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Abstract. In this work we continue our investigations of a compressible gas-liquid model with
special focus on inclusion of external frictional forces in the momentum balance. The model is

often used for multiphase well flow modeling important for different well control operations. The
frictional forces have a major impact on the pressure gradient, which determines the pressure
distribution along the wellbore. Compression and decompression of gas in turn strongly depend
on the pressure level along the wellbore. A precise understanding of these mechanisms is impor-

tant since gas-kick scenarios and blow-out behavior is strongly linked to decompression effects.
This work is a continuation of the recent work [”Global weak solutions for a gas-liquid model
with external forces and general pressure law”, SIAM J. Appl. Math. 71 (2), pp. 409–442,
2011]. The novelty of the present work lies in the fact that: (i) we consider a full momentum

equation whereas a simplified one was used in the first work; (ii) the gas and liquid masses
vanish at the boundaries making the analysis more involved; (iii) special care must be given to
the frictional term to make sure that it is balanced with other terms such that a well-defined
model is obtained. The analysis ensures that global existence of weak solutions is obtained

under suitable assumptions on initial data (e.g. decay rate at the boundaries for gas and liquid
mass) and parameters that determine growth rate of mass terms associated with, respectively,
the wall friction term and viscous term.
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1. Introduction

This work is devoted to a study of a transient gas-liquid two-phase model which, in Lagrangian
variables, takes the following form:

∂tn+ (nζ)∂xu = 0

∂tζ + ζ2∂xu = 0

∂tu+ ∂xp(n, ζ) = −fζβu|u|+ ∂x(E(n, ζ)∂xu), x ∈ (0, 1),

(1)

with constants f, β > 0. Here n is the gas mass, ζ the total mass (sum of gas and liquid mass),
whereas u is the common fluid velocity. The pressure law, when liquid is assumed to be incom-
pressible (ρl=const) and gas is treated as an ideal gas, takes the form

p(n, ζ) =
( n

ρl − [ζ − n]

)γ

, γ > 1. (2)

The first term on the right hand side of the momentum equation represents wall friction where
the parameter β > 0 describes the mass growth rate, whereas the second term takes into account
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other viscous effects and is characterized by the coefficient

E(n, ζ) :=
( ζ

(ρl − [ζ − n])

)θ+1

, 0 < θ < 1/2. (3)

Moreover, boundary conditions are given by

n(0, t) = ζ(0, t) = 0, n(1, t) = ζ(1, t) = 0, (4)

whereas initial data are

n(x, 0) = n0(x), ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), x ∈ (0, 1). (5)

This model problem represents a natural continuation of the work [12] where an existence result
for a similar model was established with main focus on external forces like gravity and friction.
We refer to this work for further motivation concerning application of this type of model in the
context of well flow modeling. This work, in turn builds upon the works [8, 9], see also [23, 24] as
well as the recent work [5] for similar studies.

A main concern in the work [12], as well as the current work, is inclusion and analysis of effects
related to wall friction. Such friction terms are important for realistic predictions of pressure
distribution along the wellbore, which in turn is crucial for the study of gas compression and
decompression effects relevant for gas-kick flow scenarios [1, 12, 4]. The purpose of this work is to
extend the analysis of the model in the following manner:

• First, we consider a situation where masses n and ζ vanish at the boundary, consequently,
we cannot obtain a positive lower limit. This makes the analysis leading to the a priori
estimates more involved;

• Secondly, we consider a full momentum equation, in contrast to the model analyzed in
[12] where a simplified version of the momentum equation was considered.

The heart of the matter in the analysis is the use of an appropriate variable transformation
which allows writing the two-phase model (1)–(5) in a form which naturally opens up for exploiting
single-phase techniques. It turns out that we naturally can reformulate the initial boundary value
(IBV) problem (1)–(5) described in terms of the variables (n, ζ, u) into a corresponding IBV
problem described in terms of the variables (c,Q, u) where c = n/ζ and Q(c, ζ) = ζ/(ρl− [1− c]ζ).
In particular, this connection allows us to explore the role played by the frictional term. New
challenges due to the decay of masses to zero at the boundaries and the presence of the wall
friction term are handled as follows:

• Concerning the degeneracy at the boundaries we mainly follow the ideas of [10, 11] where
a weighting function ϕ(x), which vanishes at the boundaries, is employed.

• The pointwise upper bound of masses as expressed by Lemma 3.2 strongly depends on
the fact that the wall friction term, −fζβu|u| takes the form −h(c,Q)u|u| in terms of
(c,Q, u) where h(c,Q), given by (49), becomes bounded for Q > 0. For this estimate we
require that the initial gas and liquid mass decay to zero at the same rate, as stated in
assumption (26). Moreover, due to the fact that the friction term contains a higher order
velocity term u|u|, we can not directly from the energy estimate of Lemma 3.1 obtain the
refined upper bound on Q as described by (70). We need the higher order Lp-regularity
of u as provided by Lemma 3.3 for that purpose.

• New arguments must be introduced to obtain the result of Lemma 3.8 due to the appear-

ance of the frictional term. In particular, we must show that W (t) =
∫ 1

0
|(h(c,Q)u)x|dx

is in L1([0, T ]) for h(c,Q) given by (49). This estimate relies on assumption (32) which
relates the β-parameter to the θ-parameter of the viscosity term and parameter α that
characterizes the decay rate of initial masses toward zero at the boundaries.

A main concern of this work is to identify more precisely the role of the wall friction term.
More precisely, we seek to identify how the β parameter of the friction term is related to the γ
parameter of the pressure law and the θ parameter of the viscous term. This balance between
terms representing different forces is manifested itself in Lemma 3.8. In particular, the analysis
depends on the fact that initial gas and liquid masses decay to zero at the boundaries at the same
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rate, expressed by the parameter α as in (26), in order to obtain sufficient control of the frictional
term. See Remark 3.2 for details.

Overview. The rest of the paper is structured as follows: In Section 2 we first give necessary
background information for deriving the model problem (1)–(5). Then, the assumptions on initial
data and important parameters like γ, β, θ, and α are given followed by a precise statement of the
main result of this paper, existence of weak solutions. Section 3 contains the estimates ranging
from basic energy estimate to pointwise upper and lower limits of masses n, ζ, and velocity u,
as well as various higher order regularity estimates. Section 4 gives a brief summary how to get
converge to weak solutions by means of a semi-discrete approximation of the original model.

2. The existence result

We consider the following transient, ”compressible gas-incompressible liquid” two-phase model
(described in Eulerian coordinates)

∂tn+ ∂x[nu] = 0

∂tm+ ∂x[mu] = 0

∂t[(m+ n)u] + ∂x[(m+ n)u2] + ∂xp(n,m) = −f(m+ n)β+1u|u|+ ∂x[ε(n,m)∂xu],

(6)

on the interval x ∈ (a(t), b(t)). Here n is the gas mass, m the liquid mass, and u is fluid velocity.
Pressure p(n,m) and viscosity ε(n,m) take the following form:

p(n,m) = Cργl

( n

ρl −m

)γ

, (7)

ε(n,m) = D
(m+ n)θ

(ρl −m)θ+1
, θ ∈ (0, 1/2), (8)

where C and D are constants. For simplicity we set C = D = 1 in the following. We refer to
[12] and references therein for more details concerning p and ε. The first term on the right hand
side of the momentum equation describes wall friction effects. The constant f > 0 depends on
fluid rheology as well as well/pipe diameter. More generally, it also depends on the prevailing flow
regime. We assume that β > 0, see Section 2.1 for the precise assumptions on β. In fact, a main
purpose of this work is to identify more precisely the interplay between the parameter β and the
parameter γ in (7) and θ in (8).

One special feature of the above two-phase model (6)–(8) is the possible singular behavior
associated with the pressure law at transition to pure liquid flow, that is, when m = ρlαl = ρl or
vacuum in the gas phase corresponding to ρg = 0. Now, introducing the variable ζ = m+ n, the
system (6) can be written as

∂tn+ ∂x[nu] = 0

∂tζ + ∂x[ζu] = 0

∂t[ζu] + ∂x[ζu
2] + ∂xp(n, ζ) = −fζβ+1u|u|+ ∂x[ε(n, ζ)∂xu], x ∈ (a(t), b(t)).

(9)

Motivated by previous studies for single-phase gas models we here propose to study the model (9)
in a free boundary setting where the boundary points a(t) and b(t) are moving. More precisely,
a(t), b(t) are the particle paths separating the two-phase mixture and the vacuum state n = m =
ζ = 0 and is characterized as follows:

d

dt
a(t) = u(a(t), t), and n(a(t), t) = ζ(a(t), t) = 0 (10)

d

dt
b(t) = u(b(t), t), and n(b(t), t) = ζ(b(t), t) = 0.

Furthermore, the initial data are specified as follows

n(x, 0) = n0(x), ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), x ∈ (a0, b0), (11)

where a0 = a(0) and b0 = b(0). The boundary conditions are set as follows:

ζ, n|x=a = 0, ζ, n|x=b = 0. (12)



4 FRIIS AND EVJE

In this work we assume that the initial masses n0(x), ζ0(x) connect to vacuum continuously, i.e.,
inf [0,1] n0(x) = 0 = inf [0,1] ζ0(x). Following along the line of previous studies for the single-phase
Navier-Stokes equations [19, 17, 18], it is convenient to replace the moving domain [a(t), b(t)] by a
fixed domain by introducing suitable Lagrangian coordinates. First, in view of the particle paths
Xt(x) given by

dXt(x)

dt
= u(Xt(x), t), X0(x) = x,

the system (9) takes the form

dn

dt
+ nux = 0

dζ

dt
+ ζux = 0

ζ
du

dt
+ p(n, ζ)x = −fζβ+1u|u|+ (ε(n, ζ)ux)x.

(13)

Next, we introduce the coordinate transformation

ξ =

∫ x

a(t)

ζ(y, t) dy, τ = t, (14)

such that the free boundary x = a(t) and the free boundary x = b(t), in terms of the (ξ, τ)
coordinate system, are given by

ξa(t)(τ) = 0, ξb(t)(τ) =

∫ b(t)

a(t)

ζ(y, t) dy =

∫ b0

a0

ζ0(y) dy = const, (15)

where
∫ b

a0
ζ0(y) dy is the total liquid and gas mass initially, which we normalize to 1. Applying

(14) to shift from (x, t) to (ξ, τ) in (13), we get

nτ + (nζ)uξ = 0

ζτ + (ζ2)uξ = 0

uτ + p(n, ζ)ξ = −fζβu|u|+ (ε(n, ζ)ζuξ)ξ, ξ ∈ (0, 1), τ ≥ 0.

In the following, we find it convenient to replace the coordinates (ξ, τ) by (x, t) such that the
model we shall work with in the rest of this paper is given in the form

∂tn+ (nζ)∂xu = 0

∂tζ + ζ2∂xu = 0

∂tu+ ∂xp(n, ζ) = −fζβu|u|+ ∂x(E(n, ζ)∂xu), x ∈ (0, 1),

(16)

with

p(n, ζ) =
( n

ρl − [ζ − n]

)γ

(17)

and

E(n, ζ) := ε(n, ζ)ζ =
( ζ

(ρl − [ζ − n])

)θ+1

, 0 < θ < 1/2. (18)

Moreover, in light of (12), boundary conditions are given by

ζ(0, t) = n(0, t) = 0, ζ(1, t) = n(1, t) = 0, (19)

whereas initial data are

n(x, 0) = n0(x), ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), x ∈ (0, 1). (20)

2.1. Main result. We now state the main result for the model (16)–(20). However, we first
give a precise statement of various assumptions on the initial data as well as of relations between
important parameters like γ, β, θ, and α. These choices largely follow along the line of the single-
phase work [10].
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Assumptions. In this paper we use a weight function ϕ(x), which is assumed to fulfill

0 < ϕ(x) < 1, for 0 < x < 1, ϕ(0) = ϕ(1) = 0, (21)

ϕ′(x) ∈ L∞(I), (22)

(x(1− x)) ≤ Cϕ(x), (23)

From (23), it follows that ϕ(x)a ∈ L1([0, 1]) for every a > −1. Furthermore, the above model is
subject to the following assumptions:

0 < θ <
1

2
, (24)

γ > 1, (25)

For the initial masses n0,m0 it is assumed that there are constants C1, C2, D1, D2 > 0 and a
parameter α > 0, which is characterized more precisely in (30), such that

C1ϕ(x)
α ≤ n0(x) ≤ C2ϕ(x)

α, D1ϕ(x)
α ≤ m0(x) ≤ D2ϕ(x)

α, (26)

where D2 < ρl. Consequently, we have that

0 <
D1

C2
≤ m0

n0
(x) ≤ D2

C1
.

For c0 = n0

n0+m0
= 1

1+
m0
n0

, it follows that supx∈[0,1] c0(x) < 1 and infx∈[0,1] c0(x) > 0. Hence, the

following assumption is made concerning c0:

sup
x∈[0,1]

c0(x) < 1, inf
x∈[0,1]

c0(x) > 0, (c0)x ∈ L∞([0, 1]), (27)

Concerning initial fluid velocity u0, we assume that

u0(x) ∈ L∞([0, 1]). (28)

For Q0 = n0+m0

ρl−m0
we assume that

(Q1+θ
0 u0x(x))x ∈ L2n([0, 1]), n ∈ N. (29)

Now, let α > 0 introduced in (26) satisfy the following relation

19

20
+

1

10
θ ≤ α ≤ 1

2θ
, (30)

where ν > 0 is defined by

ν = (
1

2
− θ)(1 +

θ

10
). (31)

The following restriction is assumed for β

β > max
( ν
α
+ θ,

1

2
+
θ

2

)
> 0. (32)

Let k1 > 0 satisfy

2ν < k1 < min
(
(2γ − 3θ + 1)α,

60(1− 2θ)

11(1 + 3θ)
− 2ν,

40(1− 2θ)

11(1 + θ)
− 2ν

)
, (33)

and, moreover

k1 <

{
1 + (1− 3θ)α if 0 < θ < 1

3 ,
20(1−2θ)

9−7θ + 22(1−3θ)
9−7θ ν if 1

3 ≤ θ < 1
2 .

(34)

The following control for Q0 = n0+m0

ρl−m0
is then required (the first one is only a consequence of (26)):

0 ≤ Q0(x) ≤ Cϕα(x), (35)

ϕν(x)(Qθ
0(x))x ∈ L2([0, 1]), (36)

ϕk1(x)Q2θ−2
0 (x) ∈ L1([0, 1]), (37)

and
(Qγ

0(x))x ∈ L2n([0, 1]), n ∈ N. (38)

Then we can state the main theorem.
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Theorem 2.1 (Main Result). Given the assumptions (24)–(36), then the initial-boundary problem
(16)–(20) possesses a global weak solution (n, ζ, u) in the sense that for any T > 0,

(A) we have the following regularity:

n, ζ, u ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ];L2([0, 1])),

E(n, ζ)ux ∈ L∞([0, 1]× [0, T ]) ∩ C 1
2 ([0, T ];L2([0, 1])).

In particular, the following pointwise estimates holds for µ > 0:

( inf
x∈[0,1]

c0)
ρlC(T )

1 + C(T )
ϕ(x)

11k2
10(1−2θ) ≤ n(x, t) ≤ min

{
ρlC(T )ϕ(x)

α,
ρl − µ

1− sup[0,1] c

}
,

ρlC(T )

1 + C(T )
ϕ(x)

11k2
10(1−2θ) ≤ ζ(x, t) ≤ min

{
ρlC(T )ϕ(x)

α,
ρl − µ

1− sup[0,1] c

}
,

∀(x, t) ∈ [0, 1]× [0, T ] where the positive constant µ only depends on time T and the regu-
larity of the initial data as stated in the assumptions.

(B) Moreover, the following equations hold,∫ ∞

0

∫ 1

0

[
nφt − nζuxφ

]
dx dt+

∫ 1

0

n0(x)φ(x, 0) dx = 0,∫ ∞

0

∫ 1

0

[
ζψt − ζ2uxψ

]
dx dt+

∫ 1

0

ζ0(x)ψ(x, 0) dx = 0,∫ ∞

0

∫ 1

0

[
uωt +

(
p(n, ζ)− E(n, ζ)ux

)
ωx − fζβu|u|ω

]
dx dt+

∫ 1

0

u0(x)ω(x, 0) dx = 0,

(39)

for any test function φ(x, t), ψ(x, t), ω(x, t) ∈ C∞
0 (D),

with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.

The proof of Theorem 2.1 is based on a series of priori estimates for approximate solutions of
(16)–(20) and a corresponding limit procedure.

3. A priori estimates

In order to obtain the necessary estimates it is convenient to introduce a shift of variables as
follows:

3.1. Transformed models. We introduce the variable

c =
n

ζ
, (40)

and see from the first two equations of (16) that

∂tc =
1

ζ
nt −

n

ζ2
ζt = −nζ

ζ
ux +

nζ2

ζ2
ux = 0.

Consequently, the model (16)–(20) then can be written in terms of the variables (c, ζ, u) in the
form

∂tc = 0

∂tζ + ζ2∂xu = 0

∂tu+ ∂xp(c, ζ) = −fζβu|u|+ ∂x(E(c, ζ)∂xu), x ∈ (0, 1),

(41)

with

p(c, ζ) =
( cζ

ρl − [1− c]ζ

)γ

(42)

and

E(c, ζ) =
ζθ+1

(ρl − [1− c]ζ)θ+1
, 0 < θ < 1/2. (43)
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Moreover, boundary conditions are given by

ζ(0, t) = 0, ζ(1, t) = 0,

c(0, t) = c0(0), c(1, t) = c0(1), t ≥ 0,
(44)

whereas initial data are

c(x, 0) = c0(x), ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), x ∈ (0, 1). (45)

As remarked before, the model (41)–(45) possibly contains singular behavior associated with the
pressure term p and viscosity term E. It is clear from these functions that ζ must obey an upper
limit strong enough to ensure that these functions do not blow up. For that purpose we introduce
the quantity Q(c, ζ) = ζ

ρl−(1−c)ζ and deduce a reformulated model in terms of the variables

(c,Q, u). That is, we introduce the variable

Q(c, ζ) =
ζ

ρl − (1− c)ζ
, (which implies that ζ = ρl

Q

1 + (1− c)Q
), (46)

implicitly assuming ζ ≥ 0 and ζ < ρl

1−c , and observe that

Q(c, ζ)t =
( ζ

ρl − (1− c)ζ

)
t
=

( 1

ρl − (1− c)ζ
+

(1− c)ζ

(ρl − (1− c)ζ)2

)
ζt

=
ρl

(ρl − (1− c)ζ)2
ζt = −ρl

ζ2

(ρl − (1− c)ζ)2
ux = −ρlQ(c, ζ)2ux,

in view of the second equation of (41). Consequently, we rewrite the model (41) in the form

∂tc = 0

∂tQ+ ρlQ
2ux = 0

∂tu+ ∂xp(cQ) = −h(c,Q)u|u|+ ∂x(E(Q)∂xu), x ∈ (0, 1),

(47)

with
p(cQ) = (cQ)γ , (48)

and

h(c,Q) = fρβl

( Q

1 + (1− c)Q

)β

, (49)

and
E(Q) = Qθ+1, 0 < θ < 1/2. (50)

This model is then subject to the boundary conditions

Q(0, t) = 0, Q(1, t) = 0,

c(0, t) = c0(0), c(1, t) = c0(1), t ≥ 0,
(51)

In addition, we have the corresponding initial data

c(x, 0) = c0(x), Q(x, 0) =
ζ0(x)

ρl − (1− c0(x))ζ0(x)
, u(x, 0) = u0(x), x ∈ (0, 1). (52)

In particular, the first equation of (47) gives that

c(x, t) = c0(x), t > 0. (53)

Remark 3.1. It is interesting to compare the result of Theorem 2.1 to the main result of [9]. A
main difference is that in [9] the viscosity coefficient ε(n,m) is of the form

ε(n,m) =
nθ

(ρl −m)θ+1
,

which implies that it appears in the form E(c,Q) = cθQθ+1 in the transformed model similar to
(47), however, where Q = m

ρl−m and c = n
m . As a consequence, different estimates explicitly

depend on the decay rate of c = c0, which is assumed to be of the form

C1ϕ(x)
α/2 ≤ c0(x) ≤ C2ϕ(x)

α/2, c0 =
n0
m0

.



8 FRIIS AND EVJE

In the current work we need a different decay rate for the initial masses n0 and m0 as stated in
(26) in order to obtain necessary control of the friction term.

3.2. A priori estimates. We are now ready to establish some important estimates. We let C
and C(T ) denote a generic positive constant depending only on the initial data and the given time
T , respectively. We also note that a constant C can change from one line to another in a sequence
of calculations.

In particular, we note from (49) that for β > 0

h(c,Q) = fρβl

( 1
1
Q + (1− c)

)β

≤ fρβl

( 1

1− c

)β

≤ C, Q ≥ 0, (54)

in view of assumption (27).

Remark 3.2. Note that the assumption supx∈[0,1] c0 < 1 as given by (27), which in turn is a result

of assumption (26) requiring equal decay rate at the boundaries for gas and liquid, is essential for
the estimate (54). This estimate is crucial for the result of Lemma 3.2.

Lemma 3.1 (Energy estimate). Under the assumptions of Theorem 2.1 we have the basic energy
estimate ∫ 1

0

(1
2
u2 +

cγ

γ − 1
Qγ−1

)
dx+

∫ t

0

∫ 1

0

Q1+θu2x dx ds+

∫ t

0

∫ 1

0

h(c,Q)u2|u|dxds

=

∫ 1

0

(1
2
u20 +

cγ0
γ − 1

Qγ−1
0

)
dx ≤ C, ∀t ∈ [0, T ].

(55)

Proof. Start by summing equation (47)(b) multiplied by cγQγ

ρlQ2 with equation (47)(c) multiplied by

u to obtain

cγQγQt

ρlQ2
+ cγQγux + uut + u(cγQγ)x = u(Q1+θux)x − h(c,Q)u2|u|. (56)

Then rewrite equation (56) as

d

dt

(1
2
u2 +

∫ Q

0

cγξγ

ρlξ2
dξ

)
+ (cγQγu)x = u(Q1+θux)x − h(c,Q)u2|u|, (57)

and integrate it over [0, 1]× [0, t] to yield∫ 1

0

(1
2
u2 +

cγ

γ − 1

Qγ−1

ρl

)
dx+

∫ t

0

∫ 1

0

Q1+θu2xdxds

=

∫ 1

0

(1
2
u20 +

cγ0
γ − 1

Qγ−1
0

ρl

)
dx+

∫ t

0

(Q1+θuux)
∣∣∣x=1

x=0
ds

−
∫ t

0

(cγQγu)
∣∣∣x=1

x=0
ds−

∫ t

0

∫ 1

0

h(c,Q)u2|u|dxds. (58)

Now invoking the boundary conditions (51) and the assumptions on the initial data we arrive at
the conclusion (55). �

Now, we derive a pointwise upper bound on Q. We first present an upper bound which does not
depend on the weighting function ϕ(x). Then, in Corollary 3.1 we present a more refined upper
bound by making use of the higher order regularity of u as given by Lemma 3.3.

Lemma 3.2. Under the assumptions of Theorem 2.1 we have the pointwise upper bound

Q(x, t) ≤ C(T ), ∀(x, t) ∈ [0, 1]× [0, T ]. (59)

Proof. Multiplying equation (47)(b) by θQθ−1, we observe that

(Qθ)t = −ρlθQ1+θux. (60)
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We then integrate equation (60) over [0, t] and, moreover, equation (47)(c) over [0, x] (or alterna-
tively over[x, 1]), which gives

Qθ(x, t) = Qθ
0(x)− ρlθ

∫ t

0

(Q1+θux)(x, s)ds (61)

and

Q1+θux = (cQ)γ +

∫ x

0

utdy +

∫ x

0

h(c,Q)u|u|dy = (cQ)γ −
∫ 1

x

utdy −
∫ 1

x

h(c,Q)u|u|dy. (62)

Putting x = 1 in this last equation, using the boundary conditions, and integrating in time over
[0, t] reveals that∫ x

0

(u0 − u(y, t))dy −
∫ t

0

∫ x

0

h(c,Q)u|u|dy = −
∫ 1

x

(u0 − u(y, t))dy +

∫ t

0

∫ 1

x

h(c,Q)u|u|dy, (63)

a fact which will be used in the following. We further substitute equation (62) into equation (61),
and exploit the boundary conditions such that

Qθ(x, t) + ρlθ

∫ t

0

(cQ)γ(x, s)ds = Qθ
0(x) + ρlθ

(∫ x

0

u0(y)dy −
∫ x

0

u(y, t)dy
)

(64)

− ρlθ

∫ t

0

∫ x

0

h(c,Q)u|u|dyds.

We can then estimate Qθ(x, t) as follows

Qθ(x, t) ≤ Qθ
0 + C

∫ x

0

|u0(y)|dy + C

∫ x

0

|u(y, t)|dy + C

∫ t

0

∫ x

0

h(c,Q)u2dyds (65)

for 0 < x < 1, 0 < t ≤ T . Moreover using assumption (28), (54), Lemma 3.1 and the Hölder
inequality, we find that

Qθ(x, t) ≤ Qθ
0 + Cx+ C

(∫ 1

0

u2(y, t)dy
) 1

2

x
1
2 + C

(∫ t

0

∫ 1

0

u2dyds
)

≤ Qθ
0 + Cx

1
2 + CT, (66)

where we have used that x ≤ x1/2 for x ∈ [0, 1]. However, using equation (63) in equation (64) we
can similarly deduce that

Qθ(x, t) ≤ Qθ
0 + C(1− x)

1
2 + CT. (67)

Finally, combining (66) and (67) and exploiting the fact that min(x, 1 − x) ≤ 2x(1 − x) (for
0 < x < 1) lead us to the following estimate

Qθ(x, t) ≤ Qθ
0 + C(x(1− x))

1
2 + CT ≤ Cϕ(x)αθ + C(x(1− x))

1
2 + C(T ), (68)

where we use assumption (35) on the initial data Q0. Clearly, we can conclude that the estimate
(59) holds. �

Lemma 3.3. Under the assumptions of Theorem 2.1 we have the following higher order estimate
for any integer m∫ 1

0

u2mdx+m(2m− 1)

∫ t

0

∫ 1

0

u2m−2Q1+θu2xdxds+ 2m

∫ t

0

∫ 1

0

h(c,Q)u2m|u|dxds ≤ C(T ). (69)

We omit the proof of Lemma 3.3 for brevity. It can be proved using similar arguments as in
[12]. A key step is that we make use of the pointwise upper bound of Q given by (59).

However, equipped with the higher order control on u as given by Lemma 3.3, we can derive a
more refined upper bound for Q that depends on ϕ(x).

Corollary 3.1. Under the assumptions of Theorem 2.1 we have the pointwise upper bound

Q(x, t) ≤ C(T )ϕα(x), ∀(x, t) ∈ [0, 1]× [0, T ]. (70)
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Proof. We only have to revisit the last term of (65), which is the friction related term. Clearly,
we can estimate as follows∫ t

0

∫ x

0

h(c,Q)u2dyds ≤ Cx
1
2

∫ t

0

(∫ 1

0

u4 dx
) 1

2

ds ≤ CTx
1
2 .

Following the same arguments as used in Lemma 3.2, we conclude that (68) is refined to

Qθ(x, t) ≤ Cϕ(x)αθ + C(T )(x(1− x))
1
2 . (71)

But, since 0 < α ≤ 1
2θ , according to (30), the conclusion (70) follows. �

The next lemma largely follow arguments used for single-phase analysis and the friction term
does not cause additional problems since it appears as a non-negative term that can be ignored,
see (76).

Lemma 3.4. Under the assumptions of Theorem 2.1 and for 2ν = (1− 2θ)(1 + θ
10 ) we have the

following upper bound ∫ 1

0

ϕ2νQ2θ−2Q2
x dx ≤ C(T ), (72)

Proof. Using equation (60) in combination with the momentum equation (47)(c) we obtain

(Qθ)xt = −θρl(ut + ((cQ)γ)x)− θρlh(c,Q)u|u|. (73)

We then multiply this equation ϕ2ν(Qθ)x and integrate it over [0, 1]× [0, t] to yield

θ2

2

∫ 1

0

ϕ2νQ2θ−2Q2
xdx+ ρlθ

2γ

∫ t

0

∫ 1

0

ϕ2νcγQγ+θ−2Q2
xdxds =

θ2

2

∫ 1

0

ϕ2νQ2θ−2
0 Q2

0xdx

− ρlθ

∫ t

0

∫ 1

0

ϕ2νut(Q
θ)xdxds− ρlθ

∫ t

0

∫ 1

0

ϕ2νh(c,Q)u|u|(Qθ)xdxds

− ρlθ
2γ

∫ t

0

∫ 1

0

ϕ2νcγ−1Qγ+θ−1Qxcxdxds (74)

Using partial integration we can rewrite as follows

θ2

2

∫ 1

0

ϕ2νQ2θ−2Q2
xdx+ ρlθ

2γ

∫ t

0

∫ 1

0

ϕ2νcγQγ+θ−2Q2
xdxds =

θ2

2

∫ 1

0

ϕ2νQ2θ−2
0 Q2

0xdx

− ρlθ

∫ 1

0

ϕ2νu(Qθ)xdx+ ρlθ

∫ 1

0

ϕ2νu0(Q
θ
0)xdx+ ρlθ

∫ t

0

∫ 1

0

ϕ2νu(Qθ)xtdxds

− ρlθ

∫ t

0

∫ 1

0

ϕ2νh(c,Q)u2(Qθ)xdxds− ρlθ
2γ

∫ t

0

∫ 1

0

ϕ2νcγ−1Qγ+θ−1Qxcxdxds

:= I0 + I1 + I2 + I3 + I4 + I5. (75)

Furthermore, estimating the quantities I0, I1, I2, I3, I4 and I5 (see Appendix A) we arrive at the
inequality

θ2

4

∫ 1

0

ϕ2νQ2θ−2Q2
xdx+ ρlθ

2γ

∫ t

0

∫ 1

0

ϕ2νcγQγ+θ−2Q2
xdxds

+ (ρlθ)
2

∫ t

0

∫ 1

0

ϕ2νh(c,Q)u2|u|dxds ≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2νQ2θ−2Q2
xdx. (76)

Clearly, this implies that

θ2

4

∫ 1

0

ϕ2νQ2θ−2Q2
xdx ≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2νQ2θ−2Q2
xdx, (77)

and an application of Gronwall’s lemma proves (72). �

The next lemma is obtained by following along the line of [10]. The main difference is the
appearance of a new non-negative term on the left hand side of the inequality (78) due to the
friction term.
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Lemma 3.5. Under the assumptions of Theorem 2.1 where k1 is characterized by (33), for any
integer m > 0 and for α1 = (1− 1

2m )(θ − 1) < 0, we have the following upper bound∫ 1

0

ϕk1Qα1u2dx+

∫ t

0

∫ 1

0

ϕk1Q1+θ+α1u2x dxds+

∫ t

0

∫ 1

0

ϕk1h(c,Q)Qα1u2|u|dxds ≤ C(T ). (78)

Proof. First let

αm =
θ − 1

2
, (79)

and, moreover, define αm−1 as,

αm−1 =
αm

2
+
θ − 1

2
=

3

2
αm. (80)

It follows from the equations (47)(b) and (c) that

(ϕk1Qαmu2
m

)t = −αmρlϕ
k1Q1+αmu2

m

ux + 2mϕk1Qαmu2
m−1(Q1+θux)x

− 2mϕk1Qαmu2
m−1(cγQγ)x − 2mϕk1h(c,Q)Qαmu2

m

|u|.
(81)

We integrate equation (81) over [0, 1]× [0, t], which after application of partial integration and the
boundary conditions yields∫ 1

0

ϕk1Qαmu2
m

dx+ 2m(2m − 1)

∫ t

0

∫ 1

0

ϕk1Q1+θ+αmu2
m−2u2xdxds

+ 2m
∫ t

0

∫ 1

0

ϕk1h(c,Q)Qαmu2
m

|u|dxds =
∫ 1

0

ϕk1Qαm
0 u2

m

0 dx− αmρl

∫ t

0

∫ 1

0

ϕk1Q1+αmu2
m

uxdxds

− 2mαm

∫ t

0

∫ 1

0

ϕk1Qθ+αmu2
m−1Qxuxdxds− 2mk1

∫ t

0

∫ 1

0

ϕk1−1Q1+θ+αmu2
m−1uxϕ

′(x)dxds

− 2mγ

∫ t

0

∫ 1

0

ϕk1cγQγ+αm−1u2
m−1Qxdxds− 2mγ

∫ t

0

∫ 1

0

ϕk1cγ−1Qγ+αmu2
m−1cxdxds

:=
6∑

i=1

Imi ≤ C(T ),

(82)

where the estimation of Imi (for i = 1, 2, 3, 4, 5, 6) is given in Appendix B, see (152)–(157). Obvi-
ously, equation (82) is also valid for αm−1 and m−1 (instead of αm and m and with the exception
of the inequality part, which must be proved), and thus we obtain∫ 1

0

ϕk1Qαm−1u2
m−1

dx+ 2m−1(2m−1 − 1)

∫ t

0

∫ 1

0

ϕk1Q1+θ+αm−1u2
m−1−2u2xdxds

+ 2m−1

∫ t

0

∫ 1

0

ϕk1h(c,Q)Qαm−1u2
m−1

|u|dxds

=

∫ 1

0

ϕk1Q
αm−1

0 u2
m−1

0 dx− αm−1ρl

∫ t

0

∫ 1

0

ϕk1Q1+αm−1u2
m−1

uxdxds

− 2m−1αm−1

∫ t

0

∫ 1

0

ϕk1Qθ+αm−1u2
m−1−1Qxuxdxds

− 2m−1k1

∫ t

0

∫ 1

0

ϕk1−1Q1+θ+αm−1u2
m−1−1uxϕ

′(x)dxds

− 2m−1γ

∫ t

0

∫ 1

0

ϕk1cγQγ+αm−1−1u2
m−1−1Qxdxds

− 2m−1γ

∫ t

0

∫ 1

0

ϕk1cγ−1Qγ+αm−1u2
m−1−1cxdxds :=

6∑
i=1

Im−1
i ≤ C(T ),

(83)

where the estimation of Im−1
i (for i = 1, 2, 3, 4, 5, 6) follows from the estimates in Appendix B, see

(158)–(162). These estimates, in turn, depend on the estimate (82). The recurrence relation (80)
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then implies that αk = (2− 1
2m−k )(

θ−1
2 ) for k = 1, . . . ,m. In particular, α1 = (1− 1

2m )(θ− 1). We
can thus conclude by induction that∫ 1

0

ϕk1Qα1u2dx+

∫ t

0

∫ 1

0

ϕk1Q1+θ+α1u2xdxds+

∫ t

0

∫ 1

0

ϕk1h(c,Q)Qα1u2|u|dxds ≤ C(T ), (84)

and the proof is completed. �

Lemma 3.6. Under the assumptions of Theorem 2.1 and for any integer m > 0 and for β1 =
(2− 1

2m )(θ − 1) < 0, we have ∫ 1

0

ϕk1Qβ1dx ≤ C(T ). (85)

Proof. From equation (47)(b) it follows that

(ϕk1Qβ1)t = −β1ρlϕk1Q1+β1ux. (86)

Integrate (86) over [0, 1]× [0, t] to obtain∫ 1

0

ϕk1Qβ1dx =

∫ 1

0

ϕk1Qβ1

0 dx− β1ρl

∫ t

0

∫ 1

0

ϕk1Q1+β1uxdxds. (87)

Furthermore, we obtain an estimate for
∫ 1

0
ϕk1Qβ1dx from (87) by using the Cauchy inequality as

follows:∫ 1

0

ϕk1Qβ1dx ≤
∫ 1

0

ϕk1Qβ1

0 dx+ C

∫ t

0

∫ 1

0

ϕ
k1
2 Q

1+θ+α1
2 uxϕ

k1
2 Q1+β1Q

−(1+θ+α1)
2 dxds

≤
∫ 1

0

ϕk1Qβ1

0 dx+ C

∫ t

0

∫ 1

0

ϕk1Q1+θ+α1u2xdxds+ C

∫ t

0

∫ 1

0

ϕk1Q1+2β1−θ−α1dxds.

(88)

Now notice, in view of assumptions (35) and (37), that∫ 1

0

ϕk1Qβ1

0 dx ≤ C.

Moreover, ∫ t

0

∫ 1

0

ϕk1Q1+θ+α1u2xdxds ≤ C(T ),

due to Lemma 3.5. Thus by using these two latter facts and the fact that 1 + 2β1 − θ − α1 = β1,
(88) can be written as ∫ 1

0

ϕk1Qβ1dx ≤ C(T ) + C

∫ t

0

∫ 1

0

ϕk1Qβ1dxds. (89)

After an application of Gronwall’s lemma we arrive at the conclusion (85). �

Lemma 3.7. Under the assumptions of Theorem 2.1, and for k2 = ν + k1

2 where k1 > 2ν, we
have the following pointwise lower bound on Q

Q(x, t) ≥ C(T )ϕ
11k2

10(1−2θ) (x), ∀(x, t) ∈ [0, 1]× [0, T ]. (90)

Proof. It follows from the Sobolev inequality W 1,1([0, 1]) ↪→ L∞([0, 1]) that

[ϕk2Qβ2 ](x, t) ≤ C

∫ 1

0

|ϕk2Qβ2 |dx+ C

∫ 1

0

|(ϕk2Qβ2)x|dx (91)

≤ C

∫ 1

0

|ϕk2Qβ2 |dx+ C

∫ 1

0

|ϕk2−1Qβ2 |dx+ C

∫ 1

0

ϕk2 |(Qβ2)x|dx.

Choosing β2 such that β2 = θ + (1 − 1
2m+1 )(θ − 1), and noting that β1

2 = (1 − 1
2m+1 )(θ − 1) then

it’s clear that

β2 = θ +
β1
2
, β2 − β1 = θ − β1

2
> 0, 2β2 − β1 = 2θ > 0, (92)
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and it is also clear that β2 < 0 for m large enough since 0 < θ < 1
2 . Some further simple

manipulations including application of the Cauchy inequality, Young’s inequality with p = β1

β2
and

q = β1

β1−β2
, and Corollary 3.1 then gives

ϕk2Qβ2(x, t) ≤ C

∫ 1

0

ϕνQβ2− β1
2 ϕ

k1
2 Q

β1
2 dx+ C

∫ 1

0

ϕk2Qβ2−1|Qx|dx+ C

∫ 1

0

ϕk2−1Qβ2dx

≤ C

∫ 1

0

ϕ2νQ2β2−β1dx+ C

∫ 1

0

ϕk1Qβ1dx+ C

∫ 1

0

ϕν+
k1
2 Qβ2−1+θ−θ|Qx|dx

+ C

∫ 1

0

ϕk2−1−k1
β2
β1 ϕk1

β2
β1Qβ2dx

≤ C

∫ 1

0

ϕ2ν+2αθdx+ C

∫ 1

0

ϕk1Qβ1dx+ C

∫ 1

0

ϕk1Q2β2−2θdx

+ C

∫ 1

0

ϕ2νQ2θ−2Q2
xdx+ C

∫ 1

0

ϕk1Qβ1dx+ C

∫ 1

0

ϕ(k2−1−k1
β2
β1

)(
β1

β1−β2
)dx.

(93)

Moreover, application of (92), Lemmas 3.4 and 3.6, in addition to the fact that 2ν + 2αθ > −1

and (k2 − 1− k1
β2

β1
) β1

β1−β2
> −1 (the latter for sufficiently large m), allow us to conclude that

ϕk2Qβ2(x, t) ≤ C(T ). (94)

Finally, since β2 < 0 and 2θ − 1 < β2 <
10
11 (2θ − 1) for sufficiently large m, it follows from (94)

that Q(x, t) ≥ C(T )ϕ−
k2
β2 ≥ C(T )ϕ

11k2
10(1−2θ) . �

Equipped with the upper and lower limits on Q(c, ζ), this pointwise control can be transferred
to the masses n and ζ. We also can derive BV-estimates for these mass variables by relying on
Lemma 3.4 and assumption (27). These results are summed up in the following two corollaries.

Corollary 3.2. We have the upper and lower bounds

C(T )ϕ
11k2

10(1−2θ) ≤Q(x, t) ≤ C(T )ϕ(x)α, (95)

ρlC(T )

1 + C(T )
ϕ(x)

11k2
10(1−2θ) ≤ζ(x, t) ≤ min

{
ρlC(T )ϕ(x)

α,
ρl − µ

1− sup[0,1] c

}
, (96)

( inf
x∈[0,1]

c0)
ρlC(T )

1 + C(T )
ϕ(x)

11k2
10(1−2θ) ≤n(x, t) ≤ min

{
ρlC(T )ϕ(x)

α,
ρl − µ

1− sup[0,1] c

}
, (97)

where µ > 0 is a small constant.

Proof. The first estimate (95) follows from Corollary 3.1 and Lemma 3.7. For the second estimate
(96) we observe that

ζ = ρl
Q

1 + (1− c)Q
, (98)

for ρl − (1− c)ζ > 0. Consequently, in view of (95) and (46), it follows that

ζ ≤ ρlQ ≤ min
{
ρlC(T )ϕ(x)

α,
ρl − µ

1− sup[0,1] c

}
,

for an appropriate choice of µ > 0. Moreover, (95) and (98) also imply that

ζ ≥ ρlC(T )

1 + C(T )
ϕ(x)

11k2
10(1−2θ) .

In view of the fact that n(x, t) = ζ(x, t)c0(x) and assumption (27), the last estimate (97) follows.
�

Corollary 3.3. We have the estimates∫ 1

0

|∂xζ| dx ≤ C(T ),

∫ 1

0

|∂xn| dx ≤ C(T ), (99)
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for a suitable constant C(T ).

Proof. It follows that

Q(c, ζ)x = Qccx +Qζζx = −Q2cx + ρlζ
−2Q2ζx. (100)

For x ∈ (0, 1) where Q > 0 we can rewrite in the form

ζx = ρ−1
l

( ζ
Q

)2

Qx + ρ−1
l ζ2cx

= ρl

( 1

1 + (1− c)Q

)2

Qx + ρ−1
l ζ2cx

= ϕ(x)−νQ1−θρl

( 1

1 + (1− c)Q

)2

ϕ(x)νQθ−1Qx + ρ−1
l ζ2cx.

Consequently, using Cauchy inequality, Corollary 3.1, Lemma 3.4, and assumption (27), we get∫ 1

0

|ζx| dx ≤ C

∫ 1

0

ϕ(x)−2νQ2(1−θ)dx+ C

∫ 1

0

ϕ(x)2νQ2−2θQ2
xdx+ C

∫ 1

0

|cx|dx

≤ C(T ) + C

∫ 1

0

ϕ(x)−2ν+2(1−θ)αdx ≤ C(T ),

(101)

since 1 + 2(1− θ)α > 2ν. Clearly, we also have the estimate∫ 1

0

|nx| dx ≤
∫ 1

0

|ζ||cx| dx+

∫ 1

0

c|ζx| dx ≤ C(T ),

in view of assumption (27), Corollary 3.2, and estimate (101) of
∫
|ζx| dx. �

Lemma 3.8. For a given integer n > 0, and under the assumptions of Theorem 2.1, we can prove
that ∫ 1

0

u2nt dx+ n(2n− 1)

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dxds ≤ C(T ). (102)

Proof. We differentiate the third equation of (47) with respect to time t, multiply the resulting
equation by 2nu2n−1

t and integrate over [0, 1]× [0, t], and obtain∫ 1

0

u2nt (x, t) dx+ 2n

∫ t

0

∫ 1

0

p(cQ)xtu
2n−1
t dxds

=

∫ 1

0

u2nt (x, 0)dx− 2n

∫ t

0

∫ 1

0

(h(c,Q)u|u|)tu2n−1
t dxds+ 2n

∫ t

0

∫ 1

0

(Qθ+1ux)xtu
2n−1
t dxds.

(103)

First, it follows that ∫ 1

0

u2nt (x, 0) dx ≤ C(T ), (104)

by considering the momentum equation of (47) at time t = 0

(u0)t + p(c0Q0)x = −h(c0, Q0)u0|u0|+ (Qθ+1
0 u0,x)x,

together with assumptions (24)–(29), and (38), as well as estimate (54). We also note that∫ t

0

∫ 1

0

[p(cQ)− (Qθ+1ux)]xtu
2n−1
t dxds

=

∫ t

0

([p(cQ)− (Qθ+1ux)]tu
2n−1
t )

∣∣∣x=1

x=0
ds−

∫ t

0

∫ 1

0

[p(cQ)− (Qθ+1ux)]t(u
2n−1
t )xdxds

= −
∫ t

0

∫ 1

0

[p(cQ)− (Qθ+1ux)]t(u
2n−1
t )xdxds,

(105)
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by application of the boundary conditions (51). Moreover, using the second equation of (47) it
follows that∫ t

0

∫ 1

0

(Qθ+1ux)t(u
2n−1
t )xdxds (106)

= (2n− 1)

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dxds− (2n− 1)(θ + 1)ρl

∫ t

0

∫ 1

0

Qθ+2u2xuxtu
2n−2
t dxds

= (2n− 1)

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dxds+ I

(n)
1 ,

and ∫ t

0

∫ 1

0

p(cQ)t(u
2n−1
t )xdxds = −γρl(2n− 1)

∫ t

0

∫ 1

0

cγQγ+1uxuxtu
2n−2
t dxds = I

(n)
2 ,(107)

and ∫ t

0

∫ 1

0

(h(c,Q)u|u|)tu2n−1
t dx ds

= −ρl
∫ t

0

∫ 1

0

hQ(c,Q)Q2uxu|u|u2n−1
t dxds+ 2

∫ t

0

∫ 1

0

h(c,Q)|u|u2nt dxds

= I
(n)
3 + I

(n)
4 .

(108)

Moreover, using the “epsilon version” Cauchy inequality (i.e. ab ≤ εa2 + b2

4ε ) it is found that

I
(n)
1 ≤ 2n− 1

4

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dx ds+ C

∫ t

0

∫ 1

0

Qθ+3u4xu
2n−2
t dx ds (109)

=
2n− 1

4

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dx ds+ I

(n)
11 , (110)

where we have used ε = 1
4(θ+1)ρl

. Similarly, we have for I
(n)
2 by using ε = 1

4γρl

I
(n)
2 ≤ 2n− 1

4

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dx ds+ C

∫ t

0

∫ 1

0

c2γQ2γ+1−θu2xu
2n−2
t dx ds

=
2n− 1

4

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dxds+ I

(n)
22 .

(111)

Combining (103)–(111), we get∫ 1

0

u2nt (x, t) dx+ n(2n− 1)

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−2
t dx ds

≤ C(1 + I
(n)
11 + I

(n)
22 + I

(n)
3 + I

(n)
4 ).

(112)

The proof now proceeds by induction. We first show that

I
(1)
11 ≤ C(T ) + C(T )

∫ t

0

V11(s)

∫ 1

0

u2tdxds, (113)

I
(1)
22 ≤ C(T ), (114)

I
(1)
3 ≤ C(T ) + C(T )

∫ t

0

∫ 1

0

u2tdxds, (115)

I
(1)
4 ≤ C(T )

∫ t

0

V4(s)

∫ 1

0

u2tdxds, (116)

for appropriate choices of V11 and V4 where V11(s), V4(s) ∈ L1([0, T ]). We refer to Appendix C for
details. An application of Gronwall’s lemma, in view of (112), then let us conclude that∫ 1

0

u2t (x, t) dx+

∫ t

0

∫ 1

0

Qθ+1u2xtdxds ≤ C(T ). (117)
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Moreover, assuming that Lemma 3.8 holds for n− 1, i.e. that∫ 1

0

u2n−2
t (x, t) dx+ (n− 1)(2n− 3)

∫ t

0

∫ 1

0

Qθ+1u2xtu
2n−4
t dxds ≤ C(T ), (118)

we can show that

I
(n)
11 ≤ C(T ) + C(T )

∫ t

0

∫ 1

0

u2nt dxds, (119)

I
(n)
22 ≤ C(T ), (120)

I
(n)
3 ≤ C(T ) + C(T )

∫ t

0

∫ 1

0

u2nt dxds, (121)

I
(n)
4 ≤ C(T )

∫ t

0

V4(s)

∫ 1

0

u2nt dxds, (122)

where V4(s) ∈ L1([0, T ]). Estimation details are again left to Appendix C. Lemma 3.8 thus follows
by another application of Gronwall’s lemma. �

Lemma 3.9. Under the assumptions of Theorem 2.1 we have the estimates

∥Qθ+1ux∥L∞(DT ) ≤ C(T ), (123)∫ 1

0

|(Qθ+1ux)x| dx ≤ C(T ), (124)∫ 1

0

|Qx| dx ≤ C(T ), (125)

for a suitable constant C(T ) and where DT = [0, 1]× [0, T ].

Proof. Using the Cauchy inequality, (54) and Lemma 3.1, Corollary 3.1, and Lemma 3.8, it follows
from (62) that

Q1+θux ≤ cγQγ +

∫ 1

0

|ut|dx+ C

∫ 1

0

u2dx ≤ C + C

∫ 1

0

u2tdx ≤ C(T ). (126)

This proves (123). Similarly, again using the Cauchy inequality, (54), Lemmas 3.1, 3.4, 3.8, and
Corollary 3.1, it follows from (62) that∫ 1

0

|(Q1+θux)x|dx

≤
∫ 1

0

|(cγQγ)x|dx+

∫ 1

0

|ut|dx+ C

∫ 1

0

h(c,Q)u2dx

≤ C

∫ 1

0

|cx|dx+ C

∫ 1

0

ϕ(x)−νQγ−θϕ(x)νQθ−1|Qx|dx+

∫ 1

0

|ut|dx+ C

∫ 1

0

h(c,Q)u2dx

≤ C(T ) + C

∫ 1

0

ϕ(x)−2νQ2(γ−θ)dx+ C

∫ 1

0

ϕ(x)2νQ2(θ−1)Q2
xdx+ C

∫ 1

0

u2tdx

≤ C(T ),

where we use that 2(γ − θ)α− 2ν > −1. Finally, (125) follows since∫ 1

0

|Qx|dx ≤
∫ 1

0

|ϕνQθ−1QxQ
1−θϕ−ν |dx

≤ 2

∫ 1

0

ϕ2νQ2θ−2Q2
xdx+ 2

∫ 1

0

ϕ−2νQ2−2θdx ≤ C(T ),

(127)

by the Cauchy inequality, Corollary 3.1, Lemma 3.4, and the fact that 2(1− θ)α− 2ν > −1. �
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Lemma 3.10. Under the assumptions of Theorem 2.1, we have the following estimates for the
velocity u ∫ 1

0

|ux(x, t)|dx ≤ C(T ), (128)

|u(x, t)| ≤ C(T ). (129)

Proof. Using assumption (27), (54), (62), Lemmas 3.3 and 3.8 as well as the Hölder inequality
with p = 2n and q = 2n

2n−1 , we can obtain the estimate∫ 1

0

|ux(x, t)|dx ≤
∫ 1

0

cγQγ−1−θdx+

∫ 1

0

Q−1−θ

∫ x

0

|ut|dydx+

∫ 1

0

Q−1−θ

∫ x

0

h(c,Q)u2dydx

≤ C

∫ 1

0

Qγ−1−θdx+ C

∫ 1

0

Q−1−θ
(
x(1− x)

) 2n−1
2n

(∫ 1

0

(ut)
2ndy

) 1
2n

dx

+C

∫ 1

0

Q−1−θ
(
x(1− x)

) 2n−1
2n

(∫ 1

0

u4ndy
) 1

2n

dx

≤ C

∫ 1

0

Qγ−1−θdx+ C

∫ 1

0

Q−1−θϕ
2n−1
2n dx. (130)

Furthermore, using Corollary 3.1 and Lemma 3.7 as well as the fact that when 0 < θ < 1
2 ,

k2 = ν + k1

2 , and 2ν < k1 < 40(1−2θ)
11(1+θ) − 2ν < 20(1−2θ)

11θ − 2ν, then −11k2θ
10(1−2θ) > −1, and for n

sufficiently large, 2n−1
2n − 11k2(1+θ)

10(1−2θ) > −1, we can conclude that∫ 1

0

Qγ−1−θdx ≤ max
x∈[0,1]

(Qγ−1)

∫ 1

0

ϕ
−11k2θ

10(1−2θ) dx ≤ C(T ), (131)

and ∫ 1

0

Q−1−θϕ
2n−1
2n dx ≤ C

∫ 1

0

ϕ
2n−1
2n − 11k2(1+θ)

10(1−2θ) dx ≤ C(T ). (132)

This proves (128). Finally, Sobolov’s embedding theorem |u| ≤ C
∫ 1

0
|u|dx + C

∫ 1

0
|ux|dx, the

Cauchy inequality, the energy estimate and (128) directly gives the desired result (129). �
Lemma 3.11. Under the assumptions of Theorem 2.1, we have for 0 < s < t ≤ T that∫ 1

0

|Q(x, t)−Q(x, s)|2dx ≤ C(T )|t− s|2, (133)∫ 1

0

|ζ(x, t)− ζ(x, s)|2dx ≤ C(T )|t− s|2, (134)∫ 1

0

|n(x, t)− n(x, s)|2dx ≤ C(T )|t− s|2, (135)∫ 1

0

|u(x, t)− u(x, s)|2dx ≤ C(T )|t− s|2, (136)∫ 1

0

|(Qθ+1ux)(x, t)− (Qθ+1ux)(x, s)|2dx ≤ C(T )|t− s|. (137)

Proof. Using (47) b), the Hölder inequality, Corollary 3.1, Lemma 3.9, we see that∫ 1

0

|Q(x, t)−Q(x, s)|2dx =

∫ 1

0

∣∣∣∫ t

s

Qη(x, η)dη
∣∣∣2dx = ρl

∫ 1

0

∣∣∣∫ t

s

(Q2ux)(x, η)dη
∣∣∣2dx

≤ C|t− s|
∫ t

s

∫ 1

0

(Q2ux)
2(x, η)dxdη ≤ C|t− s|

∫ t

s

max
x∈[0,1]

(Q2−2θ)

∫ 1

0

(Q1+θux)
2(x, η)dxdη

≤ C(T )|t− s|2. (138)

Thus equation (133) is established. The estimate (134) follows by observing that

(ρl − (1− c)ζ)2Qt = ρlζt.
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Hence, the calculations in (138) can be used directly to establish the L2-continuity in time of
ζ. Next, using the relation n(x, t) = c0(x)ζ(x, t), the estimate (134) implies (135). In a similar
manner equation (136) follows, since∫ 1

0

|u(x, t)− u(x, s)|2dx =

∫ 1

0

∣∣∣∫ t

s

uη(x, η)dη
∣∣∣2dx =

≤ |t− s|
∫ t

s

∫ 1

0

(ut)
2(x, η)dxdη ≤ C(T )|t− s|2. (139)

due to Lemma 3.8.
Finally, we can prove (137) by the following argument. Again using Hölder’s inequality we get

that ∫ 1

0

|(Q1+θux)(x, t)− (Q1+θux)(x, s)|2dx =

∫ 1

0

∣∣∣∫ t

s

(Q1+θux)η(x, η)dη
∣∣∣2dx

≤ |t− s|
∫ t

s

∫ 1

0

(
(Q1+θux)η

)2

(x, η)dxdη

≤ |t− s|
∫ t

s

∫ 1

0

(
(Q1+θuxη − ρl(1 + θ)Q2+θu2x

)2

(x, η)dxdη

≤ C|t− s|
∫ t

s

∫ 1

0

(
Q2+2θu2xη +Q4+2θu4x

)
(x, η)dxdη

≤ C|t− s|
(∫ t

s

max
x∈[0,1]

(Q1+θ)

∫ 1

0

Q1+θu2xηdxdη +

∫ t

s

max
x∈[0,1]

(Q3+θu2x)

∫ 1

0

Q1+θu2xdxdη
)

≤ C|t− s|, (140)

by Lemmas 3.1 and 3.8 and the fact that

Q1+θ ≤ C(T ), (141)

and

Q3+θu2x = Q1−θ[Qθ+1ux]
2

= Q1−θ
(
(cQ)γ +

∫ x

0

utdy +

∫ x

0

h(c,Q)u|u|dy
)2

≤ CQ1−θ
(
(cQ)2γ + (

∫ x

0

utdy)
2 + (

∫ x

0

h(c,Q)u|u|dy)2
)

≤ CQ1−θ
(
(cQ)2γ + x(1− x)

∫ 1

0

u2tdy + x(1− x)

∫ 1

0

h(c,Q)2u4dy
)

≤ Cϕ(2γ+1−θ)α + Cϕ(1−θ)α+1 ≤ C(T ), (142)

which again follows from Corollary 3.1, Lemma 3.3 and 3.8, as well as (54) and (62), respectively.
�

4. Construction of weak solutions

In order to construct weak solutions to the initial-boundary problem (IBVP) (16)–(20), we
apply the line method [20] where a system of ODEs is derived that can approximate the original
model. For the details we refer to [9], which in turn is based on single-phase works like [10]. Semi-
discrete version of the various lemmas can be obtained, and in combination with Helly’s theorem,
the result of Theorem 2.1 follows, see [13, 14, 19, 17, 18, 25, 20, 26, 27, 22] and references therein
for details.
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Appendix A: Some estimates connected to lemma 3.4

In this Appendix we estimate the quantities Ii (for i = 0, 1, 2, 3, 4, 5), which are used in the
proof of Lemma 3.4.

Estimate for I0. Using assumption (36) it follows that

I0 =
θ2

2

∫ 1

0

ϕ2νQ2θ−2
0 Q2

0xdx ≤ C. (143)

Estimate for I1. Using the Cauchy’s inequality ab ≤ 1
4εa

2 + εb2, and the energy estimate (55),
we obtain that

I1 = −ρlθ
∫ 1

0

ϕ2νu(Qθ)xdx ≤ C(ε, T ) + ε

∫ 1

0

ϕ2νQ2θ−2Q2
xdx. (144)
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Clearly, we can choose ε = θ2/4 such that the second term on the right hand side of (144) can be
absorbed in the corresponding term on the left hand side of (75).

Estimate for I2. Using the Cauchy inequality, assumption (28) as well as the arguments used
above for I0, we arrive at the conclusion

I2 = ρlθ

∫ 1

0

ϕ2νu0(Q
θ
0)xdx ≤ C + C

∫ 1

0

ϕ2νQ2θ−2
0 Q2

0xdx ≤ C. (145)

Estimate for I3. Using equation (73) we get

I3 = ρlθ

∫ t

0

∫ 1

0

ϕ2νu(Qθ)xtdxds =

− (ρlθ)
2

∫ t

0

∫ 1

0

ϕ2νuutdxds− (ρlθ)
2γ

∫ t

0

∫ 1

0

ϕ2νucγ−1cxQ
γdxds

− (ρlθ)
2γ

∫ t

0

∫ 1

0

ϕ2νucγQγ−1Qxdxds− (ρlθ)
2

∫ t

0

∫ 1

0

ϕ2νh(c,Q)u2|u|dxds

:= I31 + I32 + I33 − (ρlθ)
2

∫ t

0

∫ 1

0

ϕ2νh(c,Q)u2|u|dxds. (146)

We can further estimate I31, I32 and I33 as follows.

I31 = −(ρlθ)
2

∫ t

0

∫ 1

0

ϕ2νuutdxds = −(ρlθ)
2

∫ t

0

∫ 1

0

ϕ2ν
1

2

d

dt
(u2)dxds

= −(ρlθ)
2 1

2

∫ 1

0

ϕ2ν(u2)dxds+ (ρlθ)
2 1

2

∫ 1

0

ϕ2ν(u20)dxds ≤ C, (147)

due to the energy estimate (55) and assumption (28). Moreover, we see that

I32 = −(ρlθ)
2γ

∫ t

0

∫ 1

0

ϕ2νucγ−1cxQ
γdxds ≤ C(T ), (148)

using the Cauchy inequality where we split u from the remaining part, followed by application of
Lemma 3.1, Lemma 3.2 and assumption(27). Finally, we find that

I33 = −(ρlθ)
2γ

∫ t

0

∫ 1

0

ϕ2νucγQγ−1Qxdxds

≤ C

∫ t

0

∫ 1

0

ϕ2νu2c2γQ2γ−2θdxds+ C

∫ t

0

∫ 1

0

ϕ2νQ2θ−2Q2
xdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2νQ2θ−2Q2
xdxds (149)

where we have used the Cauchy inequality, Lemma 3.1, Lemma 3.2, and assumption(27).
Estimate for I4. Using the Cauchy inequality, estimate (54), and the estimate of Lemma 3.3

we get

I4 = −ρlθ
∫ t

0

∫ 1

0

ϕ2νh(c,Q)u2(Qθ)xdxds (150)

≤ C

∫ t

0

∫ 1

0

ϕ2νh(c,Q)2u4dxds+ C

∫ t

0

∫ 1

0

ϕ2ν(Qθ)2xdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2νQ2θ−2Q2
xdxds.
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Estimate for I5. Using the Cauchy inequality, assumption (27), and Lemma 3.2 we finally get
that

I5 = −ρlθ2γ
∫ t

0

∫ 1

0

ϕ2νcγ−1Qγ+θ−1Qxcxdxds (151)

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2νQ2θ−2Q2
xdxds.

Appendix B: Some estimates connected to lemma 3.5

In this Appendix we estimate the quantities Imi and Im−1
i (for i = 1, 2, 3, 4, 5, 6), which are used

in the proof of Lemma (3.5). The arguments goes along the line of e.g. [10, 22], which in turn
build upon central works like [25, 26, 27]. The inclusion of the frictional term does not pose any
additional problems in this lemma since it appears as a non-negative term on the right hand side
of (82). However, for completeness we include the proof. Note that the equations (79) and (80)
are extensively used throughout these proofs. We start by estimating Imi (for i = 1, 2, 3, 4, 5, 6).

Estimate for Im1 . Exploiting assumptions (28), (37), and the fact that k1 > 0, we easily conclude
that

Im1 =

∫ 1

0

ϕk1Qαm
0 u2

m

0 dx ≤ C. (152)

Estimate for Im2 . Using the Cauchy inequality, Lemma 3.1, and Lemma 3.3, we have

Im2 = −αmρl

∫ t

0

∫ 1

0

ϕk1Q1+αmu2
m

uxdxds

≤ C

∫ t

0

∫ 1

0

ϕ2k1u2
m+1

dxds+ C

∫ t

0

∫ 1

0

Q1+θu2xdxds ≤ C(T ).

(153)

Estimate for Im3 . Using the Cauchy inequality, Lemma 3.3, and Lemma 3.4, and noticing that
k1 > 2ν (i.e. 2k1 > 2ν), it is clear that

Im3 = −2mαm

∫ t

0

∫ 1

0

ϕk1Qθ+αmu2
m−1Qxuxdxds

≤ C

∫ t

0

∫ 1

0

Qθ+1u2
m+1−2u2xdxds+ C

∫ t

0

∫ 1

0

ϕ2k1Q2θ−2Q2
xdxds ≤ C(T ).

(154)

Estimate for Im4 . Using the Cauchy inequality, Lemma 3.3, Corollary 3.1, and noticing that
|ϕ′(x)| is limited, we can perform the following estimates

Im4 = −2mk1

∫ t

0

∫ 1

0

ϕk1−1Q1+θ+αmu2
m−1uxϕ

′(x)dxds

≤ C

∫ t

0

∫ 1

0

ϕk1−1Q1+θ+αm |u2
m−1||ux|dxds

≤ C

∫ t

0

∫ 1

0

Q1+θu2
m+1−2u2xdxds+ C

∫ t

0

∫ 1

0

ϕ2k1−2Q1+θ+2αmdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2k1−2Q2θdxds ≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2θα+2k1−2dxds ≤ C(T ),

(155)

where the last inequality can be deduced since 2θα+2k1−2 > −1, when k1 > 2ν and α ≥ 19
20+

1
10θ,

in view of assumptions (30) and (31).



22 FRIIS AND EVJE

Estimate for Im5 . Using the Cauchy inequality, assumptions (27), Lemma 3.3, Corollary 3.1,
and Lemma 3.4 we obtain the estimates

Im5 = −2mγ

∫ t

0

∫ 1

0

ϕk1cγQγ+αm−1u2
m−1Qxdxds

≤ C

∫ t

0

∫ 1

0

u2
m+1−2dxds+ C

∫ t

0

∫ 1

0

ϕ2k1Q2γ+2αm−2Q2
xdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕk3Q2θ−2Q2
xdxds ≤ C(T ).

(156)

Note that the last inequality follows since k3 > −1, where k3 = 2k1 + αk2 and k2 is defined such
that 2γ + 2αm − 2 = k2 + (2θ − 2) (i.e. k2 = 2γ − θ − 1 ≥ 0). Clearly, k3 ≥ 2k1 > 2ν, implying
that ϕ(x)k3 ≤ ϕ(x)2ν .

Estimate for Im6 . Again using the Cauchy inequality, Lemma 3.3, Corollary 3.1, as well as
assumptions (27), we obtain the estimates

Im6 = −2mγ

∫ t

0

∫ 1

0

ϕk1cγ−1Qγ+αmu2
m−1cxdxds

≤ C

∫ t

0

∫ 1

0

u2
m+1−2dxds+ C

∫ t

0

∫ 1

0

ϕ2k1Q2γ+2αmdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2k1+α(2γ+2αm)dxds ≤ C(T ),

(157)

since 2k1 + α(2γ + 2αm) > −1.
Next we estimate Im−1

i (for i = 1, 2, 3, 4, 5, 6). In particular, we shall make use of the estimate
(82).

Estimate for Im−1
1 . Similarly as for Im1 , using (79) and (80), we estimate that

Im−1
1 =

∫ 1

0

ϕk1Q
αm−1

0 u2
m−1

0 dx ≤ C(T ). (158)

Estimate for Im−1
2 . Using the Cauchy inequality, estimate (82), the fact that 2+2αm−1−αm =

1 + θ, and Lemma 3.1 we obtain

Im−1
2 = −αm−1ρl

∫ t

0

∫ 1

0

ϕk1Q1+αm−1u2
m−1

uxdxds

= −αm−1ρl

∫ t

0

∫ 1

0

ϕk1Q
αm
2 u2

m−1

Q1+αm−1−αm
2 uxdxds

≤ C

∫ t

0

∫ 1

0

ϕk1Qαmu2
m

dxds+ C

∫ t

0

∫ 1

0

Q2+2αm−1−αmu2xdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

Q1+θu2xdxds ≤ C(T ).

Estimate for Im−1
3 . Using the Cauchy inequality, estimate (82), Lemma 3.4, the relation

2αm−1 − αm = θ − 1, and 2ν < k1, we have

Im−1
3 = −2m−1αm−1

∫ t

0

∫ 1

0

ϕk1Qθ+αm−1u2
m−1−1Qxuxdxds

≤ C

∫ t

0

∫ 1

0

ϕ
k1
2 Q

1
2+

θ
2+

αm
2 ϕ

k1
2 Q

θ
2+αm−1− 1

2−
αm
2 u2

m−1−1Qxuxdxds

≤ C

∫ t

0

∫ 1

0

ϕk1Q1+θ+αmu2
m−2u2xdxds+ C

∫ t

0

∫ 1

0

ϕk1Qθ+2αm−1−1−αmQ2
xdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕk1Q2θ−2Q2
xdxds ≤ C(T ).

(159)
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Estimate for Im−1
4 . Using the Cauchy inequality, estimate (82), and Corollary 3.1, we have

Im−1
4 = −2m−1k1

∫ t

0

∫ 1

0

ϕk1−1Q1+θ+αm−1u2
m−1−1uxϕ

′(x)dxds

≤ C

∫ t

0

∫ 1

0

ϕk1−1Q1+θ+αm−1 |u2
m−1−1ux|dxds

≤ C

∫ t

0

∫ 1

0

ϕ
k1
2 −1Q

1
2+

θ
2+αmϕ

k1
2 Q

1
2+

θ
2+

αm
2 |u2

m−1−1ux|dxds

≤ C

∫ t

0

∫ 1

0

ϕk1Q1+θ+αmu2
m−2u2xdxds+ C

∫ t

0

∫ 1

0

ϕk1−2Q1+θ+2αmdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕk1−2+2θαdxds ≤ C(T ),

(160)

since k1 − 2 + 2θα > −1− 2θ − 1
5θ

2 + 1
10θ +

19
10θ +

1
5θ

2 = −1, in light of assumptions (30)–(33).

Estimate for Im−1
5 . Using the assumptions on c given by (27), the Cauchy inequality, Lemma

3.3, Corollary 3.1, and Lemma 3.4 we obtain

Im−1
5 = −2m−1γ

∫ t

0

∫ 1

0

ϕk1cγQγ+αm−1−1u2
m−1−1Qxdxds

≤ C

∫ t

0

∫ 1

0

u2
m−2dxds+ C

∫ t

0

∫ 1

0

ϕ2k1Q2γ+2αm−1−2Q2
xdxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2k1+αk̃2Q2θ−2Q2
xdxds ≤ C(T ),

(161)

where k̃2 = 2γ + 3αm − 2θ = 2γ + 3
2 (θ − 1)− 2θ = 2γ − 1

2 (θ + 3) > 0 and k1 > 2ν.

Estimate for Im−1
6 . Again, using the assumptions on c and cx given by (27), the Cauchy

inequality, Corollary 3.1, and Lemma 3.3, we obtain

Im−1
6 = −2m−1γ

∫ t

0

∫ 1

0

ϕk1cγ−1Qγ+αm−1u2
m−1−1cxdxds

≤ C

∫ t

0

∫ 1

0

u2
m−2dxds+ C

∫ t

0

∫ 1

0

ϕ2k1Q2γ+2αm−1dxds

≤ C(T ) + C

∫ t

0

∫ 1

0

ϕ2k1+2αγ+3ααmdxds ≤ C(T ),

(162)

since 2k1 + 2αγ + 3ααm = 2k1 + [2γ + 3
2 (θ − 1)]α > 0.

Appendix C: Some estimates connected to lemma 3.8

In this Appendix we estimate the quantities I
(1)
11 , I

(1)
22 , I

(1)
3 and I

(1)
4 and, moreover, I

(n)
11 , I

(n)
22 , I

(n)
3

and I
(n)
4 , which are all used in the proof of Lemma 3.8. We estimate as follows:

I
(1)
11 = C

∫ t

0

∫ 1

0

Qθ+3u4xdxds ≤ C

∫ t

0

max
x∈[0,1]

(ϕ−k1Q2−α1u2x)V (s)ds (163)
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where V (s) =
∫ 1

0
ϕk1Qθ+1+α1u2xdx. Exploiting (62), estimate (54), Lemma 3.3, Corollary 3.1 and

the Hölder inequality, it follows that

ϕ−k1Q2−α1u2x = ϕ−k1Q−α1−2θ[Qθ+1ux]
2

= ϕ−k1Q−α1−2θ
(
(cQ)γ +

∫ x

0

utdy +

∫ x

0

h(c,Q)u|u|dy
)2

≤ Cϕ−k1Q−α1−2θ
(
(cQ)2γ +

(∫ x

0

utdy
)2

+
(∫ x

0

h(c,Q)u|u|dy
)2)

≤ Cϕ−k1Q−α1−2θ
(
(cQ)2γ + x(1− x)

∫ 1

0

u2tdy + x(1− x)

∫ 1

0

h(c,Q)2u4dy
)

≤ Cϕ−k1+(2γ−α1−2θ)α + Cϕ1−k1Q−(α1+2θ)

∫ 1

0

u2tdy + Cϕ1−k1Q−(α1+2θ)

≤ C(T )

∫ 1

0

u2tdx+ C(T ),

where the last inequality comes from the following facts:

(1) For 0 < θ < 1
2 and 2ν < k1 < (2γ − 3θ + 1)α it is clear that −k1 + (2γ − α1 − 2θ)α ≥ 0.

(2) For 0 < θ < 1
3 and 2ν < k1 < 1 + (1 − 3θ)α, we have (for sufficiently large m) that

1 − k1 − (α1 + 2θ)α ≥ 0. Here we also first have used the fact that −(α1 + 2θ) > 0 such
that Q−(α1+2θ) ≤ Cϕ(x)−(α1+2θ)α, according to Corollary 3.1.

(3) For 1
3 ≤ θ < 1

2 and 2ν < k1 < 20(1−2θ)
9−7θ + 22(1−3θ)

9−7θ ν it is clear that −(α1 + 2θ) <

0. Consequently, according to Lemma 3.7, Q−(α1+2θ) ≤ Cϕ(x)
−11k2(α1+2θ)

10(1−2θ) . However,

1− k1 − 11k2(α1+2θ)
10(1−2θ) ≥ 0.

Consequently, we have

I
(1)
11 ≤ C(T ) + C(T )

∫ t

0

V (s)

∫ 1

0

u2t dx ds, (164)

where V (s) ∈ L1([0, T ]), in view of Lemma 3.5. Moreover, we have

I
(1)
22 = C

∫ t

0

∫ 1

0

c2γQ2γ+1−θu2xdxds

≤ C

∫ t

0

max
x∈[0,1]

(ϕ−k1Q2γ−α1−2θ)

∫ 1

0

ϕk1Q1+θ+α1u2xdxds ≤ C(T ), (165)

in view of assumption (27), Lemma 3.5, Corollary 3.1, and the fact that when 0 < θ < 1
2 and

2ν < k1 < (2γ − 3θ + 1)α, then 2γ − (α1 + 2θ) > 0 and (2γ − α1 − 2θ)α− k1 ≥ 0, for sufficiently
large m.

We must further estimate I
(1)
3 and I

(1)
4 . Using the Cauchy inequality, we have

I
(1)
3 = −ρl

∫ t

0

∫ 1

0

hQ(c,Q)Q2uxu|u|utdxds

≤ ρl max
x∈[0,1]

(|hQ(c,Q)Q
3
2−

θ
2 |)

∫ t

0

∫ 1

0

|Q 1
2+

θ
2 u2uxut|dxds

≤ ρl max
x∈[0,1]

(|hQ(c,Q)Q
3
2−

θ
2 |)

(∫ t

0

∫ 1

0

Q1+θu4u2xdxds+

∫ t

0

∫ 1

0

u2tdxds
)

≤ C(T ) + C(T )

∫ t

0

∫ 1

0

u2tdxds, (166)

in light of Lemma 3.3 and the fact that β + 1
2 − θ

2 > 0 (for β > 0) such that

hQ(c,Q)Q
3
2−

θ
2 ≤ C(T ), (167)
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by Lemma 3.2, where we have also used that

hQ(c,Q) = fβρβl

( Q

1 + (1− c)Q

)β−1( 1

1 + (1− c)Q

)2

. (168)

For later use we also note that

hc(c,Q) = fρβl β
( Q

1 + (1− c)Q

)β+1

. (169)

Furthermore, we also get that

I
(1)
4 = 2

∫ t

0

∫ 1

0

h(c,Q)|u|u2tdxds ≤ 2

∫ t

0

max
x∈[0,1]

(h(c,Q)|u|)
∫ 1

0

u2tdxds. (170)

Now, the Sobolev embedding theorem gives

|h(c,Q)u| ≤ C

∫ 1

0

|h(c,Q)u|dx+ C

∫ 1

0

|(h(c,Q)u)x|dx

≤ C

∫ 1

0

h(c,Q)2dx+

∫ 1

0

u2dx+ C

∫ 1

0

|(h(c,Q)u)x|dx

≤ C(T ) +

∫ 1

0

|(h(c,Q)u)x|dx = C(T ) +W (s). (171)

where we have used Cauchy’s inequality, Lemma 3.1, and estimate (54). Next, we estimate

W (s) =

∫ 1

0

|(h(c,Q)u)x|dx

≤
∫ 1

0

|hc(c,Q)cxu|dx+

∫ 1

0

|hQ(c,Q)Qxu|dx+

∫ 1

0

|h(c,Q)ux|dx

=WA(s) +WB(s) +WC(s)

(172)

as follows:

WA(s) =

∫ 1

0

|hc(c,Q)cxu|dx ≤ C

∫ 1

0

|u|dx ≤ C(T ), (173)

and

WB(s) =

∫ 1

0

|hQ(c,Q)Qxu|dx (174)

≤
∫ 1

0

ϕ2νQ2(θ−1)Q2
xdx+

∫ 1

0

ϕ−2νhQ(c,Q)2Q2(1−θ)u2dx

≤ C(T ) + max
x∈[0,1]

(ϕ−2νhQ(c,Q)2Q2(1−θ))

∫ 1

0

u2dx

≤ C(T ) + C(T ) max
x∈[0,1]

(ϕ2βα−2θα−2ν) ≤ C(T ),

since β > ν
α + θ > θ, and

WC(s) =

∫ 1

0

|h(c,Q)ux|dx ≤
∫ 1

0

Qθ+1u2xdx+

∫ 1

0

|h(c,Q)2Q−(θ+1)|dx

≤
∫ 1

0

Qθ+1u2xdx+ max
x∈[0,1]

(h(c,Q)2Q−(θ+1)) (175)

≤
∫ 1

0

Qθ+1u2xdx+ max
x∈[0,1]

(ϕ2βα−α−θα) ∈ L1([0, T ]),

if 2β > 1 + θ. Here we also have applied Hölder’s and Cauchy inequalities, Lemma 3.1, Corollary
3.1, and Lemma 3.4, (168) and (49). Consequently, we can conclude that

I
(1)
4 ≤

∫ t

0

[C(T ) +W (s)]

∫ 1

0

u2tdxds, (176)
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where W (s) ∈ L1([0, T ]). Hence, we have shown (113)–(116).

It is now time to estimate the quantities I
(n)
11 , I

(n)
22 , I

(n)
3 and I

(n)
4 . First, by the induction

assumption equation (118), we get that

I
(n)
11 = C

∫ t

0

∫ 1

0

Qθ+3u4xu
2n−2
t dxds ≤ C(T )

∫ t

0

max
x∈[0,1]

(Qθ+3u4x)ds. (177)

It follows that

Qθ+3u4x = Q−1−3θ[Qθ+1ux]
4

= Q−1−3θ
(
(cQ)γ +

∫ x

0

utdy +

∫ x

0

h(c,Q)u|u|dy
)4

≤ CQ−1−3θ
(
(cQ)4γ + (

∫ x

0

utdy)
4 + (

∫ x

0

h(c,Q)u|u|dy)4
)

≤ CQ−1−3θ
(
(cQ)4γ + (x(1− x))

4n−2
n

(∫ 1

0

u2nt dy
) 2

n

+ (x(1− x))
4n−2

n

(∫ 1

0

h(c,Q)2nu4ndy
) 2

n
)

≤ C(T )ϕ(4γ−1−3θ)α + C(T )ϕ
4n−2

n Q−1−3θ
(∫ 1

0

u2nt dy
) 2

n

+ C(T )ϕ
4n−2

n Q−1−3θ,

where we have used (62), (54), Lemma 3.3, Corollary 3.1 and the Hölder inequality with p = 4n
4n−2

and q = 2n. Now exploiting that for 0 < θ < 1
2 and 2ν < k1 <

60(1−2θ)
11(1+3θ) − 2ν, we have for any

n > 1 that
4n− 2

n
− 11k2(1 + 3θ)

10(1− 2θ)
≥ 0, k2 = ν +

k1
2
, (178)

which implies that

max
x∈[0,1]

(ϕ
4n−2

n Q−1−3θ) ≤ C(T )ϕ
4n−2

n − 11k2(1+3θ)

10(1−2θ) ≤ C(T ), (179)

by Lemma 3.7, and thus also that

max
x∈[0,1]

(Qθ+3u4x) ≤ C
(∫ 1

0

u2nt dx
) 2

n

+ C(T ), (180)

such that

I
(n)
11 ≤ C(T )

[
1 +

∫ t

0

(∫ 1

0

u2nt dx
) 2

n

ds
]
. (181)

Finally, Young’s inequality with p = n
2 and q = n

n−2 gives (
∫ 1

0
u2nt dx)

2
n ≤ 2

n

∫ 1

0
u2nt dx+ n−2

2 , which
leads us to conclude that

I
(n)
11 ≤ C(T ) + C(T )

∫ t

0

∫ 1

0

u2nt dxds. (182)

Moreover, we have by the induction assumption equation (118) that

I
(n)
22 = C

∫ t

0

∫ 1

0

c2γQ2γ+1−θu2xu
2n−2
t dxds ≤ C

∫ t

0

max
x∈[0,1]

(Q2γ−1−3θ[Q1+θux]
2)ds (183)

Exploiting (62), (54), (117), Lemma 3.3, Corollary 3.1, and the Hölder inequality, we can now
estimate as follows

Q2γ−1−3θ[Qθ+1ux]
2 = Q2γ−1−3θ

(
(cQ)γ +

∫ x

0

utdy +

∫ x

0

h(c,Q)u|u|dy
)2

≤ CQ2γ−1−3θ
(
(cQ)2γ + (

∫ x

0

utdy)
2 + (

∫ x

0

h(c,Q)u|u|dy)2
)

≤ CQ2γ−1−3θ
(
(cQ)2γ + x(1− x)

∫ 1

0

u2tdy + x(1− x)

∫ 1

0

h(c,Q)2u4dy
)

≤ Cϕ(4γ−1−3θ)α + Cϕ1+2γαϕ−
11k2(1+3θ)

10(1−2θ) ≤ C(T ),
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since we have that (4γ − 1− 3θ)α > 0 and

1 + 2γα− 11k2(1 + 3θ)

10(1− 2θ)
> 1 + 2γα− 30

11
= 2γα− 19

11
> 0.

This corresponds to γα > 19
22 , that is, α > 19

22 which clearly holds in view of assumption (30).
Consequently,

I
(n)
22 ≤ C(T ). (184)

Furthermore, we get that

I
(n)
3 = −ρl

∫ t

0

∫ 1

0

hQ(c,Q)Q2uxu|u|u2n−1
t dxds

≤ max
x∈[0,1]

(|hQ(c,Q)Q2ux|)
∫ t

0

∫ 1

0

u2|u2n−1
t |dxds

≤ C max
x∈[0,1]

(|hQ(c,Q)Q2ux|)
(∫ t

0

∫ 1

0

u4ndxds+

∫ t

0

∫ 1

0

u2nt dxds
)

≤ C(T ) + C(T )

∫ t

0

∫ 1

0

u2nt dxds, (185)

where we have applied Young’s inequality with p = 2n and q = 2n
2n−1 , Lemma 3.3 as well as the

fact that

|hQ(c,Q)Q2ux|

≤ |hQ(c,Q)Q1−θ|
∣∣∣∫ x

0

utdy + (cQ)γ +

∫ x

0

h(c,Q)u|u|dy
∣∣∣

≤ ChQ(c,Q)Q1−θ
(
ϕ(x)1/2

(∫ 1

0

u2tdy
)1/2

+ (cQ)γ + ϕ(x)1/2
(∫ 1

0

u2dy
)1/2)

≤ C(T )[ϕα(β−θ)+1/2 + ϕα(β−θ)+γ ] ≤ C(T ), (186)

due to (54), (62), (117), (168), Lemma 3.1, Corollary 3.1, and Hölder inequality. Also note that
we must use that β ≥ θ, which is already ensured by assumption (32).

Finally, we obtain

I
(n)
4 = 2

∫ t

0

∫ 1

0

h(c,Q)|u|u2nt dxds ≤
∫ t

0

max
x∈[0,1]

(h(c,Q)|u|)
∫ 1

0

u2nt dxds

≤
∫ t

0

[C(T ) +W (s)]

∫ 1

0

u2nt dx ds, (187)

with W (s) ∈ L1([0, T ]) by precisely the same arguments as for I
(1)
4 , see estimate (176).


