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Abstract

This paper presents a method for representing uncer-
tainty in spatial data in a database. The model presented
requires moderate amounts of storage space. To compute
the probability that an object is at a particular place, the
representation employs probability functions that can be
computed quickly and efficiently. This is different from an
advanced model presented by the same authors. This
medium complexity model is less powerful, but requires
much less storage space, and computing probabilities is
much less complicated.

1. Introduction

In many cases, one does not have accurate measure-
ments of the position and shape of a geographic or spatial
object. However, one often knows roughly where the object
may be, and how uncertain its position or shape is. When
storing such objects in a spatial or spatiotemporal database,
it is therefore important not just to be able to store the fact
that the object is uncertain, but to somehow store how
uncertain the object is.

Spatial and spatiotemporal objects may be uncertain
because the measurements needed to place the object accu-
rately are too expensive, or because exact measurements
are impossible. Two examples of this are given below. In
the first example, it is theoretically possible but practically
infeasible to make exact measurements. In the second
example, it is impossible to measure the objects exactly.

Example 1: Imagine you have scientists who are driv-
ing around making measurements in the Sahara desert to
determine the extent of underground water reservoirs. The
scientists themselves are uncertain points due to the impre-
cision of the positioning system that they use. The roads are
uncertain lines because the roads in the Sahara desert are
more like routes that shift as the sand dunes move than
paved roads. The water reservoirs that the scientists are
studying are uncertain regions because they are located
deep underground and it is therefore not feasible to do more
than a few measurements at each site. The scientists there-

fore lack the necessary information to define them pre-
cisely.

Example 2: In a historical spatial database1 one may
need uncertainty about all three spatial data types. The
extents of ancient empires are uncertain regions, because
one may not know precisely where the borders were. Rivers
were important for both trade and agriculture in the past,
and these rivers have shifted in their beds several times.
Therefore, many rivers should be stored as uncertain lines.
Some ancient cities may only be known from written
records, which may be imprecise about the location of the
city. Such a city should be stored as an uncertain point.

Our model should be useful in representing and manip-
ulating cases like those described in Example 1 and Exam-
ple 2.

In [2], an ontology of different kinds of uncertainty is
defined. Imperfection is considered to be the general form
of uncertainty. Error is when measurements do not reflect
reality. Imprecision is when measurements are lacking in
specificity or are incomplete. [2] considers vagueness2, to
be a subcategory of imprecision.

The basic goal of this paper is representing uncertainty
in the position or extent of an object, regardless of the
source of that uncertainty. In the rest of this paper, uncer-
tainty therefore means either measurement error or impreci-
sion due to incomplete knowledge. This definition of
uncertainty is shown by the dashed box in Figure 1.

1. A database containing map data about ancient civilizations.
2. An example of a vague statement would be that Bergen is in the south

of Norway, because the south of Norway is not clearly defined.
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In [11], we gave an overview of our work on uncer-
tainty in spatial and spatiotemporal databases. This paper
will present a medium complexity discrete model, being
one of three different discrete models designated in that
paper. A discrete model is a model that is directly imple-
mentable, unlike abstract models that often use infinite
point sets. The new model will be compared to the
advanced discrete model from [12] with respect to storage
requirement, how easy it is to implement some operations
on them, processing speed of the operations and modelling
capabilities.

The data model described in this paper has been par-
tially implemented by the first author. All three data types
have been implemented as java classes, which include
some important operations on these types.

2. Related work

There are two basic discrete methods for storing spatial
data, the raster and vector models. The raster model divides
space into a partition (typically a grid) and stores one value
in each cell. For vague data, [6] and [7] present raster mod-
els in which a fuzzy membership value is stored in each
cell. Fuzzy sets [17] is a type of set in which the member-
ship of an individual may be fuzzy, that is, have a value
between 0 and 1. The problem with raster models is that the
data volume quickly becomes very large if the spatial
objects are to be stored accurately. The advantage of raster
models is that the values of arbitrarily complex functions
may be stored explicitly in the cells. Also, overlay opera-
tions in which the values from two functions are combined
are much easier to compute for raster models than for vec-
tor models.

Vector models, on the other hand, store the boundary of
a region as a set of line segments. This form of storage is
more complex, but usually takes much less space. An
example of a vector model for uncertain regions is pre-
sented in [9]. However, you cannot store probability func-
tions with this model. One approach for storing distinct
probabilities in such a model is to store a number of differ-
ent regions, one inside the other, where each successive
region has a higher probability than the one before. This
method is used to compute fuzzy intersection in [10].

An early model for uncertain points and lines is pre-
sented in [4]. In this model, an uncertain point is stored as a
central point with a circular deviation. The probability of a
point being at any one place follows a bi-gaussian distribu-
tion over the deviation. Lines are made up of a series of
such points. The probability of each of these potential line
segments is the product of the probabilities of the two
points being at those precise locations.

[8] describes a way to model uncertainty in the location
of the boundary of a region that uses probabilistic error
bands. This means that on each side of the estimated border
there is an area with a certain width in which the border can
be. Additionally, the probability that a point p is inside the
area is a function of the distance from the estimated border
to p.

[15] describes a model for fuzzy boundaries between
regions in which the fuzzy membership function indicates
how sharp the boundary is. A membership of 1.0 indicates
a crisp boundary.

[1] describes several ways to extract fuzzy objects from
observations. These methods use a combination of fuzzy
sets and probability theory. The model that they use is a
raster model because fuzzy membership values are stored
in each cell. However, they also group the cells into objects
according to different criteria.

[16] uses rough sets to define the outer and inner
boundaries of possibly imprecise spatial objects. [16]
defines resolution objects that are partitions on the underly-
ing space, and shows how to convert objects from one reso-
lution to another. This process may introduce imprecision
even if the original representation was precise because the
object may only partially overlap the new partition parts.

A discussion of the last five models compared to our
work will be given in Section 7.

3. Basis for the new model

As mentioned in Section 2, there are two basic model-
ling techniques for creating a discrete model: raster and
vector. The vector approach is chosen in this paper because
rasters require much more storage space for regions, and
lines may become inaccurate when stored in a raster for-
mat. Additionally, this paper presents ways to compute
probability functions in a vector model, so that a raster
model is no longer needed to store probability values or
fuzzy set values.

Spatial data types in this paper are given names in the
following format: The type name begins with an A for
abstract or a D for discrete. For the uncertain types, DA
means advanced discrete and DM means medium-com-
plexity discrete. After these initial letters, the type name is
given in subscript, with an initial U if the type is uncertain.
For instance DMUPoint is a medium-complexity discrete
uncertain point.

The types for crisp spatial data listed in Table 1 will be
used to define the types in this paper. These are taken from
[5] with the exception of DSeg and DCurve. These two are
different because a more specialized definition of lines is
needed in the uncertain case. In this paper, the following
terminology will be used for lines. A line segment is a



straight line going between two points. A curve is a single
continuous line that does not intersect itself. A curve con-
sists of a set of line segments. A line is a set of curves.

The basic idea from [11] is that all uncertain objects,
regardless of type, are known to be within a certain crisp
region. It may also be known where the object is most
likely to be. This is modelled as a function over the plane
for all three types1.

The abstract uncertain point (AUPoint) is modelled as a
region with a probability density function indicating where
the point is most likely to be. The abstract uncertain curve
(AUCurve) is modelled as a core line with gradient lines
crossing it, and probability functions for both of these. The
probability distribution function along the core line repre-
sents uncertainty about the existence of the line and the
length of the line. The probability density function along
the gradient lines represents the fact that the exact location
of the line is not known. These gradient lines must form a
crisp face which is the area in which the line might possi-
bly be.

The abstract uncertain face (AUFace) is modelled as a
probability distribution function over the plane. The set of
points with function value above 0 must form a crisp face.

4. Medium complexity model

The model presented in [12] manages to model many
aspects of uncertainty, but at the cost of increased complex-
ity and increased storage space, especially for points. For
applications which requires the full power of the model
from [12], that model would be good. However, for many
applications a simpler model may be sufficient. This sec-
tion presents a model that is simpler than the model from

[12], while maintaining the goal of modelling all uncertain
spatial data types.

In these definitions, ProbMass(P) indicates that P(x) is
a probability mass function and ProbFunc(P) indicates that
P(x) is a probability distribution function.

• Probability Mass Function:

• Probability Distribution Function:

Probability mass functions are used whenever there is
only one random variable. Because there is only one ran-
dom variable, the sum of the probability masses of all pos-
sible singleton events should be at most one. For instance,
an uncertain point can be at only one place. Therefore the
probability distribution of an uncertain point should be a
probability mass function. A simple way of storing a one
dimensional probability mass function that is shaped as a
series of steps is described in [3].

Probability distribution functions are used whenever
there are multiple random variables. Each point that is a
potential member of an uncertain region is a random varia-
ble of its own. Therefore the probability distribution of an
uncertain region should be a probability distribution func-
tion.

Probabilities (DAProb) are floating point numbers
between 0 and 1. In discussing the types, the number sys-
tem used for coordinate values will be referred to as CVS.
In these definitions, the Core is where the spatial object is
known to exist. The Support is the region where the object
has a probability greater than 0 of being. An Alpha-
Cut(object, alpha) is the region in which the probability of
the object being there is greater than alpha.

4.1. Uncertain Points

One major problem with the model for uncertain points
from [12] is that the storage space needed may be far larger
than that needed for crisp points. If the database models
mainly points and if storage space is an issue, models
requiring less storage space may be needed. One way to
limit the amount of storage space needed is to limit the
number of points that make up the boundary of support of
the uncertain point. One natural way of doing this would be
to store the distance from the central point to the boundary
of the support at certain predefined angles, such as every
45 degrees. An example of such an uncertain point is
shown in Figure 2.

The probability mass values of the uncertain point can
now be computed based on the relative distance from the
central point and the edge of the support.1. Points, lines and regions.

Table 1: Types for crisp spatial data

Type name Type definition

DPoint A single point

DPoints A set of points

DSeg A single line segment consisting of a start 
point and an end point

DCurve A set of DSeg forming a continuous line

DCycle A DCurve where the start point and end point 

are the same
DFace Area that has an outer cycle and a number of 

disjoint hole cycles
DRegion Consists of a number of disjoint faces

ProbMass P( ) x:P x( ) 0≥∀( ) P x( )
x

∑ 1≤∧≡

ProbFunc P( ) x: P x( ) 0≥ P x( ) 1≤∧( )∀≡



Definition 1: The uncertain point is defined as follows:

The disadvantage of this model compared to the previ-
ous one is that it cannot model holes, and that it can only
model uncertain points in which there is a straight line
from the central point to any point in the support. 

Another problem with this model is that the results of
spatial set operations such as finding the intersection of an
uncertain point and a face1 are not necessarily members of
the base type. They are not members because the result can
have corners in different places than on the particular
angles that are stored for the uncertain points. One solution
is to store the normal point and to indicate that the proba-
bility mass function is the product of the normal probabil-
ity mass function and the probability distribution function
of the face. This problem does not occur in the advanced
model from [12] because the support of the point can be an
arbitrary face in that model.

One advantage of this model compared to the advanced
one is that the storage space needed is known and bounded.
Storing a single distance for every 45 degrees yields eight
numbers. Because the central point needs two and the prob-
ability mass function requires one, this means that the
uncertain point takes 11 numbers to store, or 5.5 times as
much as a crisp point. For a number of angles n, the uncer-
tain point takes  times as much space.

An alternative to this model might be to store a variable
number of distances and angles. This would require that the
angle was also explicitly stored and would have the prob-
lem of an arbitrary number of angles. This means that such
a solution is essentially the same as the one presented in
[12]. To conserve storage space, one would have to limit
the number of angles and distances stored.

The uncertain points set type is a set containing only
DMUPoint values.

4.2. Uncertain Lines

The storage cost for an uncertain curve in the model
from [12] is 3.75 times that of a crisp curve. This section
will describe a model which takes somewhat less space.
Another advantage is that it is very easy to compute proba-
bilities for this model. The method for doing this will be
described in Section 5. One disadvantage is that the model
presented here does not allow holes in the support. Another
problem is that spatial set operations, such as finding the
parts of an uncertain line that is inside a given region, may
require some additional support. This problem is further
discussed in [14].

The basic idea is to store a central line, as well as cross-
ing lines for each stored point along the central line. These
crossing lines are equally long on each side of the central
line, and determine the extent of the support of the line.
These crossing lines are the “gradient lines” from [11] for
the end points of each line segment. In the interior of the
line segment, the gradient lines have an angle which is lin-
early interpolated between the two gradient lines at the end.
The support of the uncertain curve is determined by taking
straight lines between the ends of all the crossing curves.
Straight lines are used to make it easier to run plane-sweep
algorithms on the support.

One example of a line stored in this fashion is shown in
Figure 3. From this figure, one can clearly see how the
crossing lines determine the shape of the support of the
uncertain line.

The only aspects that need to be stored about the cross-
ing lines (Hereafter called CrossCurves) are the length of
the line and the angle between the line and the segment to
which it belongs.

Definition 2: The CrossCurve is defined as follows:

In this formula, ANG is an angle. Angles are repre-
sented with floating-point numbers.

A line segment in this model may be defined as a single
line segment of the central curve and the CrossCurves at1. This is the part of the support of the uncertain point that is inside the
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Figure 2: Medium complexity uncertain point with eight 
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Figure 3: Medium complexity uncertain curve
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each end of it. Each line segment contains a probability dis-
tribution function indicating how likely it is that the actual
line exists in the various parts of the segment as well as its
probability of existing at the beginning and end. The line
segment also contains a probability mass function which
applies along the CrossCurves. Storing the probability
mass function in the segment rather than for the entire
curve makes one able to use different functions for differ-
ent parts of the curve. However, there will be discontinui-
ties in the probability values if the function changes.
Therefore, most curves should use a single function
throughout the curve. The option to use different probabil-
ity functions is there to enable union and intersection oper-
ations on uncertain regions with different probability
functions (See Section 4.3).

Definition 3: The medium complexity uncertain segment
is defined as follows:

CenteredOn means that the given point is on the middle
of the CrossCurve. 

Definition 4: The medium complexity uncertain curve is
defined as follows:

ContCurve is true if the set of uncertain segments forms
a continuous curve. They form a continuous curve iff for
all  except possibly one1, there exists a  such
that  is
true. Ccross for uncertain segments is true iff their central
curves cross. 

In Figure 3 the CrossCurves at the end have length 0.
To model a crisp curve, all the CrossCurves should have
length 0.

Compared to a crisp line, the CrossCurves and function
references have an additional cost. A single CrossCurve
contains two numbers. That means that the two crosscurves
in the uncertain segment require four numbers. The uncer-
tain segment requires four numbers. The probability values
require two numbers. The probability functions require two
numbers. Because a crisp line segment can be stored with
four numbers, an uncertain line segments takes 12/4=3
times as much space as a crisp one. This is only slightly
better than for the advanced model.

The uncertain line is defined as a set of uncertain
curves.

4.3. Uncertain Regions

One problem with both the abstract model from [13]
and the model presented in [12] is that the border of an
uncertain region sometimes is not a valid uncertain line.
This may be solved by defining the uncertain face the same
way as the crisp face with the exception that uncertain
cycles are used instead of crisp ones. An example of such a
face is shown in Figure 4. An uncertain hole in the core can
be stored in this model by using an uncertain cycle which is
not certain to exist.

Definition 5: The uncertain cycle is defined as follows:

In this definition, IsCycle means that the set of uncer-
tain segments forms a cycle. A set of uncertain segments
forms a cycle iff both the central line and the outer lines
form cycles, all of the segments have DUSeg.pf = 1.0 for all
the points along the segment, and the probabilities of exist-
ence of all the segments are the same. ConstProb means
that all the line segments in the set have the same constant
probability of existing.

A hole in the support of an uncertain region is stored
like a regular hole. When computing probabilities or iso-
lines, one computes these for both the outer line and the
uncertain hole. If one uses fuzzy set mathematics, which
are less accurate but easier to compute, alpha-cuts can be
produced by taking the alpha-cut of the main face and sub-
tracting the same alpha-cut of the hole. When using proba-
bility theory it becomes more complex because the1. The last segment.

DMUSeg cc bc ec pb pe p, , f pc, , , ,( )
cc DSeg∈ bc DCCur∈ ec DCCur pb DAProb∈
pe DAProb∈

∧ ∧∈
ProbFunc pf( ) ProbMass pc( )

CenteredOn bc cc.sp,( ) CenteredOn ec cc.ep,( )

∧ ∧
∧ ∧ ∧

∧

{

}

≡

DMUcurve SS pe,( )
SS DMUSeg⊆ pe DAProb∈
ContCurve SS( )

a∀ SS∈ b∀ SS∈ a b≠, , Ccross a b,( )¬→

∧ ∧
∧

{

}

≡

a SS∈ b SS∈
a.cc.endpoint b.cc.begpoint=( ) a.ec b.bc=( )∧

Figure 4: Medium complexity uncertain face
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functions are multiplied together rather than taking the
maximum or minimum. 

This model cannot store a face with multiple core
regions directly. This can only be done by storing several
faces that have overlapping supports but non-overlapping
cores in the same uncertain region.

However, it is very easy to determine the probability
function at individual points as well as iso-lines of proba-
bility. In Section 5 it will be shown that this is even easier
for these regions than it is for medium complexity uncer-
tain lines.

The uncertain face also uses a different kind of proba-
bility function than the uncertain curve. In the gray area
enclosed by the cycles, the probability of existence is
always 1. Inside the supports of the uncertain cycles, the
probability of existence is the sum of the probability mass
function of the uncertain curve taken from outside and
inward. To avoid having to compute this, it might be better
to store this sum directly as a function rather than storing
the probability mass function for the curves. If the function
of the curves is also needed by the application, both may be
stored together.

The definition of the uncertain face is taken from [5]
and modified to use uncertain cycles.

Definition 6: The uncertain face is defined as follows:

In this definition, EdgeInside means that all the line
segments of a are in the interior of the cycle defined by bc
with 100% certainty, and EdgeDisjoint means that the inte-
riors of two cycles are certainly disjoint. The sum of a
probability mass function is a probability distribution func-
tion. Therefore, ps is a probability distribution function.
Existence is the probability that an uncertain object exists.

The definition of the uncertain region is a set of non-
overlapping uncertain faces.

To make this model computationally closed under nor-
mal set operations, ways of dealing with uncertain curves
that cross each other must be introduced. In Figure 5, the
union and intersection of two example objects are shown.
From this figure, one can see that the results of such set
operations contain places in which one have to use just
parts of some uncertain segments. The dotted lines from
the figure shows where the segments are divided. This line
also separates between segments that originated in the two
curves.

However, this does not solve the problem when there is
one or more CrossCurves inside the area in which the lines
may possibly intersect. The solution to this problem is
omitted due to space constraints. It is described in [14].

The increase in storage space for an uncertain region
compared to a crisp region in this model is the same as for
the uncertain curve (3X). This means that it actually costs
slightly more storage space to store an uncertain region in
this model than one stored in the model from [12]. 

However, for this slight increase in storage space, we
gain the ability to compute alpha-cuts and the probability
that a given crisp point is inside the region in an efficient
and consistent manner. This is very difficult for the model
from [12].

5. Storing and computing probability 
functions

The goal of this section is to find ways of using one-
dimensional functions to compute the probabilities or prob-
ability densities rather than two-dimensional ones. This is
done because one-dimensional functions are much easier to
define for the user of the system and much easier to store
and compute for the computer.

For the following algorithm to work, the probability
functions should be functions that accept input values from

DMUFace bc HS ps pe, , ,( )
bc DMUCyc∈ HS DMUCyc⊆
ProbFunc ps( ) pe DAProb∈

a∀ HS∈ EdgeInside a bc,( )→
a∀ HS∈ b∀ HS∈ a b≠, , EdgeDisjoint a b,( )→

bc.sc.pe 1≡

∧ ∧
∧ ∧

∧
∧

{

}

≡

Figure 5: Union and intersection of medium complexity regions

a) Original objects b) Union c) Intersection



0 to 1. The actual distances should be scaled to be between
0 and 1.

For the lines and regions in the medium complexity
model, computing the probability functions is easy. In the
end points of each uncertain line segment, the probability is
computed along the CrossCurves. In the interior of
regions, the function value for a point p should be com-
puted as follows: 

1. Take the lines A and B (the central line) from Figure 6
and compute the point M in which they intersect

2. Compute the line C from M to p.
3. Compute the point c or d where the line C crosses the

CrossCurves.
4. Compute the distance H between the point c and the

central curve B along the CrossCurve.
5. Find how long H is compared to the CrossCurve. This

ratio determines the value of the probability distribu-
tion function for point p.

Two special cases need to be considered. The first is if
the lines A and B are parallel, because in this case there is
no meeting point M. In this case, the line C should be paral-
lel to A and B and go through p.

The second is if the line A has length 0. In this case the
line A becomes the point a. Compute the line K that passes
through both a and p. H is now the distance from p to the
line B along K, and the ratio from 5) uses the length of K
instead of the length of the CrossCurve.

This method of computing probabilities has several
advantages compared to other models. In Dutton’s model
for uncertain lines, one would need to take the sum of the
probabilities of all the possible lines that might cross p to
determine the probability that the line was in p. This is
much more costly than the procedure outlined above.

Computing iso-lines of the probability is also simple in
the model presented here. The iso-line passing through
point p in Figure 6 is line C.

For lines, the process to compute individual probability
values is similar to the process for regions described above.
The process for lines requires one more step:

6. Find how long the distance L is compared to the dis-
tance between c and d. This ratio is used to find the
probability that the curve exists at point p.

This probability is then multiplied with the probability
value from step 5.

One also uses a probability mass function along the gra-
dient lines rather than a distribution function. This mass
function needs to be normalized to yield a sum of 1 regard-
less of the length of the gradient. Instead of using H and the
length of the CrossCurve to determine the probability func-
tion, one has to find the length of the gradient that passes
through p. The angle between this line and line B is linearly
interpolated. Because the length of L is known, this ratio is
easy to determine. One then needs to find where this gradi-
ent crosses A and B. Then the distance between A and B
along the gradient and the location of p on the gradient is
used to determine the value of the probability mass func-
tion.

For lines, computing iso-lines of a given probability is
only slightly harder than for regions as long as the proba-
bility functions are linear. If both DMUSeg.pf and
DMUSeg.pc are linear, the iso-lines will be straight lines.
Then one just needs to compute the location of the iso-lines
along the CrossCurves.

6. Implementation

The model presented in this paper has been imple-
mented as a set of java classes. A number of the operations
from [14] have also been implemented for these types. The
implementation was designed with one class for each type
(point, points, curve, line, face, region) as well as super-
classes for types with common properties. Some screen-
shots from the implementation are shown in Figure 7.

Although set operations for all types are fundamentally
based on the same mathematical concepts, they must be
implemented differently. The union of two sets of uncertain
points can be performed normally. However, the union of
two uncertain regions must check for overlaps between the
member faces and join together those that overlap. This is
because the semantics of union for regions is a union of the

p
M

L
c

A

BH

dC

Figure 6: Computing probability values for medium complexity uncertain segments



set of points that is contained in the region, not a union of
the face sets.

As we have used fuzzy set mathematics instead of the
more complex probability theory, some operations are
fairly easy to implement. For instance, it is possible to han-
dle holes in uncertain faces that overlap with the support.
However, fuzzy set mathematics yields less accurate results
for uncertainty. The full discussion on this is omitted due to
space constraints, but may be found in [14].

7. Discussion

This paper has presented a new discrete model for stor-
ing uncertain spatial data. The advantages of this model
over the advanced model from [12] is that it takes much
less storage space and that the probability functions are
much easier to compute. One problem with this model is
that it cannot model holes in lines. It also cannot easily
model faces with disjoint cores but single support. Thus it
is less expressive than the advanced model. It also has the
problem that a special construct has to be defined to make
them computationally closed for regions. The advanced
model does not need any special considerations for this.

Compared with earlier models, the major advantage of
the new model for spatial data is that it can model all the
normal spatial data types. [4] only describes modelling
points and lines, although it is simple to extend his model
to regions. An advantage of the model presented here over
the model from [4] is that it is much easier to compute the
probability values. In [4], only the points have a probability
function, and to compute the probabilities of the line pass-
ing through a given point, one has to take the integral of all
possible placements of the two end points which would
yield a line passing through the given point. This integral is
infeasible to perform in practise in a database system,
although it could be done numerically in a simulator in
which one has a lot of time available.

The approaches for storing imprecise regions in [8] and
[15] are similar to our approach in that they store the uncer-
tainty in the border line. However, they cannot store lines
and points. These models are also more abstract in nature
than this model as they base themselves on continuous
lines rather than line segments.

The models from [1] and [16] are essentially rasters,
which means that they can store complex functions but
take a lot of storage space.

Compared to [9], our model is able to store more types
of data and is also able to store probability functions. The
method for computing fuzzy intersection from [10] is very
costly if one desires high accuracy because one would have
to store many regions, one inside the other. Our method
produces fairly accurate results with a much lower storage
requirement.

The different advantages and drawbacks of the model
presented here and the advanced model presented in [12]
show that none of the two models are obviously superior to
the other. One should choose which to use based on what
data one has and which functionality and operations one
needs.

Storing spatial uncertainty takes more space than only
storing crisp data. How much depends on the model cho-
sen. For the model presented here, uncertain lines and
region require three times as much space and uncertain
points take 5.5 times more space than crisp ones. This is a
smaller increase than in [12], but still significant.

Because the model presented here models points, lines
and regions in a uniform way, it is better suited to databases
like Example 1 than previous models which handles only
one or two of the types. The types presented here are better
integrated than a system consisting of a point model, a line
model and a region model from different authors chosen
because they are good models for the individual types. We
are currently working on the issue of the completeness and
computational closeness of this model. Converting from
line to region (enclosed_by operation) and from region to

a) Two uncertain curves b) Support of one of the uncertain curves

Figure 7: Screen shots from the implementation

c) Core of an uncertain face



line (border operation) is trivial in this model because the
border line of an uncertain face is explicitly stored in the
face. Such conversion from point to line (connecting_line
operation) and line to point (end_points operation) will be
published elsewhere. Of course, conversion from point to
region and vice versa is not applicable.

The time taken to process data depends on the opera-
tion. Plane-sweep algorithms typically take O(n*log(n))
time. However, these do not usually run on all the points at
once. For regions with only spatial uncertainty, they run on
the core region and the support region separately. There-
fore the increase in processing cost is proportional to the
increase in data stored. This is also true for uncertain lines,
although the support here normally takes twice as much
space as a crisp line. This means that an operation on the
core will take somewhat longer compared to the size of the
line than operations on crisp lines would. Only for points is
there an increase in processing cost significantly greater
than the data increase, because operations that before only
had to operate on a single point now have to operate on the
support of the point, which consists of eight points.
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