A WIMF SCHEME FOR THE DRIFT-FLUX TWO-PHASE FLOW MODEL

STEINAR EVJEA-B.D TORE FLATTENB:A AND SVEND TOLLAK MUNKEJORD®

ABSTRACT. In this paper we investigate generalisations of a class of hybrid explicit-implicit
numerical schemes [STAM J. Sci. Comput., 26 (2005), pp. 1449-1484], originally proposed for
a two-fluid two-phase flow model.

We here outline a framework for extending this class of schemes, denoted as WIMF (weakly
implicit mixture flux), to other systems of conservation laws. We apply the strategy to a different
two-phase flow model, the drift-fluz model suitable for describing bubbly two-phase mixtures.

Our analysis is based on a simplified formulation of the model, structurally similar to the
Euler equations. The main underlying building block is a pressure-based Lax-Friedrichs type
scheme. Explicit upwind fluxes are incorporated, in a manner ensuring that upwind-type reso-
lution is recovered for a simple contact discontinuity.

The derived scheme is applied to the general drift-flux model. Numerical simulations demon-
strate accuracy, efficiency and a satisfactory level of robustness.

subject classification. 76T10, 76M12, 65M12, 35165
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1. INTRODUCTION

Numerical methods for hyperbolic conservation laws may be divided into two main classes;
the explicit and the implicit methods. For each wave velocity A; associated with the system, the
stability of explicit numerical schemes is subject to the CFL criterion

=2 >N, 1
> 1)

whereas suitably chosen implicit numerical schemes are unconditionally stable with respect to the
time step. However, this improved robustness comes at the price of impaired accuracy.

Consequently, when there is a large disparity between the various eigenvalues A;, a possible
technique is to split the system into its full wave decomposition and then

e resolve the fast waves by an implicit method;
e resolve the slow waves by an ezplicit method.

By this, one aims to obtain an accurate resolution of the slow waves without being hampered by
stability requirements pertaining to the fastest waves.

Such hybrid explicit-implicit methods are most naturally obtained in the context of approzimate
Riemann solvers; see for instance [7] or [14, 23] for applications to two-phase flows.

However, this full wave structure decomposition is generally computationally costly; in particu-
lar, this is the case for standard two-phase flow models [6, 29]. Efficiency considerations motivated
us to consider alternative strategies for numerically identifying the various waves of the two-phase
system. In a series of papers [10, 11, 12], we investigated a flux hybridization technique, where
upwind resolution was incorporated into a central pressure-based scheme by a splitting of the
convective fluxes into two components.

In [10, 11, 12], we considered the two-fluid two-phase flow model. The primary aim of this
paper is to extend the WIMF scheme of [11, 12] to the related drift-flux two-phase flow model,
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allowing us to violate the CFL criterion pertaining to the sonic waves while recovering an explicit
upwind resolution of a certain class of linear material waves. This allows for improved efficiency
as well as accuracy compared to fully explicit methods.

Furthermore, we discuss in more detail how appropriate flux hybridizations may be obtained
from an analysis of known linear phenomena associated with more general models. In this respect,
we aim to shed some light on how the WIMF approach may be extended to other systems of
conservation laws.

Our paper is organized as follows: In Section 2, we present the drift-flux model we will be
working with. In Section 3, we construct an implicit central scheme for the drift-flux model, using
a numerical pressure-momentum coupling based on [11, 12]. In particular, we propose a linearized
scheme able to preserve a uniform pressure and velocity field.

In Section 4, we outline a framework for a general construction of WIMF-type schemes. In
Section 5, we apply this framework to hybridize the implicit central scheme with an explicit
upwind scheme — in such a way that the upwind flux is recovered for a moving or stationary
contact discontinuity, while allowing for violation of the sonic CFL criterion. In particular, the
resulting WIMF scheme preserves such a contact when the CFL number is optimally chosen.

In Section 6, we present numerical simulations where we compare the behaviour of the WIMF
scheme to a fully explicit approximate Riemann solver. The results of the paper are summarized
in Section 7.

2. THE Two-PHASE FLOwW MODEL

To avoid excessive computational complexity, workable models describing two-phase flows in
pipe networks are conventionally obtained by means of some averaging procedure. Different choices
of simplifying assumptions lead to different formulations of such models [28, 30].

The models may be divided in two main classes:

o two-fluid models, where equations are written for mass, momentum and energy balances
for each fluid separately.

e mizture models, where equations for the conservation of physical properties are written
for the two-phase mixture.

Mixture models have a reduced number of balance equations compared to two-fluid models,
and may be considered as simplifications in terms of mathematical complexity. The missing
information must be supplied in terms of additional closure laws, often expressed in terms of
empirical relations. A more detailed study of the relation between two concrete two-phase models,
one two-fluid model and one mixture model, can be found in [13].

When the motions of the two phases are strongly coupled, it would seem that mixture models
present several advantages [5]. Mathematical difficulties related to non-conservative terms and
loss of hyperbolicity, commonly associated with two-fluid models, may be avoided. Some physical
effects, such as sonic propagation, may be more correctly modeled [15]. Finally, the simplified
formulation of the mixture models may allow for more efficient computations for industrial appli-
cations [24].

For these reasons, mixture models are of significant interest both to the petroleum and nuclear
power industries [32]. The particular model investigated in this paper is termed the drift-fluz
model — it is in widespread use by the petroleum industry for modelling the dynamics of oil and
gas transport in long production pipelines [23, 24, 27].

2.1. Model Formulation. Following [8], we express the model in the form below:

e Conservation of mass

0 0

ot (pgarg) + oz (pgagvg) =0, (2)
0 0

— (pece) + = (pecagvy) = 0, (3)

ot or
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e Conservation of mixture momentum

% (pgargvg + peaveve) + 8% (Pggvi + pecev; +p) = Q, (4)
where for phase k£ the nomenclature is as follows:
pr - density,
v - velocity,
ar - volume fraction,
p - pressure common to both phases,
@ - non-differential momentum sources (due to gravity, friction, etc.).

The volume fractions satisfy
ag +ay=1. (5)
Dynamic energy transfers are neglected; we consider isentropic or isothermal flows. In particular,
this means that the pressure may be obtained as

p = pg(pg) = pe(pe)- (6)

2.1.1. Thermodynamic Submodels. For the numerical simulations presented in this work we assume
that both the gas and liquid phases are compressible, described by the simplified thermodynamic
relations

pe = peo+ P —2p0 (7)
ay
and »
- £ 8
Pg a’é ( )
where
po = 1 bar = 10° Pa
peo = 1000 kg/m®,
aé =10° (m/s)?
and

ar = 10° m/s.
An exception is the numerical example of Section 6.4, where the gas compressibility is altered so
that a previously published solution may be reproduced.

2.1.2. Hydrodynamic Submodels. As the model employs a mizture momentum equation, addi-
tional supplementary relations are required to obtain the information necessary for determining
the motion of each phase separately. These constitutive relations, sometimes referred to as the
hydrodynamic closure law [1], may be expressed in the following general form

vg — Uy = (I)(pa afavg)' (9)
The relative velocity v = vy — v between the phases is often referred to as the slip velocity; for

this reason, the closure law (9) is also commonly known as the slip relation.
Of particular interest is the Zuber-Findlay [33] relation

vg = K(0ogug + o) + S, (10)

where K and S are flow-dependent parameters. This expression is extensively used and is physi-
cally relevant for a large class of mixed flow regimes, see for instance [3, 17, 20].

Remark 1. For industrial cases, ® is commonly stated as a complexr combination of analytic
expressions valid for particular flow regimes, experimental correlations, and various switching
operators. For practical purposes, it may be considered as a black box. Hence, it is desirable to
obtain numerical schemes whose formulation are independent of the particular form of ®. This
aim will be achieved in this paper, although for simplicity, the numerical test cases we investigate
will mainly be based on the Zuber-Findlay relation (10).
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3. AN IMPLICIT SCHEME

In the context of two-phase flows, the implicit schemes currently in use may be divided into
two main classes:

e Pressure-based schemes, based on methods originally developed for single-phase gas dy-
namics [26]. Examples include the OLGA [4] and PeTra [22] computer codes developed for
the petroleum industry. These schemes typically require the construction of a staggered
grid, and care must be taken to avoid numerical mass leakage.

e Approximate Riemann solvers, for instance the Roe scheme of Toumi [32] or the rough
Godunov scheme of Faille and Heintzé [14]. Such schemes are formally conservative and
enforce an upwind resolution of all waves; however, they are computationally expensive.

The approach we take in this work represents a unification of the above two different classes.
In particular, we propose in this section an implicit scheme that may be interpreted as a central
pressure-based scheme. Here we follow the standard pressure-based approach of splitting the
system into pressure and convection parts, and coupling the pressure calculation to the convective
fluxes.

3.1. The Central Pressure-Based Scheme. We consider a spatial grid of N cells, each of size
Az, indexed by

jel,...,N]. (11)
Furthermore, the time variable is discretized in steps At, indexed by the letter n as follows:
t" =" + nAt. (12)

Now to adapt the schemes of [11, 12] to the drift-flux model, we divide the calculation into two
stages:

(1) Fluz linearization: We formulate linearized evolution equations for the convective mass
fluxes, which are solved implicitly coupled to the pressure p?if/z- This is described in
Sections 3.1.3-3.1.6.

(2) Conservative update: Then, in Sections 3.1.7-3.1.8, we describe how to use these fluxes to
update the conservative variables while maintaining consistency with the slip relation (9).

3.1.1. Fluz Splitting. We write the two-phase flow model (2)—(4) in vector form

U  IJF(U)
i =Q(U 13
-+ =Q(U), (13)
with
Pgg PgQglg 0
U= Pe0y 5 F(U) = PeCyUp , Q(U) = 0 (14)
PgOtgVg + Proyvy pgagvg + pragv? +p Q
We consider a splitting of the flux into convective and pressure parts as follows:
F(U) = G(U) + H(U), (15)
[ e o]
G(U) = PeOpUp , H(U) =] 0 |. (16)
[ peoe + e | v ]

3.1.2. Pressure Evolution Equation. The following partial differential equation holds for evolution
of the pressure variable:

Op 0 0
a5 T HPZ% (pgrgug) + Hpg% (peceve) = 0, (17)

where .
K= . 18
(Opg/0p) peag + (Ope/Op) pgove (18)

The derivation is based on the mass equations (2)—(3), and is detailed in [10, 11].
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3.1.3. Convective Fluz Linearization. A flux-conservative discretization of the mass equations (2)
and (3) reads

T.L+1 _ —— ——

(prok)] (prar)} N (Peakvk)j+1/2 — (PROKVE)j—1/2
At Az

where k € g, . In the context of the two-fluid model [11, 12], we argued that the modified Laz-
Friedrichs fluzes

=0, (19)

1 1Az
(Prokvr)js1/2 = 3 ((prarve) 1 + (progor) 1) + YN ((orew)} — (prow) 1) » (20)

with an implicit central flux approximation and an ezplicit numerical viscosity, naturally lead to a
numerically well-behaved pressure-momentum coupling. For the two-fluid model, the momentum
variables are solved separately, so (20) directly gives rise to a linearly implicit scheme as described
in [11, 12].

However, for the drift-flux model, the individual momentum variables are generally connected
through a nonlinear slip relation. Consequently, a scheme based directly on the fluxes (20) may
require an iterative solution procedure. This is undesirable.

Hence we propose to replace the expression (20) with a linearly implicit approximation:

1 1Az
(Prakvr)js172 = 5 ((praror); + (prakvr)js1) + 17 ((prar)? — (prow) 1) (21)
where the linearization
(prakvr); = (pragur)} + O(AL) ~ (pragv)§ ™ (22)

will be defined in the following.

3.1.4. Convection Evolution Equations. We seek a linearization (21) satisfying the following re-
quirements:

R1: The linearization should be independent of the particular choice of slip relation ®;
R2: The linearization should preserve a uniform velocity and pressure field.

These considerations suggest that we should base the linearization on the slip relation & = 0.
Under this condition, equivalently expressed as v = vy = v, the following evolution equations
hold for the momentum variables:

0 0 mg dp m

a1 (Pgrgvg) + 9z (Peagvy) + Tg% = TgQ (23)
and

0 0 my O m

g (pecvevy) + B (peceevy) 7l8_§ = 7[62, (24)

where we have used the shorthands
my = prQ, p = pgog + peag. (25)

A derivation of this result may be found in [13]. In the following, we will use precisely (23) and
(24) as the basis to obtain the approximation (22).

3.1.5. Conwvective Fluz FEvaluation. We discretize (23) and (24) as

—~— N2 _ 2
(Pgagly)j — (Pgagvg)? n (pgagvg)j+1/2 (pgagvg)j—lﬂ
At Az

+1 +1 —~——
mg np?-i-l/? —p?_1/2 _ [y
+—) —————F— = —@
P/ Az P

J
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and
/—\_/2 B /—\_/2
(peoveve)j — (peagve)} (plaévl)ﬂ-lﬂ (plaw")qu
At Az (27)
n+1 n+1 o~
N <@>n Pitie =Py <ﬂQ>
P/ Az P

That is, the mass flux (pmk)j+1/2 is defined by (21), (26), and (27). What remains, is to specify

the fluxes p}’illﬂ and (pkakv,%) . and we start with the latter. The pressure flux is specified
J+1/2

in Section 3.1.6. We propose to use linearized modified Lax-Friedrichs fluxes also for momentum

convection, consistent with (21), giving

(Pgagvé)j—klﬂ = §(Ug " PgQgUg)j + §(Ug " Pgligg)j+1 + YN ((Pgagvg)j - (Pgagvg)j+1) (28)

and

1 n n n
5 (WF - pragve) 1 + 1AL ((peaeve)} — (peaeve)fyy),  (29)

Note, that by this linearization we have the information required to construct the full convective
numerical flux vector given by

—~—

(pecevy) a2 = 5(”? " peavr)j +

~ (P@g)jﬂm
G’j+1/2 = o (péaﬂ)l)ﬂ/l@_/ . (30)
(Pgagv?)jt1/2 + (pecevi)jv1ye

3.1.6. Implicit Fluz Calculation. The equations (26) and (27) are solved implicitly coupled with
the following discretization of (17):

n+41 1
pj+1/2 - 5(]7? +p?+1) +[I€pg] (pgagvg)j+1 — (pgagvg)j ] (,0[0([0{)j+1 - (péalvl)j -0 (31)
o =0.

At Ax Ax
These equations constitute a linear system Az = b, where A is a banded matrix with two subdiag-
onals and two superdiagonals. This is fully analoguous to the pressure-momentum coupling used

+[kp

in [11, 12].
Following [10, 12], the coefficient variables [] = (-)}, /o are obtained from the following rela-
tions:
1
arjriz = 5@k + akg), (32)
1
Pkj+1/2 = 5(,01@,;' + Pk j+1) (33)
for phase k.
3.1.7. Conservative Update. Having obtained the flux component Gj+1/2, as given by (30), as well
as
o]
H; = 0
j4+1/2 [ it J (34)
Dit1/2

through the implicit couplings (26), (27) and (31), we may formulate a conservative scheme as
follows:
n+1 n
Uim —Uj | Finp—Fjp
At Az

= ij (35)

where

Fit12=Gjp12 +Hjpi)n. (36)
Hence we have formulated a fully conservative, linearly implicit scheme.
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3.1.8. Physical Variables. From the components (U;, U, Ug);-lJrl of the conservative variables U?H,
;-H'l as follows:
e Mass variables. We may write ag + oy =1 as

U U.
L4z 1, (37)
pg(p) ~ pe(p)
which may be solved for p and consequently «y.
o Velocities. The velocities v, and v, are obtained from simultaneously solving the equations
U; = Ul’Ug + Usvy (38)

vg — U = q)(pa afavg)' (39)

we may obtain physical variables (p, ay, vg, ve)

Definition 1. The numerical scheme described in Section 3.1, applied to the drift-fluz model
described in Section 2, will for the purposes of this paper be denoted as the pLxF (pressure-based
Laz-Friedrichs) scheme.

4. THE WIMF SCHEME

The pLxF scheme derived above evolves both the convective and pressure fluxes in an implicit
manner, and hence is potentially stable under violation of the CFL criterion (1) for the various
wave speeds \;.

On the other hand, the scheme reduces to an implicit modified Lax-Friedrichs scheme for linear
advection. The goal of this section is to hybridize the pLxF scheme with an explicit advection
upwind scheme, such that the hybrid scheme provides:

e An implicit central approximation of pressure waves, allowing for a stable resolution of
such waves under violation of the sonic CFL criterion.

e An explicit upwind approximation of material waves, allowing for more accurate resolution
of such waves.

To this end, we follow the WIMF strategy introduced in [11]. Using this approach, we avoid
a full decomposition of the system into sonic and material waves. Rather, a key idea behind the
WIMF approach is that the hybridization may be based on an approzimate wave splitting obtained
from analyzing simple linear phenomena inherent in the model.

In the following, we first discuss how we may go about extending the WIMF scheme of [11, 12]
to more general conservation laws. Then, we present a particular WIMF scheme adapted to the
drift-flux model.

4.1. A General Framework. We consider the system of conservation laws
oU  JF(U)

at T ox

=0, (40)

where U is an N-vector.

We now assume that the vector of conserved variables can be expressed in terms of reduced
variables pu(U) and v(U), i.e.

U = Ulu,v), (41)
where p and v are also N-vectors. This may be expressed in differential form as
ou ou
dU=|—) dp+ | =) dv. (42)
on/, o),

We are concerned here with identifying certain aspects of the model that we want to resolve in
detail. In the current context, we wish to identify linear phenomena associated with the model.
Hence we assume that the splitting (42) can, and has been, chosen such that (40) supports a linear
wave solution in p; in particular, we assume that

dv=0 (43)

implies
ou on
N + )\% =0 (44)
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for some constant wave speed A(v).
Such a linear solution may potentially be recognized from physical considerations; in Section 5
we consider the linear advection resulting from assuming a uniform pressure and velocity field.

4.1.1. Motivation. For an accurate resolution of these linear waves, we would like our hybrid
scheme to reduce to the explicit upwind scheme for the particular solution (44). In particular, if
(43)—(44) hold, the numerical flux should satisfy

Fiip= FUY) for A>0, (45)

Fj+1/2 = F(U?+1) for A < 0.
We now assume that we have at our disposal the following building blocks:

(1) Some explicit flux FY satisfying (45), but not necessarily stable under CFL violation;
(2) Some implicit flux F!, stable under CFL violation, but not necessarily satisfying (45).
In the following, we will seek an expression for a hybrid numerical flux based on the components

F! and FY, combining the desirable features of both, for a model where appropriate variables p
and v can be identified.

4.1.2. The Reduced Evolution Equations. We observe that (40) may be manipulated to yield evo-
lution equations for p and v:

du (9U  OR(U)\ _Ou  ouOR(U) _
8U<8t T o )‘ ot Tou os T O (46)
ov (0U OF(U)\ ov oOv J0F(U)
a_U<W+ R >—§+a—u o~ ° (47)
A semi-discrete formulation of (46) and (47) reads:
% 3_# F;‘L+1/2 - F;'L71/2 0 (48)
dt ou | Az ’
dv; ov F?+1/2 - F}Jfl/2
at {a—UL — A " (49)

As stated in the previous section, it is desirable to use an upwind fluz to resolve the linear
phenomenon associated with p and an implicit fluz for the variables v that do not take part in
the linear wave. Hence we take:

— U
Fiap = Fiap (50)
Fg"j+1/2 = F;'+1/2- (51)

4.1.3. A Non-Conservative Method. By integrating over the cell j and taking the time derivative,
the definition (42) can be rewritten as

du; [/oU\ ] du; ou\ | dv;
WG|, W o
-7

By (48)—(51), this can be reformulated as a non-conservative semi-discrete scheme for U directly:

dU; N ou\ op F;'J+1/2 - F}J—1/2 . ou 6_1/ F;'+1/2 ~Fi_ip —0
at ou ), 90] Az o), o0 Az =0
4

(53)

This scheme is derived from the motivations stated in Section 4.1.1 and is consequently expected
to combine the benefits of an explicit and implicit flux in a desirable manner. However, a major
drawback is that the scheme (53) is not in conservation form. This has several negative conse-
quences; the most serious of which being that the scheme will generally not converge to the correct
solution in the presence of discontinuities [21].
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Hence we do not propose to use (53) for practical computations. Rather, we want to use (53)
as a guideline for constructing a more appropriate scheme in conservation form, while retaining
the properties that formed the motivation for (53).

4.1.4. The WIMF Fluzx Hybridization. In this section, we modify the scheme (53) so that it can
be written in conservation form:
Uit -y, wFip —Fjy
At Az
with an appropriately chosen numerical flux function F; 1 />.
Our starting point is the observation that (53) does take such a form for the special case that
the coefficents are constant, i.e. when

K%)%LZ [(%)V%LH: (Z—‘j)ﬁ—ﬁ (55)

=0, (54)

and
[(6_U> a_v] _ [(6_U> a_v] - (T > (56)
ov ), ou ; ov /), ou i ov ), ou
the numerical flux function of (54) can be written as
ou\ Jdu - ou v -~
Fiti2 = <a> SoFie + <a—y> S Fit/e (57)
v [z

In light of this, we propose to base the scheme on the following criteria:

C1: The scheme should be in conservation form (54); . )
C2: The numerical flux F;;/; should be a hybridization of F}Jﬂﬂ and F
C3: The hybridization should reduce to (57) whenever U = U; = Uj;.

It is now straightforward to see that these properties are satisfied by the following generalization

of (57):
ou\ Jdu ~ U ou\ ov .
Ff'*l/?:{(%) U Ffﬂﬂ*[(a—u) B_U] Fiiy 58)
v m +1/2

where the coefficient variables [];,1/, are evaluated at some average state U1 /,.
We may now state the following proposition:

I .
J+1/2

J+1/2

Proposition 1. The hybrid fluzes f‘jH/Q (58) are consistent provided the basic fluzes FU and F!
are consistent; i.e.

if ) )
FU(U,...,U) =F(U) and FYU,...,U)=F(U). (60)
Proof. Substitute
e _ ov
dp = 50 dU and dv = 50 dU (61)
in (42), then factor out dU to obtain
ou\ Oou ou\ ov _
(5e), 56+ (3, 56 =1 (02

and in particular

au) o l(au) 81/]
o L L ) (63)
Kau LOU| o), 00|

and the result follows from (58). O

Hence (58) is precisely the hybridization of an implicit and explicit flux we propose for con-
structing a WIMF scheme for a general model equipped with a splitting (42).
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5. APPLICATION TO THE DRIFT-FLUX MODEL

We now derive the specific implementation of the WIMF scheme for the drift-flux two-phase
flow model. Using the approach above, we need to identify a variable p associated with a linear
wave of the system. As the wave structure of the system depends upon the slip relation ®, we will
follow the approach used in Section 3.1.4 for the pLxF scheme. That is, we will base our analysis
on the simplified slip relation ® = 0, and later extend these results to general ®.

For & = 0, there exists a simple connection between the drift-flux model and the Euler model,
as noted in [18] and described below.

5.1. Relation to the Euler Model. The drift-flux model (2)—(4) with v; = v, = v can be
written as:

0 0
B (pgag) + Oz (pgagv) =0 (64)

0 0
7 (Pece) + 5 (peaw) =0 (65)

0 0 , 5
a(v(pmg + pgayg) + Ey (v (pece + pgag) +p) = 0. (66)
If we now define the mixture density
p = pglig + peorg (67)
and the gas mass fraction

Y = % (68)

the ® = 0 drift-flux model (64)-(66) can be reformulated as

e Conservation of gass mass

0 0
E(W) + %(va) =0 (69)
e Conservation of total mass
dp O .
ot + a—(pv) 0 (70)
e Conservation of momentum
5 o, o,
a(l)v) + %(PU +p) =0, (71)
where
p:p(mgamf) :p(pa Y) (72)

We recognize this formulation as structurally identical to the Euler model, if we associate the
total mass p with the density and the gas mass fraction Y with the entropy. In particular, this
means that the model (64)—(66) possesses a linear wave moving with the velocity v, transporting
the gas mass fraction Y, analoguous to the entropy wave of the Euler model.

Remark 2. So far, we have shown the ezistence of a linear wave in the vy = ve drift-flux model.
This corresponds to K = 1, S = 0 in the Zuber-Findlay relation (10). However, provided the
liquid is incompressible, a more general result holds:

Proposition 2. The drift-flux model (2)—(4), augmented with the Zuber-Findlay relation (10)
where K and S are constants, supports a linear wave solution moving with the velocity vg, provided
the liquid is incompressible. The pressure is not necessarily constant across a contact discontinuity
in this wave.

Proof. The proof of this proposition may be found in [18].
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5.2. The Flux Hybridization. In this section, we derive the WIMF hybridization (58) for the
v = vg = v drift-flux model. Then, in Section 5.5, we describe how this WIMF scheme may be
naturally extended to general slip relations ®.

Based on the equivalence with the Euler system described in Section 5.1, we may conclude that
the splitting (42) with

Y 0
pw=1,0 and wv=|p|, (73)
0 v
satisfies the linear wave criterion described by (43)-(44).
We obtain
op 1 | peae —pgag 0 v 1 0 0 0
U 0 0 0 and U — 5 | PP Kpp 0 (74)
P 0 0 0 Pl —v —v 1
as well as
1/pe 0 0
ou
(a—) el M 00 (75)
wo U = 1/pg) 0 0 |
and
0 ag /[ pe 0
ou 1 8
K 0 v(ag/pe+ou/pg) kp

5.2.1. The Matriz Coefficients. By (58), the fluxes of the drift-flux WIMF scheme may now be
written as

Fiti2= AJ’+1/2F;‘J+1/2 + Bj+1/2]§‘£‘+1/2v (77)

where

U P Qg _pgag/Pé 0
Ajrije = K@) %] = —peoe]pg Qg 0 (78)
v j+1/2 peaev(1/pe —1/pg) —pgogv(l/pe —1/pg) O it/
and
oU\ v I 0 Psig/ pe 07"
P12 = (8—1/) a0 = prae/ by o 0
i J+1/2 [ —peagv(1/pe —1/pg)  pgagv(l/pe—1/pg) 1 J]-+1/2

(79)

To evaluate the coefficient matrices A and B at cell interfaces, we follow the approach of [10, 12]
and define

1

iz = 5 (kg +akgi) (80)
1

Prj+1/2 = 5(%;’ + Ph,j+1)
1

Vkjt1/2 = §(vk,j+vk7j+1)

for phase k € {g,¢}.
5.2.2. Fluz Splitting. We now write
FU=GY+HY and F! =G+ H, (81)

that is, we split the numerical fluxes into convective and pressure parts as we did in Section 3.1.1,

so that (58) can be written as
~ ou\ ou U ou ov ~ 1
Gne=|(5) 76 &+ (%) _] G (82)
i o/, 0U ] 1) ov ), ou Py
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and
~ ou\ Jdu - U ou ov -
H; =5 == H" + || 5= ) &= H'. (83)
o), 0U] ;. ov /), ou /2
5.2.3. The Hybrid Convective Fluz. For the convective upwind fluxes G}JH /2> we will use the low

Mach-number limit of the advection upstream splitting method, which was investigated as the
CVS scheme in [9] for the current drift-flux model.
Writing G7, , , as
Y (Pgagvg)gﬂﬂ
Gl = ) (Upeafw)j+1/z - ; (84)
(pgagvg)j+1/2 + (Plaéve )j+1/2

we first define the cell interface velocities

1
vk,j+1/2 = 5 (’Ul’?,j + ’U]?’j+1) , (85)
and then the convective fluxes
U Uk jy1/2(PROk)T if vg jy1/2 >0,
QRUE ) ; . 86
(PrOKVE) 1 /2 { Vg jr1/2(pror)y,  otherwise (86)
21U Ok jt1/2(PROkVE) T if vg jy1/2 >0,
QRUL) . 87
(P k Vi) 12 { Uk, jr1/2(Prowvr)}y,  otherwise (87)

for phase k € {g,(}.

For the convective implicit part G
in Section 3.1.5.

We then obtain hybrid convective fluxes through (82), using (78) and (79). Note that the
convective fluxes G£'+1/2 are now calculated with the coupling (77) to the upwind flux é;'j+1/2’ as
described in more detail in Section 5.3.1.

I

j+1/2 We use the pLxF formulation of the fluxes (30) described

5.2.4. The Hybrid Pressure Fluz. We write the pressure fluxes as

) 0 i 0
H' =| 0 and H'=| 0 |. (88)
pY I

By (78) and (79), we see that the hybrid pressure flux (83) becomes simply

I:Ij+1/2 = H;‘+1/27 (89)

where p' is given by a fully implicit calculation in the form (31).
Hence no definition of upwind pressure fluxes pV is required, the WIMF flux hybridization only
affects the convective fluxes.

5.3. Implementation Details. Before extending the above analysis to ® # 0, it may be instruc-
tive to focus in more detail on how this WIMF scheme is implemented in practice. As for the
pLxF scheme, the computation consists of two steps:
(1) Fluz linearization: We calculate numerical fluxes through the implicit pressure-momentum
coupling.
(2) Conservative update: We use these numerical fluxes to update the conservative variables
according to (35).

Note that both these steps incorporate the flux hybridizations (82). We will adress them in turn.
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5.3.1. Implicit Step. As for the pLxF scheme, the pressure-momentum coupling yields 3 equations
for each computational cell to be implicitly solved over the computational domain. However,
an added complication arises from the implicit calculation also involving the explicit part of the
system, as given by (77). In the following exposition, we will find it convenient to use the symbol

M =My + M, (90)
to denote the total convective momentum flux. Herein

Mg = Pgagvga (91)
M = pagw;. (92)
For convenience of notation, we also use the shorthand
[v] = vjt1/2. (93)
From (77)—(79), we see that MM can be written in terms of the WIMF mass fluxes as

J+1/2

MPNET = Mg a+0] ((Pgagvg)}}ﬂg — (PgQgg) 4172 + (praeve) ]115 — (M)j-i-lﬂ) - (94)

This suggests a natural splitting of M;’V+IIN/[2F into
MRS = M + M, (95)
where
ngTlF/? = Mgjiiy2 — [”](p@g)jﬂ/? + [”](/’gag”g)ﬂlll\g (96)
MY = Mojpye — (pearve) jia g2 + W] (peaeve) 4175 - (97)

Using this and (78)—(79), we write the implicit pressure-momentum coupling as:

o Pressure equation:

n-+41 1/,.n i)
Pivijg ~ WP+ PF) o (PsVe)ien — (POVe)s (98)
At Pt Az
(peazve)j+1 — (peazve)
+ [“Pg]j+1/2 Az =0.
o Gas momentum equation:
N o W
(pgatgg)j — (PgargUg)] n 8/ j+1/2 8/j-1/2 (99)
At Az
B [vagljri/e (pgagvg)j+1/2 — [vaj1y2 (/’gag”g)jfl/z
Ax
[vagpe/peljrise (Pecieve) s,y 1y = [V0gpe/ pelj-1/2 (Pecieve) s, ),
Ax
U U
[vae]jriyz (Pgagvg)jﬂm = [vaulj—1y2 (pgagvg)jflﬂ
Ax
U U
_ [vagpe/peljri/2 (Plaévé)j+1/2 — [vagpg/pelj—1/2 (p’foqw)j—l/2
Ax

+1 +1 e~
P Az P/
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e Liquid momentum equation:

—_~ —_~—

(peaigve)j — (pzaew)? N (Pzaevz)j+1/2 (peawe)j_l/Q

1
At Az (100)
[vaglivig (peagve) ;. = vagliay (peaevr)
Az
[vaepe/ peljsaye (Pgag”g)j+1/2 — [voupe/ pgli-1/2 (Pgagvg)j_l/g
Az
N [vag]jti/2 (Peazw);jﬂp — [vaglj—1/2 (peazw)?,lﬂ
Az
U U
_ [vaepe/ pliv/z (Pggvg) 11 )0 = [Wape/pgli—1/2 (PgagVe) iy )
Az
n 1 1 o~
n (@) p?I1/2 _p?ir1/2 _ <—lQ>
P/ Az P/
Here the linearized fluxes are given by (21) and (28)—(29) as:
1 1Az n n
(PEOkVE) jr1/2 = 3 ((prekor)j + (Prakvr)jt1) + 1A7 ((praw)} — (prak)fi1) (101)
and
—, | T 1Az .
(Prarvi)jir/e = 5 (0 prarve); + 5 (0 prarve)jra + 7 1y ((Prawvi)j = (prauvi) i)™ (102)
Note that here
1 1
Vit1/2 = 5(’[}&]‘ + Vg jt1) = 5(’[}[’]' + Vg j41)- (103)

In conclusion, we solve (98)—(100) to obtain the variables p?illm, (peigg)j and (pragvg); to be

used in the following. As for the pLxF scheme, this step requires the inversion of a sparse linear
system with a bandwith of five (pentadiagonal linear system) — where the coefficients become
slightly more complicated due to the hybridization (77).

5.3.2. Conservative Update. By use of

R (/’gag”g)yﬂm
G?—H/? = , (Uf)lafw);'j-i-l/? . (104)
(Pgagvg)j+1/2 + (pecvevy )j+1/2
and
_ (P@g)jﬂm
Gipp=| _ (peaw)jpys : (105)
(Pggvg)jr1/2 + (Pecevy)jsn 2

the numerical scheme can be written in the conservative form

urtl—ur  F, —F._ ~
J N i J+1/2Am i=1/2 - Q,, (106)

where F; 1/ is obtained from (77) and (81).
Finally, the physical variables are obtained from U;-“Ll by the procedure described in Sec-
tion 3.1.8.
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5.4. Resolution of Contact Wave. We consider the linear wave arising from the initial condi-
tions

pj=p Vj (107)
Yi=Y(j) Vj
(vg)j = (ve)j =v Vj.
In particular, v is constant across the computational domain as stated by (43). The pressure

gradient now vanishes from the model (2)—(4), and the solution to the initial value problem (107)
is that the distribution of Y will propagate with the uniform velocity v. That is, we have

on ou
5 + Vo = 0, (108)
in accordance with (44).
For the corresponding linear wave associated with the two-fluid model, we proved in [11, 12]
that the WIMF scheme possessed the following properties:
(i) WIMF reduces to the explicit upwind flux for the linear wave (107);
(ii) WIMF preserves uniformity of the pressure and velocity field for this linear wave;
(iii) WIMF captures the wave ezactly on uniform meshes if the time step corresponds to a
convective CFL number 1, i.e.
Az _ 109)
Ar =V (
Here (ii) and (iii) are direct consequences of (i).
An equivalent result holds for the current WIMF scheme for the drift-flux model. In particular,
we have the following proposition:

Proposition 3. The WIMF scheme described in Section 5.3, when applied to the linear wave
(107), has a solution that satisfies

pitt = p Vim (110)
1 _ .
v;f = v Vi, n; (111)
g2 p an Vj - 112
X T Mg T VAL (ak,j - ak,jfl) Jn for v > 0; (112)
n At o, N )
ot = af; - YA (ak j+1 —arj) Vj,n  forv <O. (113)
Herein
(prarvr); = prag o, (114)
where
pr. = pr(p) = const. (115)

Proof. Substitute (110)—(114) into the equations of Section 5.3. After a rather lengthy calculation,
all the discrete equations of the WIMF scheme reduce to trivial identities.
O

In particular, this means that (i)—(iii) are satisfied also in the current context. In Section 6.1,
these results will be illustrated numerically.

5.5. General Slip Relations. The WIMF flux hybridizations above have been derived under
the assumption ® = 0, i.e. v; = v,. In this section, we will describe how to modify the flux
hybridizations (77)—(79) to be valid for general slip relations.

First, we note that the mass flux hybridizations, as given by the first two rows of the matrices
A and B in (78)—(79), are independent of the slip relation and do not need any modification. So
we are left only with the task of modifying (96) and (97) to account for vy # vy.

The most natural such modification is simply

ngli/lfm = Mg/ — [”g](/’mg)ﬂl/? + [”g](/’gag”g)ﬁi\g (116)
MYy = My — [wel(peaeve) jar 2 + v (peceve) 115 (117)
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where cell interface values [vi] = (i) ;41,2 are given by (81). This entails that v should be replaced
by v and v in (99) and (100), respectively.

In the following, our WIMF scheme will be based on the hybridizations (116) and (117). They
respect the symmetry between gas and liquid momentum, and reduce to the previously obtained
expression (94) for the special case vy = vy.

6. NUMERICAL SIMULATIONS

In this section, we present some selected numerical examples. We first numerically verify
Proposition 3 by studying a simple contact discontinuity. We then investigate how this behaviour
carries over to more general cases, by considering a couple of shock tube problems known from
the literature. Reference results will be provided by the explicit Roe scheme described by Flatten
and Munkejord [16].

Finally, we investigate the performance of the scheme on a case more representative of industrial
problems; a large-scale mass transport problem given a non-linear slip law.

For the simulations, a convective CFL number is defined as follows

t
C= Az H]!%XK”g)?L

as this corresponds to the expected velocity of the mass transport wave associated with the Zuber-
Findlay slip law (see Proposition 2).

(118)

6.1. No-Slip Contact Discontinuity. For our first test, we consider a linear wave where the
slip law is given by

¢ =0. (119)
We assume an isolated contact discontinuity separating the states
P 10° Pa
e | 0.75
Wi = vg | | 10m/s (120)
vy 10 m/s
and
P 10° Pa
_ (67 _ 0.25
Wr = vg | | 10m/s |~ (121)
vy 10 m/s

We assume a 100 m long pipe where the discontinuity is initially located at x = 0. We use a
computational grid of 100 cells and simulate a time of t = 5.0 s. The discontinuity will then have
moved to the center of the pipe, being located at x = 50 m.

6.1.1. Sensitivity of WIMF to the convective CFL number. In Figure 1, the results of WIMF are
plotted for various values of the convective CFL number. We observe that WIMF captures the
contact exactly for C' = 1, as stated by Proposition 3. The numerical dissipation increases as C'
decreases.

For C' > 1, the scheme becomes unstable.

6.1.2. Sensitivity of pLzF to the convective CFL number. In Figure 2, the results of pLxF are
plotted for various values of the convective CFL number. The scheme obtains maximal accuracy
for C' = 1, and the numerical dissipation increases for both smaller and larger values of C'. The
dissipation is always larger than for the WIMF scheme, in particular this is the case for C' = 1.
However, the pLxF scheme is unconditionally stable for this test case.

For both the WIMF and pLxF schemes, we observe that the pressure and velocities remain
constant to floating point precision, as is dictated by Proposition 3.
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F1GURE 1. No-slip contact discontinuity, WIMF scheme, 100 cells. Various values
of the convective CFL number.
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F1GURE 2. No-slip contact discontinuity, implicit pLxF scheme, 500 cells. Various
values of the convective CFL number. Left: Approaching C' = 1 from below.
Right: Approaching C' =1 from above.

6.2. Dispersed Law Contact Discontinuity. In this section, we consider a more general con-
tact discontinuity where the slip law is given as

B =—6/oy. (122)

This test case is similar to Experiment 4 of Baudin et al. [1].
According to Baudin et al [1], the slip law (122) describes inclined pipe flows where small gas
bubbles are dispersed in the liquid. We follow in their footsteps and use the following value for §:

0 =0.045 m/s. (123)

In the framework of the Zuber-Findlay slip relation (10), the slip relation (122) corresponds to
K = 1, (124)
S = -0 (125)
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F1GURE 3. Dispersed law contact discontinuity. Grid refinement for the implicit
pLxF and WIMF schemes. Left: pLxF scheme. Right: WIMF scheme.

The initial states are given by

P (10° + 7.8) Pa
_ Qy _ 0.9
Wi = vg | 1m/s (126)
Vg 1.050 m/s
and
P 105 Pa
_ (677 _ 0.2
Wg = v | = 1m/s . (127)
vy 1.224 m/s

This discontinuity will now propagagate, without change of shape, with the gas velocity vy, =1
m/s, as stated by Proposition 2 (The effect of the liquid compressibility is negligible). We assume
a pipe of length 100 m where the contact is initially located at x = 50 m. The simulation runs for
25 s.

6.2.1. Convergence test for pLxF and WIMF. In Figure 3, we investigate the convergence of the
WIMF and pLxF schemes as the grid is refined. For the pLxF scheme, we used a convective CFL
number C' = 1, with respect to the gas velocity vy = 1 m/s.

TABLE 1. Dispersed law contact discontinuity. Convergence rates for the pLxF scheme.

cells | ||E||n | sn
50 | 4.818
200 | 2.405 | 0.5012
2000 | 0.762 | 0.4991
20000 | 0.241 | 0.4999

FNQEICIN R

For the WIMF scheme, where the condition ® = 0 (under which the flux hybridizations were
derived) no longer applies, instabilities occured for C' > 0.9. In addition, for 0.75 < C < 0.9, a
persistent overshoot was produced in the contact wave. Hence the WIMF results presented here
are produced with a convective CFL number of C' = 0.75.

However, with this reduction of the CFL number we observe that the WIMF scheme is in
fact able to provide an accurate resolution of the contact — the desired upwind-type accuracy is
retained, while the sonic CFL criterion is still violated. Convergence rates for the volume fraction
variable are given in Tables 1 and 2, where the error is measured in the 1-norm

1Bl = Axlag; — oFf], (128)
J
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TABLE 2. Dispersed law contact discontinuity. Convergence rates for the WIMF scheme.

n| cells| |E|ln | sn
1 50 | 2.260
2 200 | 1.094 | 0.5234
3| 2000 | 0.341 | 0.5066
4 | 20000 | 0.107 | 0.5014
55 T T T T
reference
@ WIMF o
50 } . pLXF A -
45 -
40 -
g
= 35 . 7
g
g 30 © 4
2 o5t 1
e © a0
o
20 ° .
(o]
15 | AAfo i
o,
L Sl ]
10 OOOOOOOOQOOOOOO@@O@@@@@@@@@@@@0@@@0@@@0@00@@0@@&@@@0
° 0 0.05 0.1 0.15 0.2 0.25

Time (s)

FIGURE 4. Dispersed law contact discontinuity, start-up errors. Initial pressure
oscillations produced by WIMF and pLxF schemes.

and the order of convergence s is obtained through

o — ndlEl/11Elln-1)
" In(Az,/Az,_1)

(129)
Both schemes uniformly approach the expected analytical solution, at similar convergence rates.

6.2.2. Start-up Errors. Due to the particular choice of slip relation, there exists a persistent pres-
sure jump across the contact - whereas the numerical schemes are obtained from considerations
of a contact where the pressure is constant. As a consequence of this, no result analoguous to
Proposition 3 holds, and start-up errors in the form of pressure oscillations occur for the first steps
of the simulation. We now define the pressure variation at each time step as

Ap = max(pj) — min(pj). (130)

With a grid of 20 000 cells and a convective CFL number of C' = 0.75, a plot of Ap against time
is given in Figure 4. The behaviour is rather similar for both the pLxF and WIMF schemes, so
these oscillations are not primarily associated with the flux hybridization.

This seems to be a price to pay for the simplicity achieved by keeping the schemes independent
of the structure of the slip relation ®. However, we note that the pressure oscillations are rather
small and decrease with time, indicating that such start-up errors may be of minor importance
for practical calculations. This will be supported by our further numerical examples.
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FIGURE 5. Zuber-Findlay shock tube 1. Grid refinement for the WIMF scheme.
Top left: Gas volume fraction. Top right: Pressure. Bottom left: Gas velocity.
Bottom right: Liquid velocity.

6.3. Zuber-Findlay Shock 1. Using the Zuber-Findlay slip relation with
K = 107 (131)
S = 0.216 m/s, (132)

we consider a shock tube problem also investigated by Evje and Fjelde [8]. The initial states are
given by

D [ 80450 Pa
_ Qy _ 0.45
Wi = vg | | 12.659 m/s (133)
| e J | 10.370 m/s
and
[ p [ 24282 Pa
_ Qy _ 0.45
Wr = vg | | 1181m/s | (134)
v J | 0.561m/s

The initial discontinuity is located at = 50 m in a pipe of length 100 m, and results are reported
at the time ¢ = 1.0 s. Reference solutions are calculated by the flux-limited Roe scheme of [16],
using a grid of 20 000 cells.

6.3.1. Convergence test for the WIMF scheme. We use a convective CFL number of C' = 1, or
more precisely

Az
At
The results of the WIMF scheme are plotted in Figure 5 for various grid sizes.

= 13 m/s ~ max |(vg)7]. (135)
Jn
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FIGURE 6. Zuber-Findlay shock tube 1. Roe, pLxF and WIMF schemes, 100
cells. Top left: Gas volume fraction. Top right: Pressure. Bottom left: Gas
velocity. Bottom right: Liquid velocity.

We observe an overshoot in the volume fraction for the coarsest grids. Apart from this, the
WIMF scheme convergences smoothly to the reference solution. Convergence rates for the gas
volume fraction are given in Table 3.

6.3.2. Comparison between the various schemes. In Figure 6, the results of WIMF and pLxF are
compared with the first-order Roe scheme, for a grid of 100 cells. For the WIMF and pLxF schemes
we used a convective CFL number of C' =1 as given by (135). For the Roe scheme, we used

Azx
Kt =32.6 m/s,

corresponding to the CFL criterion for the sonic waves, C=0.4 with respect to convection.

We observe that the pLxF and WIMF schemes provide a similar resolution of the sonic waves,
whereas they are both inferior to the Roe scheme in this respect. We further observe that WIMF
gives a sharper resolution of the contact wave than Roe, but as previously noted, also introduces
an overshoot.

(136)

TABLE 3. Zuber-Findlay shock 1. Convergence rates for the WIMF scheme.

n| cells|||E|ln |sn

1 50 | 2.181

2 100 | 1.352 | 0.6897
3 200 | 0.746 | 0.8578
4 400 | 0.338 | 1.1417
5 800 | 0.256 | 0.4041
6 | 3200 | 0.0812 | 0.8269
7 | 10000 | 0.0352 | 0.7325
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6.4. Zuber-Findlay Shock 2. We now consider a second shock tube problem using the same
Zuber-Findlay slip law (131)—(132) as in the previous example. This problem was investigated as
Example 3 by Baudin et al. [1]. We here follow in their footsteps and modify the gas pressure law;
in the context of (8), we use

ag =300 m/s (137)
instead of
ag = V10° m/s (138)

which is used for all other numerical examples of this paper. However, as for our other simulations,
the liquid remains compressible as described by (7).
We also follow Baudin et al. [1] in transforming to the variables (see also Section 5.1):

p - mixture density,
Y - gas mass fraction,
v - mixture velocity.

Herein, v is expressed as

= Mgl Meve (139)
p
In this formulation, the initial states are given by [1]
p 453.197 kg/m?
WL,=|Y | = 0.00705 (140)
v 24.8074 m/s
and
P 454.915 kg/m?
Wrp=|Y | = 0.0108 . (141)
v 1.7461 m/s

The initial discontinuity is located at = 50 m in a pipe of length 100 m, and results are reported
at the time ¢ = 0.5 s. The flux-limited Roe scheme on a grid of 20 000 cells was used to compute
the reference solutions.

6.4.1. Convergence test for the WIMF scheme. We use a convective CFL number of 1, or more
precisely

A
Kf =30 m/s, (142)
corresponding to the maximum gas velocity occuring during the simulation.
The results of the WIMF scheme are plotted in Figure 7 for various grid sizes. Convergence
rates, with respect to the gas mass fraction Y, are given in Table 4. We observe that the WIMF

scheme converges uniformly to the reference solution, and for this case no overshoots are visible.

TABLE 4. Zuber-Findlay shock 2. Convergence rates for the WIMF scheme.

cells | ||E|| Sn
100 | 7.204-1073
200 | 4.864 - 1073 | 0.5669
400 | 3.208 - 10—3 | 0.6005
800 | 2.220 - 103 | 0.5420
3200 | 9.501-10~* | 0.6067
10000 | 4.819-10* | 0.5958

O U WS
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FIGURE 7. Zuber-Findlay shock 2. Grid refinement for the WIMF scheme. Top
left: Mixture density. Top right: Pressure. Bottom left: Gas mass fraction.
Bottom right: Density-averaged velocity.
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FI1GURE 8. Zuber-Findlay shock 2. Grid refinement for the implicit pLxF scheme.
Top left: Mixture density. Top right: Pressure. Bottom left: Gas mass fraction.
Bottom right: Density-averaged velocity.
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6.4.2. Convergence test for the pLxF scheme. We now use a time step 4 times larger than for the
WIMF scheme, i.e. in the context of (118) we use C' = 4. Hence the CFL condition (1) is violated
with respect to all waves of the system.

The results of the pLxF scheme are plotted in Figure 8 for various grid sizes. We observe that
also the pLxF scheme converges to the reference solution in a fully non-osciallatory manner. Due
to the increased time step, there is a significant amount of numerical diffusion, enforcing the use
of fine grids. However, as can be seen by Table 5, the convergence rate — with respect to gas mass
fraction — is comparable to that of WIMF.

Remark 3. This example illustrates that pLxF qualifies as a strongly implicit scheme whereas
WIMF is weakly implicit by the terminology of [12].

6.5. A More Complex Slip Relation. The purpose of this final test is to investigate the
performance of the WIMF scheme for more realistic slip relations which do not have a simple
linear form such as (10). In addition, this case features transitions between genuine two-phase and
pure liquid regions. These are both challenges that are relevant for industrial applications of the
drift-flux model.

6.5.1. The Test Case. This case was introduced as Example 4 by Evje and Fjelde [9], and has been
further investigated by Munkejord et al. [16, 25]. We consider a pipe of total length L = 1000 m
which is initially filled with almost-pure liquid (ag = 10~7). During the first 10 seconds of the
simulation, the inlet liquid and gas mass flowrates are increased from zero to 12.0 kg/s and 0.08
kg/s respectively. The liquid flow rate is then kept constant for the rest of the simulation. At the
time ¢t = 50 s, the inlet gas mass flow rate is linearly decreased to zero in 20 s, and for the rest of
the simulation only liquid flows into the pipe. Throughout the simulation, the outlet pressure is
kept constant at 10° Pa. The results are reported at t = 175 s.

6.5.2. The Slip Relation. We use the same nonlinear slip law as the previous works [9, 16, 25].
Writing the law on the standard form (10), we take K to be constant, whereas S is allowed to
depend on ay in a non-linear way. In particular, we use the parameters

K=1.0 S = S(ag) = +/ag x 0.5 m/s, (143)

which may be viewed as a more complicated form of the dispersed slip law (122).

6.5.3. Friction Terms. For this test case, we follow Evje and Fjelde [9] and include a simple friction
model. More precisely, in the context of (4) we choose

32Umixﬂmix

Q= ——p (144)
Here d = 0.1 m is the diameter of the pipe. Furthermore, vy is the mixture velocity

Umix = Qglg + Qp¥p (145)
and pmix is the mixture viscosity

Hmix = Qgllg + Ougfhy. (146)
Here

g =5x10"%Pa-s and  p,=5x10"?Pa-s. (147)

TABLE 5. Zuber-Findlay shock 2. Convergence rates for the pLxF scheme.

cells | ||E|| Sn
500 | 4.783- 1073
1000 | 3.343-1073 | 0.5168
2000 | 2.285- 1072 | 0.5488
4000 | 1.546 - 102 | 0.5637
10000 | 9.068 - 10~ | 0.5824
20000 | 5.955-10~* | 0.6067
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6.5.4. Discretization of the Friction Terms. For the Roe scheme, we used an explicit forward Euler
discretization of the source terms. For the WIMF scheme, we have discretized (144) as

~ 3 o
Qj = _ﬁ (/J/mix)j (Umix)j ) (148)

where (vmix); is calculated in a linearly implicit manner as

P PR N

— _ (pgagug)j | (peavy);
ni)s = =G ooy (149)

Using this, we discretize the right hand sides of (99) and (100) as

(59, (2)0

In this manner, the scheme retains its linearity in the implicit terms.

6.5.5. Performance of the Roe and WIMF schemes. For the WIMF scheme, we used the time step

A
Tf = 3.8 m/s, (151)
corresponding to a convective CFL number C' = 1 as given by (118). For the Roe scheme, we used

a CFL number C' = 0.9 with respect to sonic propagation, which for this case is approximately
a; = 1000 m/s (152)

due to the single-phase liquid regions.

It is worth emphasizing that implicit methods are particularly useful on cases involving such
single-phase liquid regions, due to the strict CFL requirements imposed by the rapid sonic prop-
agation. Here

AtWIME /A Roe ~ 300, (153)

and the efficiency differences between the Roe and WIMF schemes are significant.

6.5.6. Comparison between the Roe and WIMF schemes. Results for the first-order Roe and WIMF
schemes are given in Figure 9, with a grid of 200 cells. The reference solution was computed by
the flux-limited Roe scheme using a grid of 10 000 cells.

Note that the highly improved efficiency of the WIMF scheme is accompanied by a similar
improvement in the resolution of the slow dynamics, as was also seen in Sections 6.1 and 6.3. This
attractive behaviour was also observed in [11, 12] for the two-fluid version of WIMF.

6.5.7. Convergence. As seen by Figure 10 and Table 6, the WIMF scheme converges to the same
solution as the Roe scheme as the grid is refined. This is reassuring in light of the large disparity
of the time steps, as well as the inclusion of boundary conditions and source terms.

It should however be noted that for grids of less than 200 cells, the WIMF scheme requires a
somewhat lower CFL number for stability.

TABLE 6. Mass transport problem, WIMF scheme. Convergence rates with re-
spect to volume fraction.

cells | ||E||ln | sn
200 | 16.442
400 | 9.642 | 0.7699
800 | 5.982 | 0.6889
4000 | 1.557 | 0.8363

=W N =3
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7. SUMMARY

We have presented an implicit pressure-based Lax-Friedrichs type scheme for a drift-flux two-
phase model, denoted as pLxF. Generalizing a technique introduced in [11], denoted as WIMF,
we have incorporated explicit upwind-type fluxes allowing for an accurate resolution of the linear
mass transport waves of the system. The WIMF scheme improves on the accuracy of pLxF with
little loss of stability, and is the scheme we propose for practical applications.

A difficulty with the drift-flux model is that its formulation is sensitive to the specification of
the closure law ®, which may vary depending on the flow conditions of the application.

In this paper, the numerical schemes have been derived by making the linearly implicit approx-
imation of the fluxes exact for the slip ® = 0. By this, we ensure certain accuracy and robustness
properties for this particular case.

The numerical examples demonstrate that the desirable properties of the schemes essentially
carry over to more general choices of ®. The schemes are conservative in all numerical fluxes and
consistent with a given slip relation, and numerical evidence confirms that convergence to correct
solutions are obtained.

Numerical overshoots and oscillations in some cases occur for the mass transport wave. We
observe that such oscillations may to a large extent be tamed by reducing the CFL number.

The WIMF scheme outperforms the explicit Roe scheme in terms of efficiency and accuracy
on slow dynamics, and results compare well to existing semi-implicit methods presented in the
literature [2, 14]. This demonstrates that the WIMF strategy introduced in [11] has applicability
beyond the two-fluid model originally considered.

With this paper, we have presented a general setting for the construction of WIMF type schemes
and by that hope to pave the way for further application to additional models. In particular, the
WIMF approach seems useful for models where the eigenstructure is too complicated for an efficient
construction of approximate Riemann solvers.
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