Creating Representations for Continuously
Moving Regions from Observations

Erlend Tgssebfoand Ralf Hartmut Giitirfy

Abstract

Recently there is much interest in moving objects databases, and data models and query lan-
guages have been proposed offering data types suchosiig pointand moving region
together with suitable operations. In contrast to most earlier work on spatio-temporal data-
bases, a moving region can change its shape and extent not only in discrete steps, but contin-
uously. Examples of such moving regions are oil spills, forest fires, hurricanes, schools of
fish, spreads of diseases, or armies, to name but a few.

Whereas the database will contain a “temporally complete” representation of a moving
region in the sense that for any instant of time the current extent and shape can be retrieved,
the original information about the object moving around in the real world will most likely be

a series of observations (“snapshots”). We consider the problem of constructing the com-
plete moving region representation from a series of snapshots. We assume a model where a
region is represented as a set of polygons with polygonal holes. A moving region is repre-
sented as a set sficeswith disjoint time intervals, such that within each slice it is a region
whose vertices move linearly with time. Snapshots are also given as sets of polygons with
polygonal holes. We develop algorithms to interpolate between two snapshots, going from
simple convex polygons to arbitrary polygons. The implementation is available on the Web.

1 Introduction

Databases have for some time been used to store information on objects which have positions or extents in space.
There are also many applications of databases which store information about how such objects change over time.
Spatial objects that move or change their shape over time are often referred to as moving objects. In [BGE+00] an
abstract model for representing moving objects in databases is described. In an abstract model, geometric objects
are modeled as point sets. For continuous objects like lines or regions, these point sets are infinite. This means that
these models are conceptually simple, but cannot be directly implemented. A discrete model, on the other hand,
can be implemented but is somewhat more complex. A discrete model for spatio-temporal objects, which builds
on the abstract model in [BGE+00], is described in [FGNSOQQ].

Early research on spatio-temporal databases concentrated on modeling discrete changes to the database. Exam-
ples of such models can be found in [W94], [CG94], and [PD95]. More recent research also addresses the
dynamic aspect, that is, that objects may change continuously without explicit updates. One example of such a
model is presented in [SWCD97]. However, this model covers only the current and expected near future of the
objects, and not the histories of the objects, and it also does not deal with moving regions. Constraint databases
can also be used to describe such dynamic spatio-temporal databases. One study of constraint databases which
explicitly addresses spatio-temporal issues is [CR97]. [CR99] contains a framework in which all spatio-temporal
objects are described as collectionsaatdmic geometric object&ach of these objects is given as a spatial object

and a function describing the development of this object over time. For the continuous functions, affine mappings
(allowing translation, rotation and scaling) and subclasses of these are considered. However, to the authors’

1. Department of Computer Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway,
tossebro@idi.ntnu.no
2. Praktische Informatik 1V, Fernuniversitat Hagen, D-58084 Hagen, Germany, gueting@fernuni-hagen.de

knowledge, [BGE+00] and [FGNSO00] describe the only comprehensive model describing spatio-temporal data
types and operations.

The model in [FGNSO00] describes a way to represent continuously moving, amorphous objects in a database in
such a manner that it is possible to produce a “snapshot” of the object at any time within the time interval in which

it exists. However, most data about moving objects will come in the form of snapshots taken at specific times.
This paper addresses the problem of creating this type of representation from a series of snapshots of a moving
amorphous region. Important types of such regions in the real world would be oil spills, forest fires, fish schools,
and forests. (Forests change continuously because of deforestation, climatic changes, etc.).

This problem is similar to the problem of interpolating or blending shapes, which has been studied in the com-
puter graphics community, because both problems involve creating plausible in-between shapes at any time
between the two states given. One example of such a shape interpolation algorithm is given in [SG92]. This algo-
rithm was created to solve the problem of creating a smooth blending between two figures in an animated movie.
A comparison between the algorithm given in [SG92] and our algorithm is given in Section 8.

A problem which occurs when the moving region consists of several disjoint parts is to discover which part in the
first snapshot corresponds to which part in the second snapshot. Because the region parts may have changed both
their positions and shape, it may not be obvious to a computer which of them to match. One region part may also
have split into two between the two snapshots.

In Section 2 the representation of regions and moving regions from [FGNSO00] is described. Section 3 then intro-
duces the basic algorithm for building this representation for convex regions. In Section 4, a way of representing a
non-convex area as a tree of convex areas with convex concavities is described. This structure is later used to
apply the technique described in Section 3 for non-convex regions. Section 5 describes strategies for discovering
which regions, or components of regions, in one snapshot correspond to which regions in the other snapshot. This
is important both for creating representations for multi-component regions and for matching parts of the tree rep-
resentation of Section 4 correctly. Section 6 describes the algorithm for interpolating between arbitrary polygons;
an important subproblem is the matching of concavities between snapshots. In Section 7, the quality of the results
for different types of regions is discussed. Section 8 is a comparison between our work and [SG92], and Section 9
contains the conclusions to this paper.

2 Representing Regions and Moving Regions

In this section we review the structure and representation of static and moving regions defined in [FGNSO00], since
this representation needs to be created by our algorithms. We start by considering a (static) region, as a moving
region needs to be consistent with it. Indeed, a moving region, evaluated at any instant of time, yields a region.

A regionmay consist of several disjoint parts calliades each of which may have 0 or more holes. At the dis-
crete level, the boundaries of faces as well as holes are described by polygons. Hence a region looks as shown in
Figure 1.

This structure is defined in terms ségmentscycles andfaces We sketch the structure of the formal definitions
in [FGNSOO0]; more details can be found there.

Seg={(u, v) |u, v Point, u < v}
A segments just a line segment connecting two points which need to be distinct.

Cycle={S0O Seg...}

Figure 1: A region

A cycleis a set of line segments forming a closed loop which does not intersect itself, hence it corresponds to a
simple polygon.

Face={(c, H) | cO Cycle, H 00 Cycle, such that .}

A faceconsists of a cycle defining its outer boundary, and a set of cydtedefining holes. These holes must be
inside the outer cycle, and must be pairwise disjbinmhay be empty.

Region={F [J Face| f,, f,OF 0(f,#f,) 0 edge-disjoin(f,,f,)}
A regionis a set of disjointfaces.

A moving regions described - like the other “moving” data types in [FGNSO00] - in the so-caliedd represen-
tation. The basic idea is to decompose the temporal development of a value into fragmentsladtesdich that
within a slice this development can be described by some kind of “simple” function. This is illustrated in Figure 2.

t A

Figure 2: Sliced representation

Hence each slice corresponds to a time interval; the time intervals of distinct slices are disjoint. For a moving
region, the “simple function” within a single slice is basically a region (as defined above) whose vertices move
linearly in such a way that at any instant of time within the slice a correct region is formed. Such a slice is shown
in Figure 3.

1. Edge-disjoint means that two faces may have common vertices, but must otherwise be disjoint (i.e., they may not share
edges).

Figure 3: A slice of a moving region representation

The structure represented within a single slice of a moving region is catkgian unit This structure is defined
bottom-up in terms oMmoving pointsmoving segmentsnoving cyclesandmoving facesnalogously to the defi-
nition of a region. Again we sketch the formal definitions from [FGNSOQO].

MPoint = {(xq, X1, Yo, Y1) | Xg X1 Yo Y1 U real }.

A moving point is given by four real coordinates. The semantics of this four-tuple, that is, the function for retriev-
ing the position of the moving point at any point in time is

p(t) = (Xg+ %1 [, yg+y,)
In the three-dimensionaky,)-space, a moving point forms a straight line.
A moving segment is defined by:

MSeg= {(s ¢ s el MPoint, & g coplandr,s)g

A moving segment consists of two moving points which are coplanar, i.e., lie in the same planexnythie (
space. Hence in 3D a moving segment is a trapezium (Figure 4a). The segment may degenerate at one end of the

t A t A

— //\
vg /L — veg) —

(@) (b)

Figure 4: (a) A moving segment. (b) Two moving segments representing a rotating line segment.

time interval into a point, hence we may have a triangle in the 3D space. This means that a moving segment can-
not rotate as time passes. One can create a (rough) representation for a line segment which rotates by creating two
moving segments, each of which is the line segment in one snapshot and becomes a point in the other (Figure 4b).

MCycle = {(%, Sn—l)\ n=3,s [0MSeg

An MCycleis the moving version of th€ycle It contains a set of moving line segments. None of these may inter-
sect in the interior of the time interval in which théCycleis valid. TheMCyclemust yield a validCyclein all
instants in the interior of the time interval.

MFace = {(¢ H| cO MCycle HO MCycl¢

This is a moving version of thEace TheMFacemust yield a validracein all time instants in the interior of the
time interval.

URegion= {(i B| i OlInterval, F O MFace such that }.

A region unit consists of a time interval and a set of moving faces such that evaluation at any instant of time in the
interior of the time interval yields a valid region value.

3 The Easy Case: Interpolating Between Two Convex Polygons

The problem is now to compute from a list of region snapshots a moving region representation. This reduces to
the problem of computing a region unit from two successive snapshots.

In this section we first consider the most simple case of the problem which occurs if each of the two snapshots is
a single convex polygon without holes. In this case one can apply an algorithm that we call the “rotating plane”
algorithm. It can be described as follows. Input are two convex cycles at different instants of time.

To create one moving segment, start with a segra@mbne of the polygons and create a plane perpendicular to
the time axis through it. Then rotate that plane around segmemtl it hits a segment or a point from the other
polygoriL. If in the other polygon there exists a segmenwhich is parallel tos, then the plane will hit this seg-
ment, and the algorithm will create a proper trapezium-shaped moving segment bstareks). If there is no
parallel segment, then the plane will hit a pginiThen a degenerate moving segment will be created which starts
out as the original segmesiind ends as poipt thus forming a triangle in space-time.

This algorithm can be implemented in a computer in the following fashion: Take the segments in both polygons
and sort them according to their angle with respect toxthgis (for instance). Then go through the two lists in
parallel, starting with the segment with the smallest angle in either list. For a given segment check the next seg-
ment in the other list. If the angle of this segment is equal to the angle of the chosen segment, create a proper mov-
ing segment connecting the two and mark both segments as done. If the angle is different, take the first point in the
other segment, use it as the second “segment”, and mark only the chosen segment as done. After the moving seg-
ment is formed, take the unmarked segment from either list with lowest angle as the next segment.

An example of the matchings generated by this algorithm is given in Figure 5. Because the angle of segment
greater than the angle of segmentnd less than the angle bfthe segment is matched to the point between
segments andb.

We now give a more formal description of this algorithm (Figure 6). The representation of a line se§egeid (
extended to contain an angle as well as the two end points. Also a fumetibk@ _moving_poir{Eigure 7) is used
to create a moving point from two static points.

Computing the angles between all segments and-es takes Qf) time, wheren is the total number of seg-
ments. Finding the segments with the lowest angle can also be done)itird¢. Assuming the segments in the
two snapshots are already ordered so that adjacent segments are also neighbours in the list, finding the next seg-

1. It should be rotated in such a direction that the part which moves towards the other object hits the other object on the
same side as the segment is on the first object.

t A

Figure 5: Example of matching created by the rotating plane algorithm

algorithm rotating_planés;, s, ty, to)
input: Two convexcycles s; ands,, which represent snapshots of the moving cycle at the distinct times
t; andt,, respectively.
output: An mcyclewhich yields the twayclesat the given times.
method:
lets; ={s; 3,Sy,nh let = { 1, ... % mk;
letumbe a list ofSegsum:= O ;
for eachs ; do
compute the angle betwesn; and thex-axis, and store it i j.angle
um:=umi{ %,j}
end for;
MCycler:= 0 ;
while (um#) do
I, := thes; j with the lowest angles,ly - Odum
I, :=thes |, k# i, with the lowest angleskl jHum
if no sucH, existsthen
I, :=thes |, k# i, with the lowest angle
end if;
if (1, Os;)then
letl; = (a, b); letl, = (c, d)
elseletl, = (c, d); letl, = (&, b)
end if;
let mp; andmp, be MPoints
if (angle ofl,) = (angle ofl;) then
mp; := make_moving_poi(H, ¢, ty, t5);
mp, := make_moving_poifiy, d, tq, to);
um:=um\ {l4, I}
else
mp, := make_moving_poifH, ¢, ty, t);
mp, := make_moving_poiff, c, t, t);
um:=um\ {4}
end if;
MSeg ms= (mp, Mp,);
r:=r0d{ms}
end whilg
return r
endrotating_plane

Figure 6: Algorithnrotating_plane

function make_moving_poi(d, b, tg, t;)
input: Two points,a andb, and two distinct timetg andt;.
output: A moving point which is a& at timety and at at timet;.
method:

dx:= (b.x-ay/ ({t; - t);

dy:=(by-ay/t-ty);

mp:= (@x-dxy , dx, ay dylty , dy

return (mp)
end make_moving_point

Figure 7: Functiomake_moving_point

ment with the lowest angle can be done in constant time (test the next segments in both snapshots and use the
smaller one). Adding a new moving segment to the rascéin also be done in constant time. Because both of the

last two operations must be performed once for every segment, the total time for then).iJlkarefore, this
algorithm takes Q) time. Note that in the implementation the removal framand checking for membership in

umis done by modifying or checking a variable associated with each line segment rather than by physically
removing or checking in a set. This also applies to the other algorithms below which use a set of unmarked
objects.

If the segments are unsorted or sorted by a different criterion than ordering along the border of the cycle, sorting
them by angle takes @(dog(n)) time, and hence the running time of the algorithm will grow t@o@(n)).

Theorem 1: Given two convex cycles) andc, at timestq andty, algorithmrotating_planecomputes a region
unit connecting these two cycles. If the two cycles consist of a totalsgigments and the cycles are represented
in (e.g. clockwise) order, then the algorithm requireg)difne. If the two argument cycles are not given in order,
then Of Oog(n)) time is required.

A problem with this interpolation method is that it is poor in handling rotation. If a long, thin object rotates 90
degrees between snapshots, the interpolation in the middle between them will be more or less quadratic, and will
probably have a much larger area than the object has in either snapshot. For this reason, one must ensure that the
shapshots are so close to each other in time that only a small amount of rotation has happened between them.

So far we can handle a single convex polygon in both snapshots, the most simple case. Two major problems
remain:

1. Treating concavities.

2. Treating regions with more than one face. Here the problem is to match faces from the first snapshot cor-
rectly with faces from the second snapshot. Another version of this problem is one face with several holes.
One face with one hole can be treated by interpolating separately between the outer cycles from the two
snapshots and the two hole cycles and then subtracting the “moving hole” from the “moving outer cycle”.
But if there are several holes, the algorithm must discover which holes correspond.

These problems are addressed next.

4 Representing Non-Convex Polygons by Nested Convex Polygons

We now focus on treating a region which still consists of a single face without holes, i.e., a single cycle, but which
needs not be convex any more. The basic idea is to reduce this problem to the previous one by viewing a non-con-
vex polygon as being composed recursively from convex components.

This section first describes a representation in which a general cycle is stored as nested convex polygons. The sec-
ond subsection describes an algorithm for generating this representationGyate a

4.1 The Convex Hull Tree

This is a way to store arbitrarily shaped regions by storing convex regions with convex holes. These convex
regions and convex holes may then be treated independently by the rotating plane algorithm, allowing it to work
for objects with concavities as well.

In an abstract view of the convex hull tree, each npdepresents a convex cyatenithout holes. Each descen-
dantd of p represents a hole to be cut out franto form the cycle represented by the subtree rootedl ifhis

general method may be used both for storing real holes and for storing concavities in the object. A concavity can
simply be represented by a hole which includes a part of the boundary of the cycle. See Figure 8.

Figure 8: A convex hull tree

In the implementation of the convex hull tree, a cycle is stored in the following manner: Each node contains a list
of line segments representing the convex hull of the cycle. For each of the segments in this representation which
were added to make the cycle convex, a link to a child node is stored. This child contains the convex hull of the
area which should be extracted to get the real cycle. If the extracted area contains concavities itself, then the child
will have children of it's own with extracted areas.

An example of a cycle with several concavities and a convex hull tree representation of this cycle is shown in
Figure 9. In this figure, the cycle itself is represented by the thick lines. The segments of medium thickness were
added to make it convex. The other segments were added to make nodes further down in the tree represent convex
areas. The top node of the tree representation to the right in the figure contains the segments of the convex hull.
The line style is the same in the nodes as in the drawing of the region.

This structure as it is described here cannot store holes, because a hole is not connected to a segment in the parent
node. However, one could permit the rbabde to have links to subnodes which are not connected to any particu-
lar segment. These would then represent holes.

4.2 Computing a Convex Hull Tree from a Polygon

To build a convex hull tree for an arbitrarily shaped polygon, use the following steps:

1. Start at the root node and the entire polygon.

1. This should not be permitted for nodes other than the root. If the hole is in the object itself, it should be linked to the
root. If the hole is in a concavity, then the object is no longer a single region, but several disjoint regions.

A Aa Ab Ca Ar As At Da Ba
——,————/—

¥

C CAa Ae CBa An Ao CC&a B Aw A
"m= . - -_— .. - T L
\ s \

\
* \ Au Av Da

Ac Ad CAa 3
CAmm = 0 [[[CCA & 55

CBAa Ai Aj Ak CBBa CBa
CB— - . — .-

v

T ——T CBA A, g an oo CBB_A'_Am_CBEia

Figure 9: A region with concavities and its convex hull tree representation.

Create the convex hull of the polygon.

Store a segment list representation of the convex hull into the node.

For each of the segments which were added to make the polygon convex, create a new node.
For each of these holes with new nodes, go to step 2.

a s wbn

The algorithm for building a convex hull tree (Figure 10) uses two new typeiS;NodeandCHTLineSegCHT-
LineSegs a line segment3eg which in addition to the two end points may store a link to a clildTNode The
CHTNodetype is the same as tl@ycletype, with the exception that it stor€HTLineSegimstead of normal line

segments.

algorithm build_convex_hull_treg@olygon)
input: A Cycle polygon
output: A CHTNodewhich is the root of the convex hull tree foolygon
method:
CHTNode ct=0 ;
Cycle ch:= the convex hull opolygon letch = {cs;, ...,Ccs,};
for eachcs U ch do
if (cs O polygon) (that is, it was added to make the polygon contresi)
cp :=cg and the segments polygonwhich were replaced tng;
cch = build_convex_hull_trdep)

else
cch:=0
end if;
cl:=clJ {(cs.y, c5.v, cch)}
end for;
return cl

endbuild_convex_hull_tree

Figure 10: Algorithnmbuild_convex_hull_tree

Our implementation uses the Graham scan from [G72] to compute the convex huli iId@n) time for a given
polygon withn vertices. This must be performed once for the whole object and once for each concavity. Because

- 10 -

the number of vertices in all the concavities at each level of the tree is less than or egutdedotal time for
computing convex hulls is bounded bydd(Jogn), whetie the depth of the convex hull tree.

The line segments in the convex hull will be returned in counterclockwise order by the procedure for computing
the convex hull. If the line segments in the given polygon are also ordered in this way, discovering which seg-
ments from the convex hull are not in the original region and discovering which segments they have replaced can
be done in linear time by going through both lists in parallel, and testing for equality. When the two segments are
not equal, go through the list from the original polygon and put segments into a separhtariidta segment

with end point equal to the end point of the segment from the convex hull is found. Wt then contain the
segments which were replaced by the segment in the convex hull. The only problem with this algorithm is finding
where in the two lists to start, because the starting segment must be in both sets. This can be done by marking
which segments are in the convex hull and which are not during the construction of the convex hull, and then test-
ing the lines in the region beginning with the first until one is found which is on the convex hull. This takes O(
time. Finding which element of the hull is equal to this segment can then also be dons)itindy. Marking

whether the segments are in the convex hull or not does not change the asymptotic running time of the Graham
scan. Because this linear running time is less than the time taken by the Graham scan, the running time of the
entire algorithm is equal to the running time of the Graham scan.

Theorem 2: For a given polygon with n vertices, the convex hull tree can be built ilif@{og n) time, where
is the depth of the resulting tree.

To recreate the polygon which is represented by a convex hull tree, start with the root node and do the following:

» For each segment in the node which does not have a child, return that segment.
« For each segment in the node which has a child, go to that subnode and use this procedure on that node.

5 Matching Corresponding Components

We now address the problem of matching components in one snapshot with components of the other which comes
in three flavors:

» Given observations of a moving region consisting of several faces, which faces in the older snapshot corre-
spond to which faces in the newer one?

« Given a moving face with several holes, which holes in the old snapshot correspond to which holes in the
new?

» Given a moving face (cycle) with concavities and two snapshots of it, which concavities in the old and new
snapshots correspond to each other?

Figure 11 illustrates the problem. It becomes aggravated by the fact that components may split or merge between
shapshots.

In all three cases we need to find matching pairs of cycles (i.e., simple polygons). From now on we assume that
two sets of cycle€ andD are the given input for this problem.

5.1 Requirements for Matching

Before discussing strategies for matching, we should understand the quality criteria for such strategies.

1. It seems obvious that matching should work correctly for any component that has not moved at all.
2. Components that have moved a small distance relative to their size should be matched correctly.

X (@) (b)

Figure 11: Matching components of moving region observations: (a) faces, (b) holes, (c) concavities

3. It should be possible to match components that have had minor changes to their shape and size.

4. A matching algorithm should discover that a component has been split into fragments or merged from
them.

5. A matching strategy should offer criteria to judge the quality of observations. In other words, it should
allow one to decide whether two successive snapshots are close enough in time, or too far apart.

Generally, it seems reasonable to require that a matching strategy is guaranteed to produce correct matchings for
the components of a moving region if the frequency of observations is increased. This can be formulated a bit
more precisely as follows:

Definition 3: Let mr be a moving region with several components, anjedndS, be two observations of it at
timest andt + At . A matching strategy is calledfe if it is guaranteed to produce a correct matching of the com-
ponents ofr if At - 0. In other words, there exists &> 0 such that the matching is correct figr<afl

5.2 Strategies for Matching

Strategies for matching include the following:

1. Position of centroid For each cycle, compute its centroid (center of gravity). This transforms each set of
cycles into a set of points. A closest pair in the point €8tand D’ is a pair of points jp,) such thag is
the point inD’ closest top andp is the point inC’ closest tog. For each closest pair, match the correspond-
ing cycles.

2. Overlap For each pair of cyclesin C andd in D compute their intersection areeand take the relative
overlap, that ispverlaf(c, d) = sizgu)/sized) andoverlap(d, c) = siz€u)/siz€c). Theoverlaprelationship
can be represented as a weighted directed graph (oeeifagc, d) = k, for k > 0, then there is an edge
from c to d of weightk). Then there are several options:

a. Fixed thresholdIntroduce a thresholt(e.g.t = 60%). Two cyclex andd match ifoverlagc, d) >
tandoverlagd, c) >t.

b. Maximize overlapFor all cycles (nodes) order their outgoing edges by weight. For a adele
sucg(c), ..., sucg,(c) be its ordered list of successors. Mathvith d if d = sucg(c) andc =
sucg(d).

So far we have considered the matching of single cycles. However, the overlap graph allows us to recognize in a
natural way transitions where cycles split or merge. See Figure 12.c-$piits intod, e, andf (or is a merge of,
e, andf). This can be deduced from the fact that for each of the three fragments the overlagsidhge (above

Figure 12: Cycle splits into three cycled, e, andf.

50 %, say) whereas farthe overlap with eithed, e, or f is relatively small, but theumof their overlaps is large.
This leads to strategies for matching a cycle with a set of cycles:

c. Fixed threshold, set of cycleAs in (a), introduce a threshotde.g.t = 60%). Matchc with {d O D
| overlag(c, d) >t} [1 {d O D | overlagd, c) > t}.

d. Maximize overlap, set of cycleSrder outgoing edges by weight as in (b). Matahith {sucg(c)}
U {dOD|c=sucq(d)}

What is a good strategy in the light of the requirements of Section 5.1? Using the centroids, although simple, is
not a safe strategy. This is because centroids may lie outside their cycles so that centroids even of disjoint cycles
may coincide. This can lead to entirely wrong matchings. The overlap techniques are safe because overlaps
approach 100% for region observations wh&n- 0 . Of course, snapshots have to be close enough to ensure
reasonable results.

In the remainder of this paper, we will restrict attention to considering a single cycle with concavities, represented
in a convex hull tree. The full paper [TG01] covers the general case with multiple faces and holes. However, the
techniques for matching components are already needed in the restricted case for matching concavities in two
shapshots of a single cycle. Also, we need to treat transitions such as the splitting/merging of concauvities.

5.3 Matching Two Convex Hull Trees

To support the matching of concavities, we compute for two given convex hull trees an overlap graph. Its nodes
are the nodes of the convex hull trees; to store the edges, the data structure for nodes is extended to store also a set
of pointers to other nodes; each pointer has an associated weight indicating the overlap.

type OverlapEdge= { (node weigh) | nodeld CHTNodeweight[real}
CHTNodesubtype CHTNodeWG= { (..., O) | OO OverlapEdgég

In the description of algorithmompute_overlap_graptrigure 13) we assume that the two argument convex hull
trees have been constructed using nodes of Gig&NodeW"convex hull tree node with overlap”) and that in
each node the s@ of overlap edges has been initialized to the empty set. This is a trivial modification of algo-
rithm build_convex_hull_tree

The algorithm traverses the tree, computing the overlap for pairs of nodes of different trees at the same level
whose parents overlap. If the two nodes overlap at a percentage highaitdram, then the nodes are linked.

The intersection of two convex polygons witlandm edges can be computed in timel @(m) (see e.g. [PS85,
Theorem 7.3]). If the two polygons represented in the convex hull trees have a tatatigés, then the running
time for compute_overlap_graptan be bounded by @GZ Lh), whered is the depth of the tree arfdhe maxi-

- 13 -

algorithm compute_overlap_graggbht;, cht,, criterion)
input: Two convex hull treesht; and cht, with nodes of typeCHTNodeW®QOand the real number
criterion, which controls how much two convex hull tree nodes must overlap to be considered a
match.
output: cht; andcht, are updated to contain overlap edges for matching pairs of nodes.
method:
overlap:= intersectiorfcht;, chty); /lintersection of convex polygons in the roots
overlap, := (areg(overlap/aregcht;))*100;
overlap, := (areaoverlap/areacht,))*100;
if (overlap, > criterion) and (overlap, > criterion) then
OverlapEdge og:= (cht,, overlap);
OverlapEdge og:= (cht;, overlap);
cht;.0 :=cht;.0 [J {og}; cht,.O :=cht,.0 U {o&y};
for each sons, of cht; do
for each sons, of cht, do
compute_overlap_graf,, s, criterion)
end for
end for
end if
end compute_overlap_graph

Figure 13: Algorithmcompute_overlap_graph

mal fanout, since on each level of the tree there are lessrtlealges and overlap computation is called for each
combination off sons of a node. — Our implementation described in Section 7 uses a function for computing the
intersection of two polygons that comes wjdlva 1.2(java.awt.ared and the authors do not know what algorithm

is used there.

6 Interpolating Between Two Arbitrary Polygons
We are now ready to address the problem of interpolating between two general, possibly non-convex polygons.
We assume these polygons are represented by convex hull trees for which the overlap graph has been computed.

The basic idea is, of course, to use tbtting_planealgorithm from Section 3 on each matching pair of nodes of
the two convex hull trees. Let us consider what can happen for a concavity from one snapshot to the next.

pe

@) (b)

Figure 14: Transitions for cancavities: (a) unmatched concavity, (b) two matching single concavities

- 14 -

The first case (see Figure 14 (a)) is that the concavity doesn't find a “matching” partner in the other polygon. In
this case we consider the trapezitiimvolving its parent edg@e which is most likely a triangle (drawn fat in
Figure 14). All the edges of the concavity are connected by triangles with the painthe other polygon in

which trianglet ends! So the concavity appears to spring frror to disappear intp depending on which snap-

shot is first in time.

Technically, trapeziums are first constructed for the two convex outer polygons, which includes the creation of
Then, trapeziums (triangles) are constructed for the concavity, including its parent edge,tss theated once
more. Then the union is formed of the first set and the second set of trapesuwintisicting their intersectian

This leads to the complete removal of trapezium

The second case (Figure 14 (b)) is that there is a single matching partner for the given concavity in the other poly-
gon. Then trapeziums are constructed recursively for the two concavities. Again, this also yields the trapeziums
involving the parent edges of the two concavities so that these can be removed from the result when forming the
union with the trapeziums from the next higher level.

The third, most involved case occurs if the concavity matches more than one concavity in the other polygon
(Figure 15).

T T
L =

Figure 15: Transitions for concavities: one concavity matches several concavities

In this case, before the interpolation is performed, theGsef concavities matching the one concavity is first
joined into a single convex polygon. This is done as a transformation on the convex hull tree, which is illustrated
in Figure 16.

The algorithm for performing the transformation shown in Figure 16 is c@died concavitiegFigure 17). It uses
a functionrecreate_polygorfFigure 18) implementing the strategy for reconstructing a polygon from a convex
hull tree sketched at the end of Section 4. Some of the notations ysied @oncavitiesare shown in Figure 16.

Finally, the overall algorithm for interpolating between two polygons is given in Figure 19, Figure 20, and
Figure 21. The strategy for matching concavities is actually a mixture of strategies 2c and 2d: The overlap graph is
constructed applying a fixed threshotladiterion). But then a concavitg is matched to all concavities connected

by an overlap edge for which it is the maximally overlapping concavity.

The analysis of the complexity of this algorithm is a bit more involved and for lack of space omitted here. In the
full paper [TGO1] an upper bound of 6{n log n) is derived, wherel is a bound on the depth of the convex hull
trees anad the total number of edges of both polygons.

1. Iftisindeed a trapezium which happens if there is a segseatallel topein the other polygon, then one of the end
points ofSis selected arbitrarily to play the rolepf

- T
A

Figure 16: Rebuilding the convex hull tree to join concavities

algorithm join_concavitiegchts chtp, bl)
input: A set of convex hull tree nodes with overlap graphts which represents the concavities to be
joined, the convex hull tree node with overlap gragttp, which is the parent node of the nodes in
chts and a set of lineg|, which represents the lines between the concavities.
output: A single convex hull tree node which is the union of the others.
method:
let chtube an empty set of line segments;
for each chtO chts do
chtu:=chtul] recreate_polygafcht)
end for;
let dsetbe an empty set of line segments;
dset:= dsetl] bl;
for each| Ochtu do
if 1 L] chtp.Sdo
chtu:=chtu\ {I};
chtp.S:=chtp.S\ {I};
dset:= dsetl] bl;
end if
end for;
let cl be the line segment that needs to be adddddtio make it a cyclé;
chtu:=chtull bl;
chtu:=chtull {cl};
letresbe the cycle formed by the line segmentshtu;b
resch=build_convex_hull_treees
letrlp be aCHTLineSegontaining the line segmecitand a reference to ti@HTNodeWO resch
chtp.S:= chtp.SLI {rlp};
return resch
endjoin_concavities

Figure 17: Algorithnjoin_concavities

a. dsetnow contains all the line segments in the parent that point to the cycles that should be joined. It also contains the
lines between them. Because the lines in the parent form a convex polygon, adding only a single line makes this collec-
tion of line segments a cycle.

b. Note that the line segmentséhtuare not necessarily a cycle, because thedimeay cross some of the other lines. The
implementation contains code that handles this particular case in all functions that normally take cycles as input. The
implementation always ignores the line which a node has in common with the parent.

algorithm recreate_polygoftht)
input: A convex hull tree, possibly with overlap grapht.
output: The cycle represented biat.
method:
letresbe an empty set of line segments;
for eachls [J chtSdo
if (Is contains link to child noddhen
res:=res[] recreate_polygofis.child)
else
res:=res[] {lIs}
end if
end for;
return res
endrecreate_polygon

Figure 18: Algorithnrecreate_polygon

algorithm create_moving_cydpoly;, poly,, ty, to, criterion)

input: Two polygonspoly; andpoly, represented aSycles two timest; andt,, representing the times
whenpoly; andpoly, are valid, and &riterion specifying how much overlap is required to consider
two objects to match.

output: An MCycleresulting from the interpolation of the two polygons.

method:
chty :=build_convex_hull_trggoly;);
cht, := build_convex_hull_trggoly,);
compute_overlap_gragbht;, cht, criterion);
return trapezium_rep_buildgcht,, cht, ty, ty)

end create_moving_cycle

Figure 19: Algorithncreate_moving_cycle

7 Experimental Results

All algorithms described in this paper have been implemented in Java. The implementation is available on the
Web athttp://www.idi.ntnu.no/~tossebro/mcinterpolator/interpolator.html . There

is an applet that allows one to interactively enter two snapshots and then see the interpolation, then a version for
download that creates from two snapshots a VRML file which can be studied through a VRML viewer. The docu-
mented source code is also available.

The experimental results described next have been derived from this implementation. Matching multiple regions
and joining separate regions (discussed in the full paper [TG01]) have not been implemented yet. The current pro-
gram also has no support for holes which are not concavities. The implementation works for all regions which
remain in one piece and do not move much relative to one another. (The more movement or rotation there is, the
lower the quality of the resulting triangle representation will be.) The representation created by the algorithm was
passed to the extensible database graphical user interface created by Miguel Rodriguez Luaces, which used it to
create interpolated values between the two snapshots. All the interpolations shown in this document were created
by this program.

An extension which handles multiple regions, regions with holes and regions which split and merge is planned to
be built on top of the existing program.

algorithm trapezium_rep_buildécht;, chb, ty, to)

input: Two convex hull trees with overlap graph represented by their r@bts,and cht,, and two
times,t; andt,, when the polygons representeddby andcht, are valid.

output: An Mcycleresulting from the interpolation of the two polygons.

method:
children, := the children o€hty; children, := the children otht;
MCycle mc:= rotating_planécht;, cht, ty, t5); I/ convex hull tree nodis a subtype ofycle
um = children, O childreny; /I *unmatched children”

/I Step 1: Find partners ght, for children inchildrerny
for eachchild U children; do
ol := the list of concavities that overlahild (according to the overlap graph);
/I restrictol to concavities for whickhild is the maximally overlapping one
for eachc [J ol do
col := the list of concavities that overlap
if not (child is the element afol with greatest overlaghen ol := ol \ {c} end if
end for;
if ol # [then
Isbc:= {the line segments that lie between the concavitied}in
concavity:= join_concavitieéol, cht, Ishg);
cr ;= trapezium_rep_buildéchild, concavity ty, t,)
mc:= (mclJ cr) \ (men cr);
um:=um\ {child}; um:=um\ol;
end if
end for;

I/ Step 2: Find partners ht; for yet unmatched children ohildren,
for eachchild L (children, N um) do
ol := the list of concavities that overlapild (according to the overlap graph);
for eachc [ol do
col ;= the list of concavities that overlap
if not (child is the element afol with greatest overlaghen ol := ol \ {c} end if
end for;
if ol Z [then
Isbc:= {the line segments that lie between the concavitied}in
concavity:= join_concavitiefol, chty, Isbg);
cr :=trapezium_rep_buildé€child, concavity ty, to);
mc:= (mcl cr) \ (mcn cr);
um:=um\ {child}; um:=um\ol;
end if
end for;

Figure 20: Algorithntrapezium_rep_buildePart 1

For the artificial test cases which were used to test the program for bugs, the results have in most cases become
fairly good, such as in Figure 22. However, the algorithm is very sensitive to overlap, and the smaller concavities
may be erroneously matched to points if they have moved a large distance relative to the size of the concavity.
This problem may be reduced by reducing the threshold overlap, that is, how much should two concavities over-
lap to be considered to match. The danger of reducing this criterion is that concavities might be matched errone-
ously if they overlap by a small percentage (The program always matches the object to the first object or
combination of objects which match by more than the criterion). The overlap percentage was lowered several
times during testing. The first tests were conducted with an 80% overlap requirement, while the last tests used a

— 18 -—

/I Step 3: Connect still unmatched children with points (Figure 14 (a))
for eachchild [((children; [childreny) N um) do
li :=the line in the parent containing the pointechid;
ml := the moving line segment mcwhich containgi;
cp := one of the points iml but not inli;
for eachline segment in recreate_polygofthild) do
ms:= a moving line segment connectings ancp (a triangle);
mc:=mcl {mg
end for;
changeml such that it no longer contailisbut only one end point fromn If
this turns it into a moving point, remove it entirely
end for;
return mc
endtrapezium_rep_builder

Figure 21: Algorithntrapezium_rep_buildePart 2

requirement of 10%. 5% may be even better in some cases, but with such a small overlap criterion, there is a dan-
ger of matching the concavities wrongly due to small overlaps with other concavities. Note that this problem is
more likely to occur for high snapshot distances. With a very small snapshot distance, the concavities have moved
little, and overlaps between “non-matching” concavities will be unlikely. With a greater snapshot distance, these
overlaps may be significant. Figure 23 shows two interpolations, one with a criterion of 40% and one with a crite-
rion of 10%. The one with 10% clearly looks better than the one with 40%, especially the right part of the

figure.

First snapshot Second snapshot Interpolated value
Figure 22: Interpolation of regular object

Another problem which has occurred in a few cases is that the convex hull trees have become slightly different for
very similar regions, causing some strange behavior by the matching algorithm. A specific example of this is
shown in Figure 24, where changing the position of a single point causes a line which previously belonged to the
convex hull of the region to instead belong to the concavity. In this particular example, conaawity be
matched to poinb. When the larger concavities are first matched, the thin line in concawityl be matched to

point b by the rotating plane algorithm. When concanmtys then added, and no matches are found for it, all the
lines in it will be matched to poinb. This interpolation artifact is clearly seen in the interpolations shown in the
right part of Figure 24, where the interpolation has two “teeth” instead of the single ending in the two snapshots.
To get a good-looking result, the two lines from the real region in concawtypuld have to be matched to the

SRSV IR VAR T

First snapshot Second snapshot Interpolation, overlapinterpolation, overlap
criterion 40%. criterion 10%.

Figure 23: Test object with original snapshots and interpolated values

two linesc andd in the other snapshot. The program does not discover this matching because of the different posi-
tions of these two lines in the convex hull tree.

However, this problem is most often caused by using objects with few lines and sharp angles, and is therefore less
likely to happen with real objects. For instance, in the first example in Figure 24, a real object would probably
have a rounded corner, which would have caused a small concavity which might be matched to canocdkity
rightmost figure. In the few remaining cases the concavities will likely be so small and/or thin that it will be hard

to observe the error. However, for test data which use relatively few lines, this will continue to be a problem.

g €CC

Figure 24: Convex concavity becomes non-convex.

8 Related Work

As mentioned in the introduction, algorithms for creating interpolations between two snapshots already exist. One
of these, [SG92], was designed to help creators of animated movies by generating intermediate shapes between
two snapshots of cartoon figures. This is a very similar problem to the shape interpolation done by the rotating
plane algorithm and convex hull tree in this paper. From the examples they have presented, it seems that their
approach is better at preserving shape and avoiding some strange behaviors than ours. It is also definitely better at
rotation, which it seems able to detect and account for. The problem, however, is that the user of the system must
specify seven constants which are used in the interpolation. They present a table with the numbers they have used
in each of their examples, and for four of the constants they are all different. This probably means that there is no
set of numbers that works universally. In our approach, one of the goals is that this process should go completely
automatically, without any user interaction at all. Also, the preservation of shape is not that important for our
application, because the goal is to store a representation for amorphous objects and not objects with a fairly fixed
shape, such as the dancing person used as an example in [SG92]. Another problem is the running time. If the user

- 20 -

specifies an initial correspondence between two points, their algorithm runsﬁm tidje. However, if the user
doesn't specify this, it runs in (D% log n) time. The average case running time of our approach, however, is close
to O(n log n). Thed variable is somewhat dependentmrbecause more details may be shown. However, it will
grow only very slowly.

9 Conclusions

This paper has presented an approach to building the moving region representation described in [FGNS00] from a
series of snapshots of an amorphous region. The combination of rotating plane algorithm and overlap graph seems
to work well for most regions of this type, although there seem to be better approaches if an interpolation between
two snapshots is all that one wants. However, if one instead wants to interpolate between five hundred snapshots,
our approach seems to be a good one, because it doesn’t demand any user interaction and has a reasonable run-
ning time. The algorithms described in the paper have been implemented. The running time has not been a prob-
lem with any of the tests that have been run up until now, even though the test program has been implemented in
Java. There are some interesting possibilities for future work:

1. The matching strategies described in Section 5 should be implemented and compared systematically. So
far we have only implemented one particular choice.

2. A problem with the overlap strategies is that for a large object that is translated in the plane the smaller
parts (e.g. lower level concavities) move a lot relatively to their size even though the entire object moves
only a little. Hence small concavities will not overlap any more. There are several ways to compensate for
this, for example, by combining overlap with a distance criterion for the small components. This should be
explored in more detail and evaluated experimentally.

3. Given a large collection of snapshots of an object which moves only little, techniques for data reduction
need to be developed. For example, suppose an oil spill in the sea is captured every minute, constructing
interpolations between all successive snapshots may lead to an unnecessary amount of data. How can one
construct a minimal representation according to some required precision?

4. Precise definitions for the quality of a series of snapshots should be developed. This should allow one to
decide whether a series of observations is “good enough”. Such definitions could be given in terms of the
matching strategies described in the paper.

References

[BGE+00] M. H. Bohlen, R. H. Giting, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M.
Vazirgiannis, A Foundation for Representing and Querying Moving Objée84 Transactions
on Database Systems 25:1 (2008). 1-42.

[CG94] T. S. Cheng and S. K. Gadia, A Pattern Matching Language for Spatio-Temporal Databases. In
Proc. ACM Conf. on Information and Knowledge Management, pp. 288-295, 1994.

[CR97] J. Chomicki and P. Revesz, Constraint-Based Interoperability of Spatio-Temporal Databases. In
Proc. 5th Int. Symp. on Large Spatial Databases, pp. 142-161, Berlin, Germany, 1997.
[CR99] J. Chomicki and P. Revesz, A Geometric Framework for Specifying Spatiotemporal Objects. In

Proc. 6th Int. Workshop on Temporal Representation and Reasoning (TIME), pp. 41-46, 1999.
[FGNS00] L. Forlizzi, R. H. Giting, E. Nardelli, and M. Schneider, A Data Model and Data Structures for
Moving Objects Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, Dallas,
Texas, pp. 319-330, 2000.
[G72] R. L. Graham, An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set.
Information Processing Letters 1 (197pp. 132-133.

[PD95]

[PS85]
[SG92]
[SWCD97]
[TGO1]

[W94]

- 21 -

D. J. Peuquet and N. Duan, An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal
Analysis of Geographical Datint. Journal of Geographical Information Systems 9:1 (19%)

7-24.

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. Springer-Verlag,
New York, 1985.

T. W. Sederberg and E. Greenwood: A Physically Based Approach to 2-D Shape Bl&uatimg.
puter Graphics (Proc. ACM SIGGRAPH) 26:2 (1998) 25-34.

A. P. Sistla, O. Wolfson, S. Chamberlain and S. Dao: Modeling and Querying Moving Objects.
Proc. Int. Conf. on Data Engineering, pp. 422-432, 1997.

E. Tagssebro and R. H. Giiting, Creating Representations for Continuously Moving Regions from
Observations. FernUniversitat Hagen, Informatik-Report, in preparation, 2001.

M. F. Worboys, A Unified Model for Spatial and Temporal Informatiditne Computer Journal

37:1 (1994) pp. 25-34.

	1 Introduction
	2 Representing Regions and Moving Regions
	3 The Easy Case: Interpolating Between Two Convex Polygons
	4 Representing Non-Convex Polygons by Nested Convex Polygons
	4.1 The Convex Hull Tree
	4.2 Computing a Convex Hull Tree from a Polygon

	5 Matching Corresponding Components
	5.1 Requirements for Matching
	5.2 Strategies for Matching
	5.3 Matching Two Convex Hull Trees

	6 Interpolating Between Two Arbitrary Polygons
	7 Experimental Results
	8 Related Work
	9 Conclusions
	References

