms described in the paper have been implemented. The running time has not been

lem with any of the tests that have been run up until now, even though the test program has been impleme

Java. There are some interesting possibilities for future work:

1. The matching strategies described in Section 5 should be implemented and compared systematic

far we have only implemented one particular choice.

2. A problem with the overlap strategies is that for a large object that is translated in the plane the s

parts (e.g. lower level concavities) move a lot relatively to their size even though the entire object m

only a little. Hence small concavities will not overlap any more. There are several ways to compensa

this, for example, by combining overlap with a distance criterion for the small components. This shou

explored in more detail and evaluated experimentally.

3. Given a large collection of snapshots of an object which moves only little, techniques for data redu

need to be developed. For example, suppose an oil spill in the sea is captured every minute, cons

interpolations between all successive snapshots may lead to an unnecessary amount of data. How

construct a minimal representation according to some required precision?

4. Precise definitions for the quality of a series of snapshots should be developed. This should allow

decide whether a series of observations is “good enough”. Such definitions could be given in terms

matching strategies described in the paper.
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