WELL-POSEDNESS OF A COMPRESSIBLE GAS-LIQUID MODEL WITH A
FRICTION TERM IMPORTANT FOR WELL CONTROL OPERATIONS

HELMER A. FRIISB AND STEINAR EVJEA*

ABSTRACT. In this work we continue our investigations of a compressible gas-liquid model with
special focus on inclusion of external frictional forces in the momentum balance. The model is
often used for multiphase well flow modeling important for different well control operations. The
frictional forces have a major impact on the pressure gradient, which determines the pressure
distribution along the wellbore. Compression and decompression of gas in turn strongly depend
on the pressure level along the wellbore. A precise understanding of these mechanisms is impor-
tant since gas-kick scenarios and blow-out behavior is strongly linked to decompression effects.
This work is a continuation of the recent work [?Global weak solutions for a gas-liquid model
with external forces and general pressure law”, SIAM J. Appl. Math. 71 (2), pp. 409-442,
2011]. The novelty of the present work lies in the fact that: (i) we consider a full momentum
equation whereas a simplified one was used in the first work; (ii) the gas and liquid masses
vanish at the boundaries making the analysis more involved; (iii) special care must be given to
the frictional term to make sure that it is balanced with other terms such that a well-defined
model is obtained. The analysis ensures that global existence of weak solutions is obtained
under suitable assumptions on initial data (e.g. decay rate at the boundaries for gas and liquid
mass) and parameters that determine growth rate of mass terms associated with, respectively,
the wall friction term and viscous term.

Subject classification. 76T10, 76N10, 656M12, 35L60

Key words. two-phase flow, well model, gas-kick, weak solutions, Lagrangian coordinates, free
boundary problem, friction term

1. INTRODUCTION

This work is devoted to a study of a transient gas-liquid two-phase model which, in Lagrangian
variables, takes the following form:

On + (n¢)d,u =0
AC+ 2 0,u=0 (1)
Oru + axp(na C) = _f<5u|u| + ax(E(n, C)axu)a T e (Ov 1),

with constants f, 8 > 0. Here n is the gas mass, ¢ the total mass (sum of gas and liquid mass),
whereas u is the common fluid velocity. The pressure law, when liquid is assumed to be incom-
pressible (p;=const) and gas is treated as an ideal gas, takes the form

n Y
b= ("), 4t o
pr—[¢ —n]

The first term on the right hand side of the momentum equation represents wall friction where
the parameter 8 > 0 describes the mass growth rate, whereas the second term takes into account
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2 FRIIS AND EVJE

other viscous effects and is characterized by the coefficient

E = ¢ ™ 0<0<1/2 3
(n,¢) = (m) ) <0 <1/2. (3)
Moreover, boundary conditions are given by

n(0,t) = ¢(0,t) = 0, n(1,t) = ¢(1,t) =0, (4)

whereas initial data are

n(x,O) - T‘Lo(iﬂ), C(I’,O) = CO(x)a u(a:,()) = uO(x)v T e (07 1) (5)

This model problem represents a natural continuation of the work [12] where an existence result
for a similar model was established with main focus on external forces like gravity and friction.
We refer to this work for further motivation concerning application of this type of model in the
context of well flow modeling. This work, in turn builds upon the works [8, 9], see also [23, 24] as
well as the recent work [5] for similar studies.

A main concern in the work [12], as well as the current work, is inclusion and analysis of effects
related to wall friction. Such friction terms are important for realistic predictions of pressure
distribution along the wellbore, which in turn is crucial for the study of gas compression and
decompression effects relevant for gas-kick flow scenarios [1, 12, 4]. The purpose of this work is to
extend the analysis of the model in the following manner:

e First, we consider a situation where masses n and { vanish at the boundary, consequently,
we cannot obtain a positive lower limit. This makes the analysis leading to the a priori
estimates more involved;

e Secondly, we consider a full momentum equation, in contrast to the model analyzed in
[12] where a simplified version of the momentum equation was considered.

The heart of the matter in the analysis is the use of an appropriate variable transformation
which allows writing the two-phase model (1)—(5) in a form which naturally opens up for exploiting
single-phase techniques. It turns out that we naturally can reformulate the initial boundary value
(IBV) problem (1)—(5) described in terms of the variables (n,(,u) into a corresponding IBV
problem described in terms of the variables (¢, @, u) where ¢ = n/{ and Q(¢,¢) = ¢/(p1 —[1— ]C).
In particular, this connection allows us to explore the role played by the frictional term. New
challenges due to the decay of masses to zero at the boundaries and the presence of the wall
friction term are handled as follows:

e Concerning the degeneracy at the boundaries we mainly follow the ideas of [10, 11] where
a weighting function ¢(x), which vanishes at the boundaries, is employed.

e The pointwise upper bound of masses as expressed by Lemma 3.2 strongly depends on
the fact that the wall friction term, —f¢Pulu| takes the form —h(c, Q)ulu| in terms of
(¢, Q,u) where h(c, @), given by (49), becomes bounded for @ > 0. For this estimate we
require that the initial gas and liquid mass decay to zero at the same rate, as stated in
assumption (26). Moreover, due to the fact that the friction term contains a higher order
velocity term ulu|, we can not directly from the energy estimate of Lemma 3.1 obtain the
refined upper bound on @ as described by (70). We need the higher order LP-regularity
of u as provided by Lemma 3.3 for that purpose.

e New arguments must be introduced to obtain the result of Lemma 3.8 due to the appear-
ance of the frictional term. In particular, we must show that W (t) = fol |(h(c, Q)u)y|dx
is in L1([0,T]) for h(c,Q) given by (49). This estimate relies on assumption (32) which
relates the J-parameter to the #-parameter of the viscosity term and parameter « that
characterizes the decay rate of initial masses toward zero at the boundaries.

A main concern of this work is to identify more precisely the role of the wall friction term.
More precisely, we seek to identify how the § parameter of the friction term is related to the
parameter of the pressure law and the € parameter of the viscous term. This balance between
terms representing different forces is manifested itself in Lemma 3.8. In particular, the analysis
depends on the fact that initial gas and liquid masses decay to zero at the boundaries at the same
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rate, expressed by the parameter « as in (26), in order to obtain sufficient control of the frictional
term. See Remark 3.2 for details.

Overview. The rest of the paper is structured as follows: In Section 2 we first give necessary
background information for deriving the model problem (1)—(5). Then, the assumptions on initial
data and important parameters like v, 8, 8, and « are given followed by a precise statement of the
main result of this paper, existence of weak solutions. Section 3 contains the estimates ranging
from basic energy estimate to pointwise upper and lower limits of masses n, ¢, and velocity wu,
as well as various higher order regularity estimates. Section 4 gives a brief summary how to get
converge to weak solutions by means of a semi-discrete approximation of the original model.

2. THE EXISTENCE RESULT

We consider the following transient, ”compressible gas-incompressible liquid” two-phase model
(described in Eulerian coordinates)

On + Oz[nu] =0
Om + Oy[mu] =0
O[(m + n)u] 4+ 9.[(m + n)u?] + dpp(n,m) = — f(m + n)? M ulu| + 0,[e(n, m)dyul,

on the interval « € (a(t),b(t)). Here n is the gas mass, m the liquid mass, and u is fluid velocity.
Pressure p(n, m) and viscosity £(n, m) take the following form:

(6)

p(nm) = Cpj (-2 (7)
m+n)?
e(n,m) = D(p(l_m)gﬂ, 6 € (0,1/2), (8)

where C' and D are constants. For simplicity we set C = D = 1 in the following. We refer to
[12] and references therein for more details concerning p and e. The first term on the right hand
side of the momentum equation describes wall friction effects. The constant f > 0 depends on
fluid rheology as well as well/pipe diameter. More generally, it also depends on the prevailing flow
regime. We assume that 8 > 0, see Section 2.1 for the precise assumptions on . In fact, a main
purpose of this work is to identify more precisely the interplay between the parameter 8 and the
parameter 7 in (7) and 6 in (8).

One special feature of the above two-phase model (6)—(8) is the possible singular behavior
associated with the pressure law at transition to pure liquid flow, that is, when m = p;ay = p; or
vacuum in the gas phase corresponding to p, = 0. Now, introducing the variable ¢ = m + n, the
system (6) can be written as

On + Ox[nu] =0
Or[Cu] + 02 [Cu] + Bup(n, ) = = P ulul + B [e(n, )Dpul, € (alt), b(t)).

Motivated by previous studies for single-phase gas models we here propose to study the model (9)
in a free boundary setting where the boundary points a(t) and b(t) are moving. More precisely,
a(t),b(t) are the particle paths separating the two-phase mixture and the vacuum state n = m =
¢ = 0 and is characterized as follows:

d

(9)

aa(t) = u(a(t),t), and n(a(t),t) = ((a(t),t) =0 (10)
%b(t) = u(b(t),t), and n(b(t),t) = ¢(b(t),t) = 0.
Furthermore, the initial data are specified as follows
n(z,0) = nO(x)v ((, 0) = CO(CU)» u($>o) = Uo(ﬂf)v T € (GOa bo), (11)

where ag = a(0) and by = b(0). The boundary conditions are set as follows:

C7n|f1::a = 07 §7n|f1f:b = 0 (]‘2)
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In this work we assume that the initial masses ng(x), (o(z) connect to vacuum continuously, i.e.,
inf(g 1) no(x) = 0 = inf(y 1) (o(z). Following along the line of previous studies for the single-phase
Navier-Stokes equations [19, 17, 18], it is convenient to replace the moving domain [a(t), b(t)] by a
fixed domain by introducing suitable Lagrangian coordinates. First, in view of the particle paths
X¢(z) given by

dXy(zx
) _ X)), Xolw) =
the system (9) takes the form
%L +nu; =0
dg
> = 13

d
¢ b, e = S ]+ (e, Q)

Next, we introduce the coordinate transformation

¢ = / S0 7= (14)

such that the free boundary = = a(t) and the free boundary = = b(¢), in terms of the (&, 7)
coordinate system, are given by

b(t) bo
Cly,t)dy = Co(y) dy = const, (15)

(t) ag

Ca(T) =0, () = /

where f;o Co(y) dy is the total liquid and gas mass initially, which we normalize to 1. Applying
(14) to shift from (z,t) to (£, 7) in (13), we get

ny + (nQ)ug =0
CT + (CQ)U*E =0
ur +p(n,Q)e = —fCCulul + (e(n,()Cue)e,  £€(0,1), 7>0.

In the following, we find it convenient to replace the coordinates (§,7) by (x,t) such that the
model we shall work with in the rest of this paper is given in the form

on + (n€)0,u =0
0:C 4 C20pu =0 (16)
Opu + 9yp(n, €) = — fCPulu| 4+ 8,(E(n, ¢)dyu), z € (0,1),

with 3
p(n,¢) = (ﬁ) (17)
and
E(n,¢) ==¢(n, ()¢ = ((pl_é_n]))w, 0<6<1/2. (18)

Moreover, in light of (12), boundary conditions are given by
€(0,t) =n(0,t) =0,  ((1,t) =n(1,t) =0, (19)
whereas initial data are

n(z,0) =no(z), {(z,0)="Co(z), u(z,0)=uo(z), z € (0,1). (20)

2.1. Main result. We now state the main result for the model (16)—(20). However, we first
give a precise statement of various assumptions on the initial data as well as of relations between
important parameters like «, 5,6, and «. These choices largely follow along the line of the single-
phase work [10].
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Assumptions. In this paper we use a weight function ¢(x), which is assumed to fulfill

0<o(x) <1, for O<z<l,  &0)=¢(1)=0, (21)
¢'(x) € L*(1), (22)
(2(l-2)) < Co(x), (23)

From (23), it follows that ¢(z)® € L'([0,1]) for every a > —1. Furthermore, the above model is
subject to the following assumptions:

1
0<9<§, (24)

v > 1, (25)
For the initial masses ng, mg it is assumed that there are constants Ci,Cs,D1,Ds > 0 and a
parameter « > 0, which is characterized more precisely in (30), such that

Cio(2)* < no(x) < Cop(x)®,  Dig(x)® < mo(z) < Dag(a)?, (26)
where Do < p;. Consequently, we have that

For ¢ = —2o— = mo , it follows that sup,cpo 1 co(z) < 1 and inf,epo 17 co(x) > 0. Hence, the

no+mo 1+
following assumption is made concerning cg:

sup co(x) < 1, inf ¢o(z) > 0, (co) € L([0,1]), (27)
z€0,1] z€[0,1]

Concerning initial fluid velocity ug, we assume that

uo(x) € L*([0,1]). (28)
For Qo = "‘H'm“ we assume that
(Qouos (@), € L*([0,1]),  neN. (29)
Now, let o > 0 introduced in (26) satisfy the following relation
19 1
2 + —9 %, (30)
where v > 0 is defined by
1 0
V—(§—9)(1+1—0). (31)
The following restriction is assumed for g
v 1 0
B>max(&+9,§+§) > 0. (32)
Let k1 > 0 satisfy
) 60(1 — 20) 40(1 — 20)
2 k 2y —30+1 - -2
V< f < min (( 7 =30+ 1)a, 11(1+30) 111+ 0) ) (33)
and, moreover
1+ (1 -30)a if0<6<?i
k1 < { 20(1-20) | 22(1-30) . 3 (34)
é79)+ 57) if3<0<3
The following control for Qy = """‘m” is then required (the first one is only a consequence of (26)):
0 < Qo(z) < C9%(x), (35)
¢ (2)(Q4(x)). € L*([0, 1)), (36)
¢ (2)QF" 2 (x) € L'([0,1)), (37)
and
(Q3(@)). € L*([0,1]), mneN. (38)

Then we can state the main theorem.
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Theorem 2.1 (Main Result). Given the assumptions (24)—(36), then the initial-boundary problem
(16)—(20) possesses a global weak solution (n,(,w) in the sense that for any T > 0,

(A) we have the following regularity:
n,C,u € Lm([ov 1] X [07 TD N 01([05 T]; L2([0’ 1]))a
B(n, Qs € L=([0,1] x [0,7]) N C* ([0, T): L* (0, 1])).

In particular, the following pointwise estimates holds for p > 0:

. M % . a __ PLTH
(zelr[%)fl] CO) o C(T) Qﬁ(x) a-200 < ’I’L(x,t) < mlH{PlC(T)QS(x) 11— SUP[o,l] C}’
pC(T)

¢(x)% < ((z,t) < min{plC’(T)¢(x)0‘ M}

1+ C(T) "1 —supp g ¢’

Y(z,t) € [0,1] x [0,T] where the positive constant p only depends on time T and the regu-
larity of the initial data as stated in the assumptions.

(B) Moreover, the following equations hold,
o) 1 . 1
/ / [ngpt —nluzp dmdt+/ no(z)p(x,0)dx = 0,
o Jo - 0

0o ol ) )
/0 /0 {th - C2uz¢_ dx dt+/0 Co(x)(x,0) dz = 0, (39)

/Ooo /Ol[uwt—i-(p(mC)—E(n,C)ux)wx— F¢Pulule] do de+ /Oluo(x)w(:zr,O)dx_o,

for any test function o(x,t),¥(z,t),w(x,t) € C§°(D),
with D := {(z,t)|0 <z <1, t >0}.

The proof of Theorem 2.1 is based on a series of priori estimates for approximate solutions of
(16)—(20) and a corresponding limit procedure.

3. A PRIORI ESTIMATES

In order to obtain the necessary estimates it is convenient to introduce a shift of variables as
follows:

3.1. Transformed models. We introduce the variable

n
=" 40
¢ (40)
and see from the first two equations of (16) that
1 n n( n¢?
8tc: Ent — ?C{» = *?Uz + CTUT = 0

Consequently, the model (16)—(20) then can be written in terms of the variables (¢, (,u) in the
form

8tC =0
0:C 4 C*0pu =0 (41)
Oyu + 9up(c,C) = — fCPulu| + 02(E(c,{)dpu),  x € (0,1),
with ¢
C Y
ple. Q) = (m) (42)
and
<9+1

E(c¢,¢) = 0<f<1/2. (43)

(o1 = [L = Q)+
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Moreover, boundary conditions are given by
O,t = 0, 1;t =Y
¢(0,1) ¢(1,1) (44)
C(Ovt) = 60(0)7 C(Lt) = 60(1)5 t> 07

whereas initial data are
C(JJ,O) = 00(37)7 C($7O) = CO(x)7 u(x,()) = UO(x)’ HAES (07 1) (45)
As remarked before, the model (41)—(45) possibly contains singular behavior associated with the

pressure term p and viscosity term E. It is clear from these functions that { must obey an upper
limit strong enough to ensure that these functions do not blow up. For that purpose we introduce

the quantity Q(c,¢) = Wg—c)c and deduce a reformulated model in terms of the variables
(¢, @Q,u). That is, we introduce the variable
¢ o Q
()= ——F"——, which implies that ( = pj—————), 46

implicitly assuming ¢ > 0 and ¢ < {%_, and observe that

¢ 1 (1-¢)¢
@, Qe = (m)t - <pl -0 (n-a —c><)2)<t

P e = —pQUe O
B O G TG L Py S o Pl A

in view of the second equation of (41). Consequently, we rewrite the model (41) in the form

8tc =0
8Q + pQ%uy =0 (47)
Oyu + 9:p(cQ) = —h(c, Q)ulu| + 0, (E(Q)Ozu), z € (0,1),
with
p(cQ) = (cQ)7, (48)
and 0 5
_ ¢ B
ne@ =14 (T i=aa) - (49)
and
E@Q) =Q", 0<6<1/2 (50)
This model is then subject to the boundary conditions
Q(0,2) =0, Q(1,2) =0, (51)

¢(0,t) = ¢o(0), e(1,t) = ¢o(1), t >0,
In addition, we have the corresponding initial data

Co()

c(x,0) = co(x), Q(z,0) = == @)@ u(z,0) = ugp(z), x € (0,1). (52)
In particular, the first equation of (47) gives that
c(x,t) = co(z), t>0. (53)

Remark 3.1. It is interesting to compare the result of Theorem 2.1 to the main result of [9]. A
main difference is that in [9] the viscosity coefficient £(n,m) is of the form

o ) n?
nm)= - ———,
(py — m)f+1
which implies that it appears in the form E(c,Q) = QT in the transformed model similar to
(47), however, where Q = —2— and ¢ = 2. As a consequence, different estimates explicitly
pr—m m

depend on the decay rate of ¢ = ¢y, which is assumed to be of the form

Cré(x)*/% < co(x) < Cad(2)™?, o= ;”‘7
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In the current work we need a different decay rate for the initial masses ng and mg as stated in
(26) in order to obtain necessary control of the friction term.

3.2. A priori estimates. We are now ready to establish some important estimates. We let C'
and C(T') denote a generic positive constant depending only on the initial data and the given time
T, respectively. We also note that a constant C' can change from one line to another in a sequence
of calculations.

In particular, we note from (49) that for 8 > 0

h(c,Q)=fPf(é+(ll_c))ﬁ<fpf(1i )'<e. ez (54)

c
in view of assumption (27).

Remark 3.2. Note that the assumption sup,¢po1)co < 1 as given by (27), which in turn is a result
of assumption (26) requiring equal decay rate at the boundaries for gas and liquid, is essential for
the estimate (54). This estimate is crucial for the result of Lemma 3.2.

Lemma 3.1 (Energy estimate). Under the assumptions of Theorem 2.1 we have the basic energy

estimate
/ ( u? Jr 1Q“’ 1 der/ / Q02 dxder// Q)u?|u|dzds
0 _

_/ (1 a (%)
-/ 20+ Q1 )dng, vt € [0, 7.

Proof. Start by summing equation (47)(b) multiplied by ijg; with equation (47)(c) multiplied by
u to obtain

AQVQy

plQ2 + C’YQ’Y'U@ + uuy + U(C’YQ’Y)I = U(Q1+0um)m - h(C, Q)u2|u‘ (56)
Then rewrite equation (56) as

drl, @ gy Y Y _ 1+6 2

%(iu +/0 s dﬁ) + (Q"u)r = u(Q T uy)r — (e, Q)u|ul, (57)

and integrate it over [0, 1] x [0, ] to yield
1 1 t 1
1 O
/ (qu +-° @ )dw +/ / Q' uldxds
0o \2 =1 m
1 gt z=1
- / ( ud + t )dx-i-/ (@ uuy,)

ds
t
_ / (7Qu)
0

=0
Now invoking the boundary conditions (51) and the assumptions on the initial data we arrive at

ds—/ / h(c, Q)u?|u|dxds. (58)
the conclusion (55). O

Now, we derive a pointwise upper bound on ). We first present an upper bound which does not
depend on the weighting function ¢(z). Then, in Corollary 3.1 we present a more refined upper
bound by making use of the higher order regularity of u as given by Lemma 3.3.

Lemma 3.2. Under the assumptions of Theorem 2.1 we have the pointwise upper bound
Qz,t) < C(T), Y(z,t) € 10,1] x [0,T]. (59)
Proof. Multiplying equation (47)(b) by 8Q?~!, we observe that
Q") = —pibQ" " ug. (60)
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We then integrate equation (60) over [0, ¢] and, moreover, equation (47)(c) over [0, z] (or alterna-
tively over[z, 1]), which gives

Q°(2,1) = Q') — pub / (Q"*0u)(z, 5)ds (61)

and

x T 1 1
QH‘gum:(CQ)”—i—/o utdy—i—/o h(c,Q)u\u|dy:(cQ)7—/ utdy—/ h(e, Q)ululdy. (62)

Putting = 1 in this last equation, using the boundary conditions, and integrating in time over
[0,t] reveals that

/0 (o — uly, 1)) dy — / t / (e, Qululdy = - / (o — uly. ))dy + / t / h(e. Q)ululdy, (63)

a fact which will be used in the following. We further substitute equation (62) into equation (61),
and exploit the boundary conditions such that

@000 [ Q@i =atw) + o0 [ s [Cuwnw) 6

t x
- / / (e, Q)ululdyds.
We can then estimate QY(x,t) as follows

Q(z,t) < QOJrC/ [uo (y |dy+C/ lu(y,t \derC'// Q)udyds (65)

for 0 < x < 1,0 <t <T. Moreover using assumption (28), (54), Lemma 3.1 and the Holder
inequality, we find that

Q%z,t) < Q +Cm+C(/1 u2(y,t)dy)%x% +C(/Ot /01 quyds)

0
< QY+ Ca? +CT, (66)

where we have used that 2 < 2'/2 for = € [0, 1]. However, using equation (63) in equation (64) we
can similarly deduce that

Q’z,t) < Q+C(1—1x)?+CT. (67)

Finally, combining (66) and (67) and exploiting the fact that min(z,1 — z) < 2z(1 — ) (for
0 <z < 1) lead us to the following estimate

Q(z,t) < Q4+ C(z(1-12))2 +COT < Cp(2)*’ + C(x(1 - x))? + C(T), (68)
where we use assumption (35) on the initial data Q. Clearly, we can conclude that the estimate
(59) holds. O

Lemma 3.3. Under the assumptions of Theorem 2.1 we have the following higher order estimate
for any integer m

1 t 1 t el
/ u?™dx 4+ m(2m — 1)/ / u?m2Q 02 dads + 2m/ / h(c, Q)u*™|uldzds < C(T). (69)
0 o Jo o Jo

We omit the proof of Lemma 3.3 for brevity. It can be proved using similar arguments as in
[12]. A key step is that we make use of the pointwise upper bound of @ given by (59).

However, equipped with the higher order control on u as given by Lemma 3.3, we can derive a
more refined upper bound for @ that depends on ¢(x).

Corollary 3.1. Under the assumptions of Theorem 2.1 we have the pointwise upper bound

Q(z,t) < C(T)p*(x), Y(z,t) € [0,1] x [0,T7. (70)
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Proof. We only have to revisit the last term of (65), which is the friction related term. Clearly,
we can estimate as follows

t t, ol 1
/ / h(c, Q)quyds < Cx? / (/ ut dx) * ds < CTz3.
0o Jo 0o o
Following the same arguments as used in Lemma 3.2, we conclude that (68) is refined to
Q1) < Co(a)* + C(T)(x(1 - 2))*. (71)

-, according to (30), the conclusion (70) follows. O

But, since 0 < a < 55,

The next lemma largely follow arguments used for single-phase analysis and the friction term
does not cause additional problems since it appears as a non-negative term that can be ignored,
see (76).

Lemma 3.4. Under the assumptions of Theorem 2.1 and for 2v = (1 —20)(1+ &) we have the
following upper bound

1
/ QY2 Q2 de < O(T), (72)
0

Proof. Using equation (60) in combination with the momentum equation (47)(c) we obtain

(@)t = —Opi(ue + ((cQ))2) — Opih(e, Q)ulul. (73)
We then multiply this equation ¢?*(Q?), and integrate it over [0, 1] x [0,¢] to yield

92 ! t 1 92 1 0
[ Q2@ ey [ [ 0@ 2Qiuds = 5 [ 0G0k da
0 JO 0

2 J 2

t 1 t 1
— 2v 2] o o p

t el
— p1927/ / P 1QLQ e dads (74)
0o Jo

Using partial integration we can rewrite as follows
0> ! 20 120—2 2 2 e 2w +6—2 2 0> ! 20 20—2 2
S| QR ity [ 0O QRdrds = S | 67 QR QR do
0 0o Jo 0
1 1 t ol
— b / o> u(Q%)pdx + pif / 0*uo(QY)dx + p16 / / o u(Q) pedwds
0 0 0o Jo

t 1 t 1
— b [ [ b Q@ adeds oy [ [ 6 1Q7 0 Quesdads
0 0 0 0
= [0+11+12+13+I4+I5. (75)

Furthermore, estimating the quantities Iy, I, I, Is, Iy and I5 (see Appendix A) we arrive at the
inequality

92 1 t 1
T [ e ety [ [ e Qi
0 0 JO

t 1 t 1
+ (plG)Q/O /O ¢2"h(c,Q)u2|u|dxdsgO(T)+c/O /O P Q¥ 2Q%dx. (76)

Clearly, this implies that

62 1 t pl
Z/ ¢2uQ29—2QidI S C(T) 4 C/ / ¢2yQ20_2Qidx, (77)
0 o Jo
and an application of Gronwall’s lemma proves (72). O

The next lemma is obtained by following along the line of [10]. The main difference is the
appearance of a new non-negative term on the left hand side of the inequality (78) due to the
friction term.
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Lemma 3.5. Under the assumptions of Theorem 2.1 where k1 is characterized by (33), for any

integer m > 0 and for a; = (1 — %)(9 —1) <0, we have the following upper bound

1 t ol t o1
/ P Q¥ uldx —|—/ / PP QI y2 dads +/ / 1 h(e, Q)Q u?|u|dxds < C(T). (78)
0 o Jo o Jo

Proof. First let
0—1

= —5—, (79)

and, moreover, define «,,,_1 as,

Gm-1= 5"+ 5=

It follows from the equations (47)(b) and (c) that
(¢k1 Qamuzm)t _ —amplébkl Q1+amu2mux + 2m¢k1 Qam 7‘L2"‘71(Q1+9um):C
—2mpF1 Qo TN QY), — 2M ¢ h(e, Q)Q u? [ul.

We integrate equation (81) over [0, 1] x [0, ¢], which after application of partial integration and the
boundary conditions yields

1 t 1
/ (bkl Q(xm ’U,2m dx + om (2’m _ 1) / / ¢kl Q1+9+“mu2m_2uid$d8
0 0 JO

w01
a gam. (80)

(81)

t 1 1 t 1
+2m/ / ¢k1h(c,Q)Qamu2m|u|dzd5:/ qﬁlegmugmdl’—ampl/ / PP QI uydads
0o Jo 0 0o Jo
t 1 t 1
9", / / QO em " 1 Q uydids — 27,y / / PhIQI 2" Ly ¢ (a)dads  (s9)
tO 10 Ot 01
— 2™y / / g Qe T Qududs — 2y / / @Iy e, duds
0o Jo o Jo

6
=Y <o),
=1

where the estimation of I (for i = 1,2,3,4,5,6) is given in Appendix B, see (152)—(157). Obvi-
ously, equation (82) is also valid for a,,,—1 and m —1 (instead of o, and m and with the exception
of the inequality part, which must be proved), and thus we obtain

1 t el
/ qb’“Qa’”*luW*ldx—k2’”_1(2’”_1—1)/ / G QU am 12" T 22 g
0 0 Jo
t el
+2m*1/ / " h(c, Q)Q 12" u|dads
0 Jo

1 m—1 t 1 m—1
:/ ¢k1Q0a’”’1u(2) d:c—amqpl/ / pFr Qi rem—142" y, dxds

0 0o Jo

1 e k1 0 om—1l_q
—gm= O‘mfl/o /0 ¢ 1Q tam—1,, - Qmuxdxds (83)
t el .
_ 2m—1k_1/ / ¢k1—1Q1+0+o¢m_1u2 _1ux¢’(m)da:ds
0 Jo

t pl
m—1
_2m—1,y/ / ¢klc"/Q'Y+a1n—1_1u2 _ledde
0 Jo
6

t pl
- 2’”*17/ / prr e tQrram 12" e duds = Y I < O(T),
0 JO

i=1
where the estimation of I"~* (for i = 1,2,3,4,5,6) follows from the estimates in Appendix B, see
(158)—(162). These estimates, in turn, depend on the estimate (82). The recurrence relation (80)
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then implies that ay, = (2 — Qm%k)(%) for k=1,...,m. In particular, a; = (1 — 5 )(6 —1). We
can thus conclude by induction that

1 t ol t 1
/ ¢k1Qa1u2dx —|—/ / ¢k1Q1+9+°‘1uidxds —|—/ / d)klh(c, Q)Qa1u2|u|dxds <C(T), (84)
0 0o Jo 0o Jo

and the proof is completed. O

Lemma 3.6. Under the assumptions of Theorem 2.1 and for any integer m > 0 and for 1 =
(2— 5)(0 — 1) <0, we have

1

/ P QP dr < CO(T). (85)
0
Proof. From equation (47)(b) it follows that

(6MQM) = =™ Q" L, (86)

Integrate (86) over [0, 1] x [0, ] to obtain

1 1 t el
/ QP dr = / oM QY dx — Bip / / QM Pru,drds. (87)
0 0 0 Jo

Furthermore, we obtain an estimate for fol #*1 QPrdx from (87) by using the Cauchy inequality as
follows:

1 1 t el . o 1 ay
| o@rars [ohqparvo [ [ 0% QM 0% Qg E duas
0 0 0 0

1 t 1 t 1
< / o"1Qy dx + C / / P QU2 duds + C / / PM QTP g s,
0 0 Jo 0 Jo

Now notice, in view of assumptions (35) and (37), that

(83)

1
/ PMQIdx < C.
0

Moreover,

t rl
/ / PF QS dads < O(T),
0 Jo

due to Lemma 3.5. Thus by using these two latter facts and the fact that 1 + 28, — 0 — a; = Sy,
(88) can be written as

1 t 1
| e < e[ [ oh@ass (89)
0 0 Jo

After an application of Gronwall’s lemma we arrive at the conclusion (85). O

Lemma 3.7. Under the assumptions of Theorem 2.1, and for ke = v + %1 where k1 > 2v, we
have the following pointwise lower bound on Q

Qa.t) = C(T)6™ 5 (@), V() € 0,1] x [0,T]. (90)
Proof. Tt follows from the Sobolev inequality W11([0,1]) < L°°([0,1]) that

1 1
6 Q% (. t) < o/|w%fwm+c/\w“@%um (91)
0 0

IN

1 1 1
k2 B2 d ko—1 02 d k2 B2 . dx.
CAI¢Q|$+CA\¢ Q|w+CA¢I@ )oldz

Choosing 32 such that 82 = 6 + (1 — 5757)(f — 1), and noting that % = (1 = z257)(0 — 1) then
it’s clear that

=0+ em=0-T50 28 Bi=25>0 (92)
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and it is also clear that S < 0 for m large enough since 0 < 6 < % Some further simple

manipulations including application of the Cauchy inequality, Young’s inequality with p = % and
q= ﬁ, and Corollary 3.1 then gives
1 ) 1 1
Q) <C [ 6QP 6 QFdo 4 C [ 0RQF Qs+ C [ o4QRds
0 0 0
1 1 1 o
< C/ ¢2”Q2527’81dx + C/ (bleBldx + C’/ ¢V+7QB271+979|Q$|d$
0 0 0
1 B2 B2
+ C/ PP IRE M A QP2 g (93)
0

1 1 1
<C / ¢* 2y + C / ¢*1Q M dx + C / PF1Q* " dx
0 0 0

B2

1 1 1
+C/ ¢2VQ2"*2Q§d:c+C/ ¢k1Q51dz+C’/ a1k ) (5 g
0 0 0

Moreover, application of (92), Lemmas 3.4 and 3.6, in addition to the fact that 2v + 2a6 > —1
and (k2 — 1 —k13) B > _1 (the latter for sufficiently large m), allow us to conclude that

B1—P2
#2Q(,t) < C(T). (04)
Finally, since 85 < 0 and 26 — 1 < 82 < 12(260 — 1) for sufficiently large m, it follows from (94)
kg k
that Q(z,t) > C(T)¢™ % > C(T)$™0-27 -

Equipped with the upper and lower limits on Q(c, ¢), this pointwise control can be transferred
to the masses n and (. We also can derive BV-estimates for these mass variables by relying on
Lemma 3.4 and assumption (27). These results are summed up in the following two corollaries.

Corollary 3.2. We have the upper and lower bounds

11kg

C(T)¢™05 <Q(x,t) < C(T)¢(x)°, (95)

pC(T) oatks : o  PL—H
Lo P ™ <C0) < min{pCDo)", L S b (96)

. pC(T) ilkg . o«  PL—H
(inf | )7 g0 ™ <n(,) < min{ pC(T)o(2)”, A—F— T STl

where p > 0 s a small constant.

Proof. The first estimate (95) follows from Corollary 3.1 and Lemma 3.7. For the second estimate
(96) we observe that
Q

=p— 98
¢ PTE =00 (98)
for p — (1 — ¢)¢ > 0. Consequently, in view of (95) and (46), it follows that
: pL— p
< < c(T &
C<p@Q< mln{pl (1)), 1= — c},
for an appropriate choice of p > 0. Moreover, (95) and (98) also imply that
po(T) 11kgy
>~ 10(1—20) |
= irem?™
In view of the fact that n(x,t) = ((x,t)co(x) and assumption (27), the last estimate (97) follows.
O

Corollary 3.3. We have the estimates

1 1
/ 10,¢|dz < C(T), / 10| dz < C(T), (99)
0 0
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for a suitable constant C(T).
Proof. 1t follows that

Qe O = Qetz + QcCe = —Qca + pC* Q¢ (100)
For x € (0,1) where Q > 0 we can rewrite in the form

G=07 () QoG

_ 1 2 —1,2
*Pl(m) Qz+p; (e
1

—v1l-0
= €T R —
o(z)7"Q pl(1+(1fc)Q)
Consequently, using Cauchy inequality, Corollary 3.1, Lemma 3.4, and assumption (27), we get

1 1 1 1
. de < C —2v 2(179)d C 2v 12—260 id C - d
/0|<\x_/0¢<z> Q a:+/0¢<as>c2 Qa:+/0|c|x

2
gb(x)uQa_le + p;1C20$_

1 (101)
<C(T)+C / P(z) "2 +2A=02qy < O(T),
0
since 1+ 2(1 — 0)a > 2v. Clearly, we also have the estimate
1 1 1
[ nsddo< [icllesldn+ [ elealdn < e,
0 0 0
in view of assumption (27), Corollary 3.2, and estimate (101) of [ |(,|dz. O

Lemma 3.8. For a given integer n > 0, and under the assumptions of Theorem 2.1, we can prove
that

1 t 1
/ uidr +n(2n — 1)/ / QU 2 ui" % dxds < C(T). (102)
0 0 Jo

Proof. We differentiate the third equation of (47) with respect to time ¢, multiply the resulting
equation by 2nu?"~* and integrate over [0, 1] x [0,], and obtain

1 t ol
/ u™(x,t) d:z:+2n/ / p(cQ)prui™ tdads
0
t el
:/ (x,0)dx — 2n/ / (¢, Q)ulul)su?™™ 1dxds+2n/ / Q") ™ dzds.
0 0 Jo

First, it follows that

(103)

1
/ W2 (z,0) dz < C(T), (104)
0
by considering the momentum equation of (47) at time ¢t =0

(o)t + p(coQo)x = —h(co, Qo)uoluo| + (Qf ™ o),

together with assumptions (24)—(29), and (38), as well as estimate (54). We also note that

t 1
[ [ te@) — @ i anas
0 JO

_ t cO) — (01, u2n1 s (¢ 0+1,, (2N, deds
—/O(LP(Q) (Q" g xd //[pQ (Q )]y (w2 V) pdads  (105)
- [ [ @ - @i udeas,
0 0
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by application of the boundary conditions (51). Moreover, using the second equation of (47) it
follows that

t 1
/ / Q" uy)e (uf" ") pdds (106)
=(2n-1) / / Q' w2 w2 2dxds — (2n — 1)(0 + 1) ,ol/ / Q' uupul" 2 dads

n—l/‘/Q@+1 2 u2nm 2dxds+I()

and

t 1
/ / (e@Q)e(u?™ 1), dxd:s:—’ypl@nfl)/o /0 QM upugui™?drds = I(n),(l()?)

t 1
L/'J/ (he, Q)ulul) 2™ de ds
0 0

:—pl/ / ho(c, Q)Q*uzulu|ui™™ ldxds—i—Q/ / Q) |u|u?"dxds (108)
+ I,

and

=1

Moreover, using the “epsilon version” Cauchy inequality (i.e. ab < ea? + %) it is found that

I§”>§ //Q‘9+1 2 uin 2dmds+C’/ / QU utul 2 dx ds (109)

2n —1
ZTZ.//Q“@MWMMHAR (110)
0o JO

1
dypr

on—1 [t [
Ié”)ﬁ n //Q9+1 2 2n= 2dxds+0// A1QPHI=0 2202 4o s

2 —l n
i // Q9+1 2tut" 2d:vc1ls—f—]2(2‘).

Combining (103)7(111), we get

1 t 1

/uf"(mnj) dx—i—n(?n—l)/ / QU i w2 da ds

0 0 Jo (112)
<CO+ I + 155 + 1V + 1{™).

where we have used ¢ = Wll)p,' Similarly, we have for 12(71) by using € =

(111)

The proof now proceeds by induction. We first show that

t 1
1Y < o@)+ o) [ Vil [ utdods (113)
0 0
15, < (), (114)
t 1
IV <o) + C’(T)/ / u?dxds, (115)
0 0
t 1
1) <o) [ vis) [ utdsds (116)
0 0

for appropriate choices of V17 and Vy where Vi1 (s), Vi(s) € L1([0,T]). We refer to Appendix C for
details. An application of Gronwall’s lemma, in view of (112), then let us conclude that

1 t 1
/ uf(z,t) dv —|—/ / Q' 2, drds < C(T). (117)
0 0 Jo
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Moreover, assuming that Lemma 3.8 holds for n — 1, i.e. that

1 t 1
[ ende s m-nea=3) [ [ @ iuitaas <o, o)
0 0o Jo
we can show that
t 1
1Y <c@yvom) [ [ irdss, (119
o Jo
Iy < o), (120)
t ol
Ig()n) <C(T)+ C(T)/ / ur"dxds, (121)
o Jo
¢ 1
1 <o) [ i) [ indsas (122
0 0

where Vy(s) € L1([0,T]). Estimation details are again left to Appendix C. Lemma 3.8 thus follows
by another application of Gronwall’s lemma. O

Lemma 3.9. Under the assumptions of Theorem 2.1 we have the estimates

1% gl () < C(T), (123)
/ @ ] de < C(T), (124)
0

1
/0 1Quldz < O(T), (125)

for a suitable constant C(T) and where Dp = [0,1] x [0,T].

Proof. Using the Cauchy inequality, (54) and Lemma 3.1, Corollary 3.1, and Lemma 3.8, it follows
from (62) that

1 1 1
Q" u, < QY —|—/ |ut|da + C/ udr < C + C/ uldr < C(T). (126)
0 0 0

This proves (123). Similarly, again using the Cauchy inequality, (54), Lemmas 3.1, 3.4, 3.8, and
Corollary 3.1, it follows from (62) that

1
| 1@ u)alde

0

1 1 1
2
S/o |(07Q7)m|dx+/0 \uddw—i—C/O h(c, Q)u“dx
1 1 1 1

<C Llde + C vt QP 1Q.|d de+C | h(e,Q)ud
< /O|c|x+ /O¢><x> Q" 6(2)Q \Q|x+/0|ut|x+ / (e, Q)uda

1 1 1
< C(T) + c/ (b(x)_Q”QQ(”_G)dx—kC/ qs(x)?VQ?(f’—l)diHc/ ulda
0 0 0
< C(T),
where we use that 2(y — #)a — 2v > —1. Finally, (125) follows since

1 1
/ 1Qulda < / 67 Q"1 Q. Q' 6 |da
0 0 (127)

1 1
<2 / ¢ Q¥ Qi d + 2 / ¢~ Q> ¥dx < C(T),
0 0

by the Cauchy inequality, Corollary 3.1, Lemma 3.4, and the fact that 2(1 — ) —2v > —1. O
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Lemma 3.10. Under the assumptions of Theorem 2.1, we have the following estimates for the
velocity u

1
/ s (2, )|dz < C(T), (128)
0
julee, 1) < O(T). (129)
Proof. Using assumption (27), (54), (62), Lemmas 3.3 and 3.8 as well as the Holder inequality
with p = 2n and ¢ = %, we can obtain the estimate

1 1 1 x 1 x
/ |ux(x7t)|dx§/ c”Q”‘l_edx—&—/ Q_l_e/ |ut|dyd:lc—|—/ Q_l_‘g/ h(c, Q)u?dydx
0 0 0 0 0 0

2n—1

< 0/01 Qvledl’JrC/Ol Q1* (x(l — x)) - (/Ol(ut)zndy);ndx

1 2n—1 1 L
+C/ Q' z(1—2)) ™" / udy) " dx
L@ (atm) () )
1 1 2n—1
< C/ Q”’l’odx—kC/ Q"7 da. (130)
0 0
Furthermore, using Corollary 3.1 and Lemma 3.7 as well as the fact that when 0 < 0 < %,
ko = v + %7 and 2v < k; < 4101((111200)) -2 < % — 2v, then 16(11133) > —1, and for n
sufficiently large, 2’;;1 — % > —1, we can conclude that
1 1 iikge
Q" 1 %x < max (Q77Y) [ ¢mT2wdx < C(T), (131)
0 z€[0,1] 0
and
1 1_gp , 2n=1 1 2n—1 _ 11ko(146)
/ Q¢ 2 dr < C’/ @ 2 T 0020 dp < C(T). (132)
0 0
This proves (128). Finally, Sobolov’s embedding theorem |u| < Cfol luldz + Cfol |ug|dz, the
Cauchy inequality, the energy estimate and (128) directly gives the desired result (129). O
emma 3.11. Under the assumptions o eorem 2.1, we have for 0 < s <t <71 that
L 3.11. Under th ' f Th 2.1 have for 0 T th
1
| 1060 - @ o) < o)t - s (133)
0
1
[ 160 - cla9Par < c@)le - o (131)
0
1
/ In(z,t) — n(z,s)>de < O(T)|t — s|?, (135)
0
1
/ lu(z, £) — u(z, $)[2de < C(T)|t — s, (136)
0
1
/ Q7 ug) (2, ) — (Q7uy ) (w, ) [Pda < C(T)|t — 5. (137)
0

Proof. Using (47) b), the Holder inequality, Corollary 3.1, Lemma 3.9, we see that
1 1 t 2 1 t 2
[ 1060 - @@ opds= [ | [ @uwmi] o= [ | [ @) min] de
0 0 s 0 s

t 1 t 1
Clt - 5| / / (Qua)?(x,m)dadn < Clt — 5| [ max (Q**) / (@2 (z, m)dady

s €[0,1]
C(T)|t — ). (138)
Thus equation (133) is established. The estimate (134) follows by observing that
(o1 — (1= 0?Qu = piGs

IN

IN
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Hence, the calculations in (138) can be used directly to establish the L?-continuity in time of

¢. Next, using the relation n(z,t) = co(x)((z,t), the estimate (134) implies (135). In a similar
manner equation (136) follows, since

/01 lu(z,t) — u(z, s)|*dz = /01

< sl [ [ wladein < ol (139)

t 2
/ un(ac,n)dn‘ dx =

due to Lemma 3.8.
Finally, we can prove (137) by the following argument. Again using Holder’s inequality we get
that

1
/ (@ uy) (,t) — (Quy) (2, 5)*dx = t(Q”euz)n(ﬂf,n)dn do
0 s

0

t 1 2
< = [ [ (@) (wmdaay
s JO
t 1 9
< o=l [ [ (@~ w1+ 022 (o n)dod
s JO
t 1
< Clt - S|/ / Q2+20 1L QY20y 4)(95 n)dzdy
1
< Clt- s|( max (Q'?) / QY02 pdrdn + max Q3+9ui)/ QHeuidm‘dn)
s €0, 1] s x€[0,1] 0
< Clt-s|, (140)
by Lemmas 3.1 and 3.8 and the fact that
Q' < (1), (141)
and
Q3+9u2 — Ql*&[QG#»lux]Z
x
T T 2
= (e + [ wdy+ [ hie.Qululdy)
0 0
< Q@ + ([ wd?+ ([ hleQululay)?)
0 0
1 1
< cQ't ((CQ)Q“’ + (1l - x)/ uldy + (1 — x)/ h(e, Q)2u4dy>
0 0
< CprHi=0a 4 cp(1=0etl < o(T), (142)
which again follows from Corollary 3.1, Lemma 3.3 and 3.8, as well as (54) and (62), respectively.

O

4. CONSTRUCTION OF WEAK SOLUTIONS

In order to construct weak solutions to the initial-boundary problem (IBVP) (16)—(20), we
apply the line method [20] where a system of ODEs is derived that can approximate the original
model. For the details we refer to [9], which in turn is based on single-phase works like [10]. Semi-
discrete version of the various lemmas can be obtained, and in combination with Helly’s theorem,
the result of Theorem 2.1 follows, see [13, 14, 19, 17, 18, 25, 20, 26, 27, 22] and references therein
for details.
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APPENDIX A: SOME ESTIMATES CONNECTED TO LEMMA 3.4

In this Appendix we estimate the quantities I; (for ¢ = 0,1,2,3,4,5), which are used in the
proof of Lemma 3.4.
Estimate for Iy. Using assumption (36) it follows that

2 1
Iy = % / ¢*Q2Q2 dx < C. (143)
0

Estimate for I;. Using the Cauchy’s inequality ab < ﬁ(ﬁ + eb?, and the energy estimate (55),
we obtain that

1 1
I = —pla/ P u(QY)pdx < C(e,T) + a/ ¢ Q' 2Q% du. (144)
0 0
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Clearly, we can choose € = 02 /4 such that the second term on the right hand side of (144) can be
absorbed in the corresponding term on the left hand side of (75).

Estimate for I. Using the Cauchy inequality, assumption (28) as well as the arguments used
above for Iy, we arrive at the conclusion

I, = pla/ ¢ up(QY) pdx < C + C/ ¢ QA 2Q3 dx < C. (145)

Estimate for I5. Using equation (73) we get

Is = pf / / ¢ u(Q?) pydrds =
— (p0) //gbz”uutdxds—(plﬁ //qﬁZ”uc'V Le,QVdads

- (p9)? //¢2”uc7Q“’ 'Q.dxds — (pi0) //¢2”h Q)u’|u|dzds
it T — o0 [ [ 62 hte Quuldzds. (146)
0o Jo

We can further estimate I31, I3 and I3z as follows.

I3 = —(pb) //¢2”uutdo:d5* (p0) //¢2y2dt )dxds

= 0y / G () dwds + ()7 / 6% (ud)duds < C, (147)
0 0
due to the energy estimate (55) and assumption (28). Moreover, we see that

Iz = —(p6)* / / ¢*uc" e, QVdxds < C(T), (148)

using the Cauchy inequality where we split u from the remaining part, followed by application of
Lemma 3.1, Lemma 3.2 and assumption(27). Finally, we find that

t 1
I35 = —(1)19)27/ / ¢*uc'Q ' Qudxds
o Jo
t ol t ol
C/ / ¢2”u2027Q27_29dxds+C/ / ¢2”Q29_2Qidxds
o Jo o Jo

t 1
< o(M+C /O /O ¢ Q¥ 2Q% dxds (149)

IN

where we have used the Cauchy inequality, Lemma 3.1, Lemma 3.2, and assumption(27).
Estimate for I4. Using the Cauchy inequality, estimate (54), and the estimate of Lemma 3.3
we get

t 1
Iy =—pf /0 /0 #* h(c, Q)u?(Q%)dxds (150)

t 1 t 1
C 2uh 2 4d d C 2v 0\2 d
/0 /0 ¢*h(c,Q)*u"dxds + /0 /0 ¢*(Q%)5dxds

t 1
T)+ C/ / »*Q*2Q% dxds.
0o Jo

IN

IN
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Estimate for I5. Using the Cauchy inequality, assumption (27), and Lemma 3.2 we finally get
that

t el
Is = —/)1927/ / ¢* I IQITLQ e pdads (151)
0 Jo

t 1
< CoM+cC /0 /0 P Q¥ 2Q%dxds.

APPENDIX B: SOME ESTIMATES CONNECTED TO LEMMA 3.5

In this Appendix we estimate the quantities I;* and Iim_1 (fori=1,2,3,4,5,6), which are used
in the proof of Lemma (3.5). The arguments goes along the line of e.g. [10, 22], which in turn
build upon central works like [25, 26, 27]. The inclusion of the frictional term does not pose any
additional problems in this lemma since it appears as a non-negative term on the right hand side
of (82). However, for completeness we include the proof. Note that the equations (79) and (80)
are extensively used throughout these proofs. We start by estimating I (for i =1,2,3,4,5,6).

Estimate for I7*. Exploiting assumptions (28), (37), and the fact that k1 > 0, we easily conclude
that

1
= / P Q" dr < C. (152)
0
Estimate for I3". Using the Cauchy inequality, Lemma 3.1, and Lemma 3.3, we have
t 1 .
I = —amp / / P QT ugdads
0o Jo
R - (15)
< 0/ / p*Fru? d:cds+c/ / Q'"Pu2dxds < O(T).
0o Jo o Jo

Estimate for I3". Using the Cauchy inequality, Lemma 3.3, and Lemma 3.4, and noticing that
k1 > 2v (i.e. 2k > 2v), it is clear that

t 1
I3 = _Qmam/ / M QIO T1Q u,dads
0 JO
el e g (154)
gc/ / Qw2 *2u§dxds+o/ / ¢ Q*72Q%dxds < C(T).
0 JO 0 JO

Estimate for I}*. Using the Cauchy inequality, Lemma 3.3, Corollary 3.1, and noticing that
|¢’ ()| is limited, we can perform the following estimates

t 1
= —2mk1/ / PP QU ey 2"~y o (1) daxds
0 Jo
t 1 ,
< C/ / ¢k1_1Q1+9+°‘m|u2m_1|\ugﬂ|dxds
o Jo
t el t el
S C/ / Q1+9u2m+172uidmd8 + C/ / ¢2k172Q1+0+2amdxd8
0o Jo 0o Jo

t 1 t 1
<c(T)+C / / $**172Q% dxds < C(T) 4+ C / / ¢ =2 drds < O(T),
0o Jo 0 0

(155)

where the last inequality can be deduced since 20a+2k; —2 > —1, when k; > 2v and o > é—g + %0,
in view of assumptions (30) and (31).



22 FRIIS AND EVJE

Estimate for I7*. Using the Cauchy inequality, assumptions (27), Lemma 3.3, Corollary 3.1,
and Lemma 3.4 we obtain the estimates

t el
" = —Qm'y/o /0 qﬁklc'yQ'y+("m_1u2m_1Q$dxds
to t 1
SC/ / u? _deds—f—C/ / P QI 29m =202 dds (156)
o Jo o Jo

t 1
<C(T)+C /O /O P2 Q?~2Q%dxds < C(T).

Note that the last inequality follows since k3 > —1, where k3 = 2k + aks and ks is defined such
that 2y + 20, — 2 = ko + (20 — 2) (ie. k2 =2y —6 —1 > 0). Clearly, k3 > 2k; > 2v, implying
that ¢(x)% < ¢(z)>.

Estimate for Ig*. Again using the Cauchy inequality, Lemma 3.3, Corollary 3.1, as well as
assumptions (27), we obtain the estimates

t el
I§" = —qu// / gbklc”le"’Jra""uzm*lczdmds
o Jo
toer t pl
SC’/ / u? 72dacds—|—0/ / P21 Q@ 2om drds (157)
0o Jo 0 Jo

t 1
<C(T)+C / / PpHatarr2an) drds < O(T),
0 JO

since 2k1 + (27 4 2a,,) > —1.

Next we estimate I/ ' (for i = 1,2,3,4,5,6). In particular, we shall make use of the estimate
(82).

Estimate for I;"~!. Similarly as for I}*, using (79) and (80), we estimate that

1
It = /O o Qe 2" da < C(T). (158)

Estimate for I;"~!. Using the Cauchy inequality, estimate (82), the fact that 2420, 1 —a, =
1+ 6, and Lemma 3.1 we obtain

t rl
m—1
0 Jo
t 1 o m—1 o
=—am71pz//¢’“QTu2 QT 1= y, dwds
0 Jo
t 1 m t 1
<C / / "1 Q" dads + C / / Q*F2am—rmmy2 dyds
0 Jo 0 Jo

t 1
<C(T)+C / / Q" uldrds < C(T).
0 JO

Estimate for I;)”*l. Using the Cauchy inequality, estimate (82), Lemma 3.4, the relation
20,1 — ay = 0 — 1, and 2v < kq, we have

t 1
I:T*:—Qm_lam,l/o /0 qbklQ9+am*1u2m71_1quzdxds
t rl
SC’/ / G FQITEFR G F QB tam-1—3 52" -1 dads
0 JO
0 - (159)
<C / / PP QI omu =22 dads + C / / pFr QU 2em-1mam Q2 dpds
0 JO 0 Jo

t 1
<c(T+C /O /O P Q¥ 2Q%dxds < C(T).
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Estimate for I;"~!. Using the Cauchy inequality, estimate (82), and Corollary 3.1, we have

t ol
Iln_l = 72m71k1/0 /0 ¢k1*1Q1+‘9+am71u?""_lflumgb/(x)dxds
¢ ! m—1
< C/ / ¢k1_1Q1+0+°"”‘1|u2 _1U$|d$d8
o Jo
t el
SC/ / ¢ FTIQITE o g QIR 2" T Ty, | duds (160)
o Jo
t pl - P
SC/ / ¢k1Q1+9+amu2 *2uidxds+0/ / ¢k172Q1+0+2amdde
0 /0 o Jo

t 1
T)+C / / PP =220 qrds < O(T),
0 JO

since ky — 2+ 20 > —1 — 20 — 162 + £-0 4 136 + £6% = —1, in light of assumptions (30)—(33).
Estimate for I, g"_l. Using the assumptions on ¢ given by (27), the Cauchy inequality, Lemma
3.3, Corollary 3.1, and Lemma 3.4 we obtain

t 1
Ig”_l = —2m717/ / (bklCVQ7+am*171UQM7171Q$dxds
o Jo
top t 1
SC/ / u? _deds—l—C/ / PP QP F2om-17202 4 ds (161)
o Jo o Jo

t pl -
T)+C / / @1t Q* 22 dads < C(T),
0 JO

where ko = 2y + 3am, —20=2y+3(0—1)—20=2y— 3(6+3) >0 and ky > 2v.
Estimate for Ié”_l. Again, using the assumptions on ¢ and ¢, given by (27), the Cauchy
inequality, Corollary 3.1, and Lemma 3.3, we obtain

t 1
[én—l — _2m71,_y/0 /0 ¢k10771Q7+am71u2WL7 710xd1‘d8
t 1 t 1
< C/ / u2m_2dxds+C/ / PR Q> H2om—1dyds (162)
0 Jo 0 Jo

t 1
<o(Mm+cC / / g 2artsacm gy s < O(T),
0 JO

since 2k + 2ay + 3o, = 2k + 2y + 3(6 — 1)]a > 0.

APPENDIX C: SOME ESTIMATES CONNECTED TO LEMMA 3.8

In this Appendix we estimate the quantities Ifl), Iéé), 1) and I and7 moreover, Il(rf), IZ(;), I(n)

and [ in), which are all used in the proof of Lemma 3.8. We estimate as follows:

ﬁ) = C’/ / Q' utdrds < C max (¢~ F1Q?~*1u2)V (s)ds (163)

0 z€]0,1]



24 FRIIS AND EVJE
where V(s f pFr QI+ 12 dx. Exploiting (62), estimate (54), Lemma 3.3, Corollary 3.1 and
the Holder inequality, it follows that
qﬁfleQfaluQ — ¢7k1Q7a1720[Q6+1ux]2
x

Qe (@ + [y + [ bt Quululdy)

<ot (@ + ([ wy) + ([ hieQululay)’)

1

<06 (@ a1 ) [ty a1 ~0) [ e, @utay)

0

1
< C¢—k1+(2'y—a1—20)a+C¢1—k1Q—(a1+29)/ ufdy—s—Cqﬁl_le_(al“e)
0

<C(T) /01 uidr + C(T),

where the last inequality comes from the following facts:
(1) For 0 < 0 < % and 2v < k; < (2y — 30 + 1)a it is clear that —k; + (2y — oy — 26)a > 0.

(2) For 0 < § < 1 and 2v < ky < 1+ (1 — 30)a, we have (for sufficiently large m) that
1— k1 — (aq +20)a > 0. Here we also first have used the fact that —(«; + 26) > 0 such
that Q—(@1+20) < Cp(z)~(@1+20) according to Corollary 3.1.

(3) For £ < 0 < % and 2v < ki < 20(1 29) + 22(1 30)1/ it is clear that —(a; + 20) <

—11lko (g +26)

0. Consequently, according to Lemma 3.7, Q- (0‘1"‘29) < C¢(x)” ©0=20 . However,
11ks (01426
1=k — 102((1 12(9) ) > 0.

Consequently, we have

1M < o) + o) /tV(s) /1 W2 da ds, (164)
0 0

where V(s) € L1([0,T]), in view of Lemma 3.5. Moreover, we have

C’// QI eugdxds

1
C | max (¢~ Q172 / PP QM2 dads < O(T), (165)
0

0 1:6[0,1]

1
1)

IN

in view of assumption (27), Lemma 3.5, Corollary 3.1, and the fact that when 0 < 6 < % and

20 <k < (2y =30+ 1)a, then 2y — (a1 +20) > 0 and (27 — a1 — 20)a — k1 > 0, for sufficiently
large m.

We must further estimate I § ) and I{! 4 Usmg the Cauchy inequality, we have

Iél) = —pl/ / ho(c, Q)Q*uzulu|urdrds
0 Jo
toer
< mx (ha(e. Q8] [ [ 104 butu,uldods
< m m[ax(|hQ(cQQg*g //Q1+9u4u2da:ds+// da:ds
€[
< C(T)+C’(T)/ / uldxds, (166)
0 Jo

in light of Lemma 3.3 and the fact that 3+ 3 — & > 0 (for 3 > 0) such that
ho(e,Q)Q* ™% < O(I), (167)
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by Lemma 3.2, where we have also used that

Q B—1 1 2
h = fBp) : 1
ole.Q =160 (170=00)  (ira=ga) (168)
For later use we also note that
s Q B+1 ,
Furthermore, we also get that
t ol t 1
o= 2/ / h(c,Q)|ululdzds <2 | max (h(c, Q)|u|)/ udxds. (170)
0o Jo o =€[0,1] 0
Now, the Sobolev embedding theorem gives
|h(c, Qu| < C/ |h(c, @ u|dw+C/ |(h )z|dx
< c / hle.Q)dr + / wda + C / (h(e. Qu).|da
0
< / \(h(c, Q)u)aldz = C(T) + W(s). (171)
where we have used Cauchy’s inequality, Lemma 3.1, and estimate (54). Next, we estimate
/ [(h )z |dx
1 1 (172)
g/ |hc(c,Q)c$u|dx+/ |hQ(c,Q)Qmu|dm+/ Ih(e, Q) |de
0 0 0
= WA(S) + WB(S) + Wc(s)
as follows:
/ Ihe(e, Q)cyulds < c/ luldz < C(T), (173)
and
Wpg(s) = / |ho (e, Q)Quuldx (174)
1
< / QSQVQQ(G_I)Qid-T‘i‘/ ¢—2uhQ<C7Q)2Q2(1—9)u2dx
0 0
1
< O+ max (6 h(e. Q@) [ it
ze|0, 0
< M)+ O(T) max (67272 < CO(T)
TE
since B > £ + 6 > 0, and
Wel(s) = / \h(c, Q)ug|dz </ Q9+1u2da:+/ |h(c, Q)2Q~+Y)|dx
< / Q" tudr + mas (h(e, QP*Q™"Y) (175)
0 ze|0,

1
< [ @"hlde+ max (6700 € L0, 7),
0

z€]0,1]

if 28 > 1+ 6. Here we also have applied Hélder’s and Cauchy inequalities, Lemma 3.1, Corollary
3.1, and Lemma 3.4, (168) and (49). Consequently, we can conclude that

1V < /0 t[C(T)+W(s)] /O 1 w2daxds, (176)
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where W (s) € L'([0,T]). Hence, we have shown (113)—(116).

It is now time to estimate the quantities Ifn) Iég),lén) and Iin). First, by the induction
assumption equation (118), we get that

t

Iﬁl) = C/ / QB utu?"2dads < C(T) max (Q7T3ul)ds. (177)

0 z€[0,1]
It follows that

Q0+3 ;1: _ Q_l_BG[Q6+1Ux]4

—@ (@ + [ wdy+ [ e @uluidy)’
< 0@ (1@ + ([ wdy)? + ([ hie. Qb))
0

= CQ_l_ge((cQ)M +(@(1—2)) (/1 uf"dy) ’ +(z(l—2) " (/01 h(c, Q)2nu4"dy) z)
(/Oluf"aly)ﬁ +C(T )¢4" Q1%

where we have used (62), (54), Lemma 3.3, Corollary 3.1 and the Hélder inequality with p =

< O L O(T)g”

4n—2

and ¢ = 2n. Now exploiting that for 0 < 6 < % and 2v < k; < % — 2v, we have for any
n > 1 that
- > ko = — 1
n 001 —20) =" 2=Vt (178)
which implies that
an an—3 _ 11hy(1+30)
max (0 ) < O(T)g " T < o), (179)
x€|0,
by Lemma 3.7, and thus also that
1
max (Q"u) < O / "dm) +om), (180)
z€[0,1] 0
such that
t 1 2
I < o(T) [1 + / ( / ufndm) "ds] (181)
0 0
Finally, Young’s inequality with p = % and ¢ = -5 gives ( fol u2ndz)n < 2 fol uf"dx+ 252, which
leads us to conclude that .o
1™ < o(T) + C(T) / / W2 dads. (182)
0o Jo
Moreover, we have by the induction assumption equation (118) that
Ié;l) — C/ / 27@2’7—}-1 0 2 2n 2da:ds < C rn[%)i](QQ’y 1— 30[@1—0—0 ]Q)ds (183)
0 z€

Exploiting (62), (54), (117), Lemma 3.3, Corollary 3.1, and the Holder inequality, we can now
estimate as follows

QY130 [Q+1y, ]2 = Q13 ((CQ)W + /x uedy + /m h(c, Q)u|u|dy)2
0 0
< QI (@@ + ([ wdy + ([ bl Qululdy)?)
0
1 1
< CQ%’_l_SQ( Q) + (1 — x)/ urdy + (1 — x)/ h(e, Q)2u4dy>
0 0

11ko (1436)

< O¢(4w 1-30)« +C¢1+27a¢ o020 < C(T),
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since we have that (4y — 1 — 36)a > 0 and

11ks(1 + 36) 30 19
ST ) 1 2va— = 2va— —2 > 0.
0(—20 ~ AT T

This corresponds to ya > 22 that is, o > % which clearly holds in view of assumption (30).

22°
Consequently,

1+ 2y —

15y < o(T). (184)
Furthermore, we get that
t el
I:g") = —pl/ / ho (e, Q)Q*uzulului™ *dxds
0
< h - 2n 1 dxd
_Trg[%)iUQCQ u|// |dxds
< C max (\hQ ¢, Q)Q%*uy|) / / 4”dxds—|—/ / "dxds
< O(T)+0(T) / / u"dxds, (185)
o Jo

where we have applied Young’s inequality with p = 2n and ¢ = Lemma 3.3 as well as the

fact that

2n 1’

lha(e, Q)@
h 1-0 od g h(e, d
(. Q@] [ way+ Q) + [ he.Qululay]

Ohae. @ (o ( [ i) "+ ey + o[ wra)”)

< O[O 4 e < O(T), (186)
due to (54), (62), (117), (168), Lemma 3.1, Corollary 3.1, and Holder inequality. Also note that
we must use that 8 > 6, which is already ensured by assumption (32).

Finally, we obtain

t 1
[i") = // Q)|u|u?"dzds < max](h(c,Q)|u|)/ ui"dzds
0

0 16[0,1

IN

IN

< /0 C(T) + W(s)] /O W2 dz ds, (187)

(1)

with W (s) € L*([0,T]) by precisely the same arguments as for I, ’, see estimate (176).



