WEAK SOLUTIONS OF A GAS-LIQUID DRIFT-FLUX MODEL WITH
GENERAL SLIP LAW FOR WELLBORE OPERATIONS

STEINAR EVJEA»* AND HUANYAO WEN#

ABSTRACT. In this work we study a compressible gas-liquid models highly relevant for wellbore
operations like drilling. The model is a drift-flux model and is composed of two continuity
equations together with a mixture momentum equation. The model allows unequal gas and
liquid velocities, dictated by a so-called slip law, which is important for modeling of flow scenarios
involving for example counter-current flow. The model is considered in Lagrangian coordinates.
The difference in fluid velocities gives rise to new terms in the mixture momentum equation that
are challenging to deal with. First, a local (in time) existence result is obtained under suitable
assumptions on initial data for a general slip relation. Second, a global in time existence result
is proved for small initial data subject to a more specialized slip relation.
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1. INTRODUCTION

The drift-flux model is one of the commonly used models nowadays for the prediction of various
two-phase flows. It was first developed by Zuber and Findlay [37]. It is used in chemical engineering
to predict flow in bubble column reactors, in petroleum applications to model various wellbore
operations related to drilling as well as to study production of oil and gas. More recently, it is also
used for the study of geothermal energy related problems and injection of COq, to mention some
of the applications [27]. The drift-flux model remains one of the best available ways to quickly
estimate the void fraction in a two-phase system. A one-dimensional transient drift-flux model
can be written in the following form:

Otlagpg] + Ozlagpguy] =0,
= ()7

Olarpr] + Oxlauprui] (1.1)

Orlagpgtig + arpruy] + Oy [cvgpgu?7 + alplulQ + Pl = —q+ 0;[e0,un), um = agug + aquy,

where € > 0. The model is supposed under isothermal conditions. The unknowns are p;(P), py(P)
the liquid and gas densities, oy, oy volume fractions of liquid and gas satisfying

ag +ap =1, (1.2)

and w;, ug velocities of liquid and gas, P common pressure for liquid and gas, and ¢ representing
external forces like gravity and friction. In the following we assume that the liquid is incompressible
whereas the gas phase is described by the polytropic gas law

P =Cpj, v > 1, (1.3)

where, without loss of generality, we choose C' = 1. Since the momentum is given only for the
mixture, we need an additional closure law, a so-called hydrodynamical closure law, which connects
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2 EVJE AND WEN

the two phase velocities. This law should be able to take into account the different flow regimes.
A commonly used slip relation is in the form [37, 16, 6, 20, 1]

Ug = Coups + C1. (14)

Here ¢y and ¢; are flow dependent coefficients. ¢ is referred to as the distribution parameter and
¢1 to as the drift velocity. Various discrete schemes have been developed for computing numerical
solutions of the compressible two-phase model (1.1)—(1.4), see [22, 11, 26, 12, 5, 6, 2, 13, 23] and
references therein. It is well known that it is difficult to solve this model efficiently due to strong
nonlinear coupling mechanisms and challenges associated with transition to single-phase regions.
Therefore it is of interest to deepen the insight into the finer mechanism of this model, also from
a mathematical point of view. In particular, it is desirable to obtain a better understanding of
the effect from the slip law (1.4).
The main objective of this paper is two-fold:

e Discuss some mathematical properties of the model (1.1) when it is studied in combination
with the general slip law (1.4) where the coefficients ¢y > 1 and é& > 0 are assumed to
be constant. More precisely, we establish a local in time result guaranteeing existence of
weak solutions for this general case.

e Present a global in time existence result of weak solutions when we consider the slip law
(1.4) with ¢, = 0 but ¢y > 1. Note from (1.4) that éo =1 and ¢, = 0 imply that u, = w;,
i.e., no relative motion between the two phases.

We obtain our results by considering the model in Lagrangian variables in a free-boundary setting.
The precise description of the model problem is as follows (we refer to Section 2 for a detailed
derivation of the model): First, we introduce the variables (c, p,u) given as

m — k*

c= , p=n+m-—k*, U= Ug, (1.5)
P

where
m = upi, n = Qgpg, (1.6)

and k* = p;(1 — 1/&y) represents a minimal mass of liquid that must be present in order to make
the slip law well-defined. The model we study in this work takes the following form:

&gc = O,
Oup + p20,u =0, (1.7)
Oyu+ 0z [P(c, p) — u’g(cp) — uh(cp) + j(cp)] = 82[E(cp)dpu], in 0 <z <1

with boundary conditions

u(0,t) =0, p(1,t) =c(1,t) =0, (1.8)
or
p(0,t) = p(1,t) =0, ¢(0,t) =¢(1,t) =0, (1.9)
and with initial conditions
c(z,0) = co(x), p(x,0) = po(z), u(z,0) = uo(z), x €10,1], (1.10)
mo(z)—k*

where ¢(x,t) = co(x) =
- _ po(w)
momentum equation are given as follows

Moreover, the different functions appearing in the mixture

Pen = (B2 wopja (e pma k)

a* —cp
. cp é1\  cp . 2(G1\? 1
=k . hiep) =202 : =i (2) ——, .
glep) =Ky o) =205 )y Ien =0\Z) e (1.11)
B+1

E(cp) =e(c,cp)p = m*[ipgcp})ﬁﬂ'

Some observations:
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(i) The terms associated with the functions g(-), h(-), and j(-) appear when some relative
motion between the gas and liquid phase is allowed, i.e., when ¢y > 1 and ¢; > 0. For this
case we derive the local existence result given by Theorem 3.1.

(ii) If ép > 1 and é = 0, then h = j = 0 but g > 0. For this case we derive the global existence
result given by Theorem 3.2 subject to a smallness assumption on the initial data. Note
that the parameter § > 0 appearing in the characterization of initial data, as described in
(3.68), depends on the specified global time 7" > 0. Hence, this result cannot be used to
study the long-time behavior of the system in question.

(iii) If éo =1 and é; = 0, then also g = 0 in (1.11). This corresponds to the no-slip case where
both phases move with the same velocity. This case has been discussed in a number of
works [7, 8, 9, 32, 33, 34, 35].

The results are obtained for the model (2.58) and (2.59) which is directly related to the above
model through the transformation (2.57). Hence, the results of Theorem 3.1 and Theorem 3.2
expressed in terms of the variables (¢, @, u) can be transferred to the model (1.7)—(1.11) described
in terms of (¢, p,u). See also Remark 3.1 and Remark 3.2. The model with slip parameters ¢y > 1
and ¢, = 0 has been studied in [4] and [31] and local in time existence results have been obtained.
However, both the local in time existence result for the general slip where ¢y > 1 and ¢; > 0 and
the global in time result for the slip with ég > 1 and ¢; = 0 are new. The main techniques we
rely on are the energy method and the continuation method, combined with some rather delicate
estimates for the lower limit of masses.

e The central part of the local existence result is Proposition 4.1 which ensures that for a
sufficient small time period [0, T,

1 t 1

Sot <o, [ me+ [ [<om

3 0 o Jo
where A, B, M are constants related to initial data and M is large enough. Here, Q(c, p) =
. > and ¢(x) =1 — x and « is a positive parameter characterizing the mass decay rate
at the right boundary where masses vanish. Corresponding to these estimates we have
that |u| < C +CMY?, see (4.7) of Lemma 4.1.

e Similarly, the heart of the matter of the global existence result is Proposition 5.1 which
guarantees the following estimates

w2 (1—ce)@rt B67T sa ~  3a
7w ) < T << s
/0<2+ = 1) )_25, 5 ¢ <Q <2407,

for a sufficient small §(T") for a global time T' > 0 and where A, B are constants related
to initial data. Most interestingly, there is a fine tuned balance between the smallness on

the energy estimate and the smallness of the lower limit of () which results in an estimate

1

B+1 5
of fluid velocity of the form |u| < C§~ 261 (fol Eui) * | sce (5.6) of Lemma 5.1. The
fact that the d-parameter is allowed to appear in the lower bound of @) is exploited in the
proof of Lemma 5.4. However, the price to pay for this is that the other lemmas become
more difficult because fluid velocity involves a ! type of term that must be controlled.
The key that is repeatedly used to prove these results is the smallness on the energy, as
expressed by Lemma 5.1. As commented before, the fact that §(T") depends on global time
T (see Remark 5.2) prevents from deducing anything about the long-time behavior of the
model. This is a consequence of the new term that accounts for non-equal fluid velocity.
For the no-slip case the long-time behavior of the gas-liquid model has been investigated

in [19, 10].

These estimates pave the way for deriving the required regularity on v and @ in space and time, see
Corollary 4.4 and Corollary 4.5 for the local result (Corollary 5.4 and Corollary 5.5 for the global

result), which are sufficient to prove convergence to weak solutions. Techniques that are used are
motivated by previous studies of single-phase Navier-Stokes, see for example [24, 18, 21, 28, 29, 3].
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The structure of the work is as follows: In section 2 we derive the model (1.7)—(1.11). In Section
3 the local and global existence results are presented together with their respective assumptions
on initial data and parameters. In Section 4 a priori estimates for smooth solutions for the
local existence result are derived. Then, by using the line method where the continuous system
is approximated by a semi-discrete, corresponding estimates are obtained for the semi-discrete
approximations. This allows for showing the convergence to limit functions that are shown to be
weak solutions. Section 5 is devoted to the study of the model with the slip where ¢; = 0. Various
global in time estimates are obtained under a smallness assumption on the initial data.

2. DERIVATION OF THE MODEL
We set n = aypy and m = oqp; in (1.1) and consider the model
Oin + 0z[nug] =0,
Om + O [muy] = 0, (2.12)
O [nug + mw] + Oy[nu’ + muj + P(n,m)] = 0x[e(n, m)dyun),
where the mixture fluid velocity uys is defined as follows:
UM = gy + oquy, (2.13)
and where the pressure law P(n,m) and viscosity term e(n, m) are given by
(m — k*)8+1
(n+m—k*)(p —m)o+t’

P(n,m) = (Pl fm)w, e(n,m) =

v>1, >0, (2.14)

together with the constitutive relations
o) + Qg = ]-7 Ug — éOuM - 61 - Oa PlL = PL,0, Pg = pg(P)a (215)

where ¢g and ¢; are assumed to be constants. As will be explained in the following the slip law
ug — Coupr — €1 = 0 requires that the liquid mass is above a critical lower limit k*, i.e., m > k*.
This information is taken into account in the viscosity coefficient e(n,m). Similarly, the upper
limit for the liquid mass m < p; is also accounted for in the viscosity term.

We now want to rewrite the model (2.12). Our approach is inspired by the work [14]. Given
the slip relation

Ug = Coups + C1, (2.16)
we introduce ay, aj given by
* 1 * *
ag = 7 af =1-ay. (2.17)
In the following we will assume that
é > 1, (2.18)

implying that aj < 1. This is consistent with previous applications of the slip velocity (2.16) in
the context of gas-liquid and liquid-oil flow modeling where ¢y typically is ranging between 1.0
and 1.5. Moreover, in view of (2.16) it follows that

" — Coaquy + 1 oy + éla; _ooqup + él(l - 0‘7) (2 19)
g 1— ¢y oy — ag ap—of ’ '

It is implicitly assumed that ay < ag (or equivalently, that «; > af) for this slip law to be valid.
From (2.19), we get

auy = ug(a —ap) — (1 —af )és. (2.20)
Clearly,

mu; = proquy = prug(oq — o ) — pi(1 — o )ér = prug(oq —af ) —d = ug(m — k™) —d,  (2.21)

where the constants d and k* are defined by

d=p(l—a)i, K = paj, (2.22)
and recall that the liquid is incompressible, i.e., pj=constant. Now, we introduce the notation

p=pym—ogp=pilar—o7) +agpg =n+m—k", (2.23)
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where
PM = Qgpg + aypy.
Next, we introduce the variable ¢ defined by

m—k* m—aoip _ pla—af)

c= - = . (2.24)
p p p
We then apply (2.20) and (2.24) and derive the following relations:
m=cp+ k", (2.25)
cpug = pilog — o ug = prlaguy + (1 — o )é1] = muy + pi(1 — af )ér = may + d, (2.26)

according to (2.22). In other words, mu; = cpug — d. Moreover, we have from (2.23), (2.24), and
(2.21)
ke
loe=1-2"72 1
p p
pug = (par — k" )ug = nug + (m — k™ )ug = nug + muy + d. (2.28)

; (2.27)

The model (2.12), by adding the two mass conservation equations, can be written in the form
Om + Ox[muy) = 0,
O[n + m] + 0z [nuy + muy] =0, (2.29)
O¢[nug + muy| + 0, [nuz + mul] + 0.[P(n,m)] = 0.[e(n, m)dyun].
Employing, respectively, first (2.25) and (2.26), then (2.23) and (2.28), the first and second equa-
tion of (2.29) can be rewritten such that we arrive at the following form for the system in question:
A[cp] + Oz [cpug] =0,
Bup -+ Dalpug] = 0, (2.30)
Orlpug] + Ox [pug] + 0y [nug +mu? — puz] + 0, [P(n,m)] = Ogle(n, m)Ozuns].

Here we also have used (2.28) again to rewrite the momentum equation. Noting that

2

nuy — puf7 = (k" — m)ug = pi(of — al)u_(zp

the mixture momentum equation of (2.30) can be written in the form
Ot[pug) + 0x [pug] + O [pi(af — al)ug +mu? + P(n,m)] = 0;[e(n, m)dun). (2.31)
Now, we want to rewrite the last term on the left hand side in terms of the variables (c, p, ug).
Firstly, we observe that
n=(1-c)p, m=cp+k*. (2.32)
Hence, the pressure law P(n,m) takes the form
vy 1-— 2l 1-— vy
Pam) = () = (L9 Y (LY pegy ey
pr—m lpr — k*] —cp a* —cp
where a* = p; — k™ = pjaj. Secondly, we note that

pilef — ap)ul +mui = ogpuj — ul] + k. (2.34)

Next, we observe in view of (2.20) that
ar(u; — ug) = —uga; — (1 —af)éq, (2.35)
ar(ug +ug) = ug(20q — o)) — (1 — ) )éq. (2.36)

Multiplying these two relations we get

of (uf — uz) = —uzaﬂQal —af] = 2¢1uy[l — af|jey — af] + &L — of % (2.37)
Then we have
2 2y _ 2 x _ﬁ_ ~ Lk _&7 ~2 _*QL
arpi(uj — uy) = —prugog[2 az] 2p1é1ug[l — o1 al] + piéy[l = ay] o (2.38)
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In view of (2.34) and (2.38) we get

G(n,m,uy) := pi(af — oq)ug + mu}

* O[* * ~ * a* A * 1
= pqj “527 [—2 + OTZJ + pra ug —2péiug[l — of][1 — a—ll] + pédl —aj ]2071
oy . . of R wo 1
= pm*“? {_1 + i} + 2pié1ug[l — of][-1+ =L] + piéf[l — o] —
1 1 O‘l (2.39)

k* —m 51

242 *
]__
}+ch1[ ar] m

k* —

= —k*ug [cpjf)k*} Bl ZPZUQ(%)) [cpj-pk*} " p%(%)z [cpik*}

=: —ugg(cp) — ugh(cp) + j(cp),
where we have used (2.32) and we have defined the function g(-), h(:), and j(-) as

. Cp C1 cp . ofC1\2 1
_ C h(ep) =2 (7) 7 - (7) . 2.40
g(cp) o (cr) =20\ 7)1 o ier)=rilz ) = g (2.40)
For the viscosity term &(n,m) we have
e(m—k")P clep)? o
e(n,m) = = mP T @ = [P e(c, cp). (2.41)
Hence, setting u, := u, using (2.39) in the momentum equation (2.31), we obtain a gas-liquid

model of the following form:
Oelep] + Oz[cpu] =0,

Oe[p] + Oz[pu] =0, (2.42)

. 1
Bi[pu] + 9. [pu®] + 8, [P(c, p) — u?g(cp) — uh(cp) + j(cp)] = a&c [e(c, ep)Oyul.
We may absorb the constant 1/¢y into the viscosity term ¢ without loss of any generality.

2.1. Lagrangian coordinates. Following the approach of the works [8, 9, 32], which in turn
is motivated by studies for the single-phase gas model, we suggest to study the model (2.42),
described in terms of the variables (¢, p,u), in a free boundary setting.

Ot[cp] + Ox[cpu] = 0,
Oulp] + Dalpu] = 0, (2.43)
By[pu] + 0z [pu®] + 82 [P(c, p) — u?g(cp) — uh(ep) + j(cp)] = le(c, cp) Dy,
with z € (a(t),b(t)) and ¢ > 0. Initial data are

pla,t =0) = po(z),  c(z,t=0)=co(z) = m“i"zzx_ N @t =0)=up(x),  (2.44)

for x € [ag,bo] where ag = a(t = 0) and by = b(t = 0). Boundary conditions are set to be as
follows:

u(a(t),t) =0, p(b(t),t) =0, c(b(t),t) =0, (2.45)

pa(t) ) =0, ca(t)t) =0,  p(b().1) =0,  c(b(t), ) =0. (2.46)

Here a(t) and b(t), which separate the gas-liquid mixture and the vacuum like state corresponding
to p =0 and ¢ = 0, satisfy

d

= =ua®).),  a(0)=a, (247)
and

db
< = u). 1), b(0) =bo. (2.48)
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We can introduce Lagrangian coordinates by using the transformation (x,t) — (£,7) given by

&= / p(z,t) dz, T =1, (2.49)
a(t)
observing that

b(t) bo
/ p(z,t)dz = / p(z,t = 0)dz = constant = 1.

(t) ao
This implies that [a(t),b(t)] is converted into the fixed interval [0, 1]. Since
o0 0 0_ 0
ot oxr Ot or 193
we can transform (2.43) into the following form:
Or[cp] + [cplOpu = 0,
0rp + pOzu =0, (2.50)
pO-u + 0, [P(c, p) — u*g(cp) — uh(cp) + j(cp)] = Oule(c,cp)Opu], in 0 <€ < 1.
In other words,
d-cp] + cp*deu = 0,
Orp + p?O¢u = 0, (2.51)
Oru+ 0¢[P(c, p) — ug(cp) — uh(cp) + j(cp)] = O¢le(c, cp)pdeu], in 0 < € < 1.
We now replace (7,€) by (¢,z). Moreover, an easy calculation shows that (2.51) corresponds to
Oyc =0,
Oup + p*0pu =0, (2.52)
Oru + 0, [P(c, p) — u?g(cp) — uh(cp) + j(p)] = 0[E(cp)dpu], in0< <1,

with boundary conditions

u(0,t) = 0, p(1,t) = ¢(1,t) =0, (2.53)
or
p(0,t) = p(1,t) =0, c(0,t) = ¢(1,t) =0, (2.54)
and with initial conditions
c(z,0) = co(x), p(x,0) = po(z), u(z,0) = uo(z), x €10,1], (2.55)
where ¢(x,t) = ¢o(z) = %);)k*. Moreover, we have that
[1—dp\7
P =
0 =) -
. P e\ cp . 2(C1\? 1
9(cp) Bt op (cp) pl(éo) o iep) = pi (00) o (2.56)

cplBH1
E(cp) =e(c,cp)p = W[_pgcpbgﬂ-

Hence, the model (2.52)—(2.56) is now consistent with the model (1.7)—(1.11).

2.2. Reformulation. For the analysis of the model (2.52), it will be convenient to introduce the
function Q(c, p) given by

. Q
1+cQ

p
a* —cp

Q(C’ ,0) =

, which corresponds to p=a (2.57)
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A similar approach was also used in [8, 9], however, for a different model with equal fluid velocities.
The following nice relation holds for Q(c, p):

Qc,p)t = Qecs + Qupr = Qppy

*

( 1 n cp ) a
=\ " Pt = 3Pt
a*—cp  (a* —cp)? (a* = cp)?
* 2
_ a p _ * 2
= —muz =—a"Q(c,p) uy

Hence, the system (2.52) can be replaced by
&gc =0
0:Q + a*Q%*0,u = 0, (2.58)
Ou+ 0.[P(c, Q) — u?g(cQ) — uh(cQ) + j(cQ)] = 0:[E(cQ)d u], x € (0,1), t >0,

with

ok CP o wf  Q _
g(cp) = cp + k* ! (a}‘ + CQ) = 9(cQ),
B é1 cp L (C\ cQ o (2.59)
hiep) = 2p (%) cp+kr 2(%)a (af + cQ) = (eQ),
, G 2,14 cQ ,
i) =i (3) e = n(2 ) (al Tog) =)
since
_ @
cp=a T Q
Boundary conditions for our system (2.58)—(2.59) are (in view of (2.57) and (2.53), (2.54)):
u(0,t) =0, (¢,Q)(1,t) =0, (2.60)
or
(c,Q)(0,1) =0, (c,@Q)(1,t) = 0. (2.61)
Initial conditions are (in view of (2.57) and (2.55)):
o(0,0) = @), Q@0 =Q)= T u@0)=ul@), ccbl. (262

a* — copo
3. MAIN RESULTS

1 1
Throughout the rest of the paper, we denote LP = LP([0,1]), / f= / f dx when it will not
0 0

cause any confuse.

3.1. Local weak solution. Main assumptions:

G195 < < BT, ACQ¢4 < Qo < Bé“b%aa €1 < C2, a>0,

¢'(ch ' Q0)sl” € LY, 91785, € L1,

(3.63)
1
/ E(coQo)ul, dx < M,
0
for some constant M > 0 determined by (4.16), and
3 46+ 1
a(ﬁ+1)<1,0<ﬁ§1, a(d4f+1)<2, v> 6; , v > 1, (3.64)
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where
(1 —z), for boundary (2.61),
¢(z) =
1—z, for boundary (2.60).

For boundary condition (2.60), we require the compatibility condition uy(0) = 0.

Theorem 3.1. Under the assumptions of (3.63) and (3.64), there exists a constant Ty > 0 such

that (2.58), (2.62) and (2.61) or (2.60) admits a unique weak solution (¢, Q,u) on [0,1] x [0, Tp]
in the sense that

(A) we have the following regularity:
¢,Q € L([0, To]; L=) N CY([0, To); L?), E(cQ)us € L>([0,To]; L?),
w e L0, To); L) N C2 ([0, Ty); L?).
Moreover, the following estimates hold:
A 30 30 1 t 1
§¢T <Q<2BpT, / Euidm+/ / u? dx ds < 2M,
0 0o Jo
and
1
fullim + [ (6701 HQAP + o 20q2) dr <
0
for (z,t) € [0,1] x [0, Tp], where C' depends on A, B, M, é1, ¢, , B, and the initial data.
(B) The following equations hold:
e =0, 0,Q + a*Q?*d,u = 0, for a.e. (x,t) € (0,1) x (0,Tp),

(¢, Q)(x,0) = (co(x), Qo(x)), for a.e. z € [0,1],

To 1
/0 /0
1

—|—/ uop(z,0)dr =0,
0

(;1 2
upr + <P<c, Q) — v2g(cQ) — uh(cQ) + j(cQ) - ”(a—) - E(c@)ux) %] du dt

l

for any test function ¢ € C§° ([0,1] x [0,Tp)) (for boundary condition (2.60), ¢ € C'{)’O((O, 1] x
[07T0)))

Remark 3.1. Denote p = a*%, then from Theorem 3.1, we get a weak solution (c,p,u) on
[0,1] x [0,T0] to (2.52), (2.55) and (2.53) or (2.54).

3.2. Global weak solution. If é; = 0 in the general slip law (2.16), the system (2.58) becomes

Ct = O,
Qi +a*Q%u, =0, (3.65)
up + [P(C,Q) — u29(cQ)]$ = [E(cQ)uz]z, z € (0,1), t > 0.

System (3.65) is supplemented with initial data
(C7Q7u)(x’0) = (CO,QO,UO), (366)

and boundary condition

u(0,t) =0, ¢(1,t) = Q(1,t) = 0. (3.67)
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Main assumptions:

B1¢% <o < A19%, a >0,
o1 3a < 3a
Bo7=1¢1 < Qo < Agi,

1 2 ~y—1
Uy (1 —c0)"Qq
/o<2+ 1) )Sé’

(coQ0) F uos € L2, @' P|(cf T QR)al? € LY, ¢8R, € L,

(3.68)

and

3a’ (3.69)

v>max{f+2, 1448, 22 | 1} 4> 185 2
0<B<% a(B+1)<1, ad4B+1) <2, a(4B—1) <1,

where Ay, A>1, By, B<1 and ¢(x) = 1 — x. The coefficient of the lower bound of Qg related
to 67T naturally comes from (3.68)3.

Theorem 3.2. Under the assumptions of (3.68) and (3.69), for any given T > 0, there exists a
positive constant C(T) such that (3.65), (5.66) and (3.67) admits a unique weak solution (c, Q,u)
on [0,1] x [0, T] with the same regularities as (A) in Theorem 3.1, satisfying the following estimates

1 2 _ -1 B %1 3o ~ 3a
/ (u + (]'C)Q) dm é 25, and B(S ¢T S Q é 2A¢T7
0 2 a*(y—1)

and

1 t 1
] oo +/ (Eui + 6P ( TR + qb(ﬁ_Q)an) da +/ / u? deds < C,
0 0 J0O

for (x,t) € [0,1] x [0,T), provided § < C(T). Here C' may depend on Ay, By, A, B,6,a, 83,y and
the initial data. Moreover, the following equations hold:

0ic =0, 0;Q + a*Q?*0,u =0, for a.e. (z,t) € (0,1) x (0,77,

(¢, Q)(x,0) = (co(z), Qo(x)), for a.e. x € [0,1],

/ ' / up + (Ple,Q) — v29(cQ) — B(eQ)uy) e drdi + / (e, 0) do =0,
for any test function ¢ € C§°((0,1] x [0,T)).
Remark 3.2. Denote p = a 1ch’ then from Theorem 3.2, we get a weak solution (c,p,u) on
[0,1] x [0,T] to (2.52), (2.53) and (2.55) with ¢ =0 (i.e., h=3=0).
4. LOCAL EXISTENCE OF WEAK SOLUTIONS

4.1. A priori estimates. Assume that the solutions are smooth enough in [0, 1] x [0, T]. Then we
get a crucial proposition:

Proposition 4.1. Under the conditions of Theorem 3.1, assume that the solutions are smooth
enough, and that

1 t 1
?ﬁ‘ < Q <2B¢* and / Eu? +/ / u? < 2M, (x,t) € [0,1] x [0,7] C [0,1] x [0, 7], (4.1)
0 0 JO

then
?ﬁ QS?gb%and/Eu +//u <7 (4.2)
0

for (z,t) € [0,1] x [O,T], provided that T is small enough which is determined by (4.10), (4.16)
and (4.28).
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Suppose Proposition 4.1 is true, we get a useful corollary as follows:

Corollary 4.1. Under the conditions of Theorem 3.1, assume that the solutions are smooth enough
in [0,1] x [0, T], we get

A 3a 3o 1 t 1
3¢ <Q<2B¢ T and / Eu? +/ / u? < 2M, (z,t) €[0,1] x [0,T], (4.3)
0 0o Jo
provided that T is small enough which is determined by (4.10), (4.16) and (4.28).

Proof. Since

Qo 1E 2 <M
S~ S ; (coQo)up, < M,

by the continuity of the solution, then there exists a constant 7} € (0,7 such that

A
inf Ci > —, sup Qa < 2B, and/ Fu? +/ / u? < 2M, (4.4)
z€[0,1] ¢T 3 z€[0,1] (bT 0

for any t € [0,71]. We denote the maximal time for (4.4) by Ty € [T1,T]. If Ty = T, we have
nothing to do. For otherwise, we get from (4.4) and Proposition 4.1

A B 1 t 1 M
inf @ > sup % < 3—, and Eufj + / u? < 3—,

z€[0,1] ¢% 5 z€[0,1] (b 4 2 0 0

for any ¢ € [0,Ty) C [0,7]. This together with the continuity of the solution w.r.t. time in [0, 7]
implies that (4.4) is also valid at Ty, which is contradicted with the definition of T,. Therefore,
we get T = T, which shows that (4.3) holds. O

Let’s go back to the proof of Proposition 4.1.

Proof of Proposition 4.1:

The proof of this proposition is divided into the following lemmas.

Lemma 4.1. Under the assumptions of Proposition 4.1, it holds that

/ u +/ / Eu2u2<Cl(l+M3)T+/ ug, (4.5)

forte [O,T] where C; = C1(A, B).

Proof. Multiplying (2.58)3 by 4u3, integrating by parts over [0, 1], and using Cauchy inequality,
we have

— u—|—12/Eu

12p(81)2 g1
1 / [P(e.Q) — (@) — uh(cQ) + j(c@)luu, — PN [ i

Q

1 1 1 1
S/ Eu?u? + Cl/ wrQP Pl C’l/ ut (14 u?)(eQ) P + Cl/ u?(cQ) Pt
0 0 0 0

This together with (4.1), ¢ = ¢p and Young inequality implies

dt

where we have used

d 1 1
et / Eu?u? <Chlul3 e + Oy (Julf= + 1), (4.6)
0 0

a6y —48 —4)
4
ie,y> 2’6+2 5o and a(B8+1) <1 (Note that a > 0 and a(5+1) < 1 concludes % -2 <.
Thus from (3.64) we have y>1>0> 25+2 2. Here Cy = C1(4, B).

>—land a(f+1) <1,



12 EVJE AND WEN

Claim:

ull e < Cy + CoM3. (4.7)
In fact, for boundary (2.61), we obtain from (2.58)3

1 1
/ u :/ ug-
0 0

1 1 1
|u(x,t)|§|/ u0|—|—|u—/ u|§Cl+/ | < Oy + Cy M3
0 0 0

This deduces

where we have used Hélder inequality, (8 + 1) < 1 and (4.1).
For boundary (2.60), we have

x 1
\u(x,t>|=|/ uy|§/ lug] < Cy + CLME.
0 0

Substituting (4.7) into (4.6), we get

1 1
4 ut + 11/ Eu?u? < Cy (14 M?). (4.8)
Integrating (4.8) over [0, t], we get (4.5). O
Lemma 4.2. Under the assumptions of Proposition 4.1, it holds that
3B  za
Q S TQSST) (49)
for (x,t) € [0,1] x [0,T], provided T is sufficiently small such that
3B\"”
BP + VMTC, +C,T(14+ M) < <2> : (4.10)
Proof. It follows from (2.58), (2.58)3 and (2.58); that
CB+1Q5 5 '
(04 (b)) +1PE@) ~ 20(eQ) — u(cQ) + () =0 (11)
t

Integrating (4.11) over [z, 1] x [0, ], we have

t
Qa1
0 (4.12)

t 1 t PN t
_ B+l * * 2 % C1y2 (O[? — I)CQ
=@+ as [ [ wrars [ (0@ +une) —atsp( )2 [ S0

Multiplying (4.12) by ca(ﬂﬂ), and using (2.58);, Holder inequality, (4.1) and (4.7), we have

N 1
Q% <Qf + ° BV2MT ¢z N CiT(1+ M)p>  CiT¢*
B+1 B+l A+1
Co Co €o
a(B+1) a(B+1) a(B+1) (4.13)

<BP¢* " 4 VMTCi¢:~ "5 + O\ T(1+ M) "5 + C T "7
< (BB +VMTC, + CiT(1+ M)) ¢°T,
where we have used
e UL Sl = s
7 2 and 1 >
%, and also have used

1—2<Cio. (4.14)

)

a(B+1) S 3af 3a—aB _ 3aB
4

IN | =

ie,daf+a<2and f
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In fact, for boundary condition (2.60), by the definition of ¢, (4.14) is obvious, so it is for boundary

condition (2.61) and z € [1,1]. If z € [0, 1], for boundary condition (2.61), we can integrate (4.11)
1

again over [0, z] x [0,t], and get (4.12) with /

arguments as (4.13) will produce z instead of 1 —z. Then z < C;¢ for z € [0, 3]. In the following,
we do not mention it again when we use (4.14) for boundary condition (2.61), for brevity.
Since 8 > 0 from (3.64), we may choose T' > 0 small enough such that

xr
ugs replaced by / ug. Then, using some similar
0

B\?
BP + VMTC, + O1T(1+ M) < (32) .

This combining (4.13) implies
3B¢t
5

Q<

Lemma 4.3. Under the assumptions of Proposition 4.1, it holds that

1 t ol
M
/Eui—i—/ / u§§3—7 (4.15)
0 0 Jo 2

fort € [0,T), provided T is sufficiently small such that (4.10) and

M
Ci+ 0 (1+MHT < —

% (4.16)
are satisfied.
Proof. Multiplying (2.58)3 by u,, and integrating by parts over [0, 1], we have
1 1
1d
u? + —— Fu?
/0 t2dat f,
d [* , pi(&)? 1t
=5 [P et — Q) + o) - 2w+ 5 [ @)
t Jo Q 2 Jo
1 1 1 - (4.17)
—/ Ptuw+/ [qu(CQ)]tuer/ [Uh(CQ)]tuw_/ [ (c@)]rua
0 0 0 0
d [t , (&) ] °
== P —u?g(cQ) — uh(cQ) + j(cQ) — —2— | uy + Zli.
0 L Qg ] i=1
For I, we have
1 * 1
g :ﬂJrl/ CﬁJrlQBQtui — _a (6+ 1)/ CB+1Qﬁ+2ui
2 Jo 2 0
AP (4.18)
2 0
where we have used (2.58)5.
Note from (2.58)3 and (2.61) (or (2.60)) that
by (0f = DeQ (7
Eu, = P(c, Q) — u® —uh +?2@7+/. 4.19
uy = P(c, Q) — u’g(cQ) — uh(cQ) PZ(CO) afarteq) T U (4.19)

Substituting (4.19) into (4.18), and using Holder inequality, (4.7) and Cauchy inequality, we have
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2

1 1 1
L gé/ u? 4+ Cy (/ ¢5Qu;i> +C1(1+M)/ cQu?
0 0 0

2

1 1 1 1
55/ u? + C4 (/ ¢%c—5—1Q—5Eu§> +01(1+M)/ cPQYPEu?
0 0 0

1 1
SE/ ui + Cy(1+ M)M,
0

where we have used (4.1),

1 daf + «
7> P S
2 4 0 an 4 ’

ie,daf+a<2and < %.
For Iy, we have

1 1
I =~ ”y/ (1-0)"Q" ' Quu, = va*/ (1—¢)Q7 2
0 0
1
=va’ / (1- ) P7Q" Bu} < C1M,
0
where we have used
w >0,

1 =

ie., v > %.

For I5, using Cauchy inequality, (4.1) and (4.7), we have
1
B <01 [ huuig(eQ)] + u?leQul]
0
1/ 1
gf/ u?—i—Cl(l—&—M)/ cQ*u?
6 Jo 0
1
<= / ul + Oy (1+ M)2
6 Jo
Similarly, for Iy and I5, we have

1
I4+I5§6/0 uf +C1(1+ M)2

(4.20)

(4.21)

(4.22)

(4.23)

Substituting (4.20), (4.21), (4.22) and (4.23) into (4.17), and integrating the result over [0,¢] for

t < T, we have

Crp 1 p(&)?
| [ [ me <[ |p-igeQ) - unc@ +i@) - L2 |
0o Jo 0 0 Qg
+Cy(1+ M)T + C,
where
! pi(£)?
Co=M =2 [ | Py~ ubg(co@u) — uohleaQo) + seoQa) = “ 2 | .
0 l

By (4.17) and Cauchy inequality, we have

(4.24)
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t el 1 1t 1
/ / u? +/ Eu? Sf/ Fu? + Cl/ Q> P-le=h1
o Jo 0 6 Jo 0

1
+Cl/ (ut 4+ u? +1)(eQ) P + C1(1 + M)*T + Cy (4.25)
0
1/t 6M
36/ Bu? + - tO+ Ci(1+ M*)T,
0
where we have used v > 25+2 — &, 8<1,(4.5) and (4.1).
Thus,
bt 5 [ 6M
/ / e ,/ Bu? <0y + 225 + Oy (1 + MP)T. (4.26)
0 JO 6 0 5

Taking M sufficiently large such that
Cy+Ci(1+M*)T < %,
for some small 7. This completes the proof of Lemma 4.3. O
Remark 4.1. Note that the L* (instead of L?) estimate of u in (4.5) plays a crucial role in (4.25).
Lemma 4.4. Under the assumptions of Proposition 4.1, it holds that
Q> §¢%’ (4.27)

for (z,t) € [0,1] x [0,T), provided T is sufficiently small such that (4.10), (4.16) and

T + (L VAT + VAT < (4.28)

are satisfied.

Proof. It follows from (2.58)5 that

d ¢% o e _ L e
£<?) = —Q Qt(b 1 =a Ux(b 4., (429)
Integrating (4.29) over [0, t], and using (4.19), (4.1), o <1 and (4.7), we have

STW % ¢ 3a Ey t Sa
¢ :¢ + a*/ O T u, = (bi + a*/ ¢%(CQ)—(5+1)EU
Q 0 Qo 0

©-
S

C1

+a/0¢ (cQ) " 1( (¢, Q) — u?g(cQ) uh(cQ)+p(0)2057(1&7”@)Jf/1 )

O
S

=

o +OTY ¢ 0+ 4 g / 6% (cQ)7! (‘“h(cQH /1U>

% Ci T 55— L 0y (1 4+ VM)TF ¢ + OV MT 265 6P+,
Let 3 1 3o 3o
A g0 2 paz0 14X a@inzo

ie., vy > 45;'1, b < % and «a(48 + 1) <2, since a > 0. Then, taking T small enough such that
1
CiT+Ci(1+ VM) T+ CiVMT < T
we get (4.27). O

From Lemmas 4.2, 4.3 and 4.4, we end the proof of Proposition 4.1.
Next, we derive more estimates needed for the compactness arguments of the next section where
construction of a weak solution is shown.
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Corollary 4.2. Under the assumptions of Theorem 3.1, it holds that

Ju(, )z < Co, (4.30)
and

[tz (D)L < Ca, (4.31)
fort €[0,T] and some r € (1,2), where C2 = C2(A, B, M).

Proof. (4.30) can be obtained by (4.7). In order to get (4.31), note that a(8 + 1) < 1, then
there exists a constant r € (1,2) such that

2—r

a(f+1) <
This together with (4.3), (4.15) and Hélder inequality deduces

1 1 i 1 5,01 N T
/ |um|T:/ E2|um|”E2§</ Eui) (/ Em) < Os.
0 0 0 0

O
Corollary 4.3. Under the assumptions of Theorem 3.1, it holds that
1
| oemqi<cn (432)
0
fort e [0,T].
Proof. (4.32) can be obtained by (2.58)3 and (4.15). More precisely,
1 1 1
/ $F-2002 <C, / $B=D001,2 — ¢, / B2 1B 35 2
0 0 0
<Cy /1¢(ﬁ_2)a¢_(1+45>a¢3a<3ﬁ)EuQ
0
1
:CQ/ Eui S CQ.
0
O
Corollary 4.4. Under the assumptions of Theorem 3.1, it holds that
1
/ Q2. 1) — Q(z, )2z < Calt — 5|2,
0 (4.33)

1
/ |u(z,t) — u(w,s)\2dx < Coft — s,
0

fort,s €10,T).

Proof. (4.33) can be obtained by (4.32), (4.15) and Hélder inequality. More precisely, without
loss of generality, we assume s < ¢t. Then

1 1
_ 27 _
and

/01 lu(z,t) — u(z, s)|*dz = /01

Lemma 4.5. Under the assumptions of Theorem 3.1, it holds that

1 t ol
/ ¢1—@ﬁ|<cﬁ+%2ﬂ)zl2+/ / ¢ (L= e QUTITEITIQL < O, (4.34)
0 0o Jo

fort e [0,T).

t 2 1t
| Qetwoyie do< =) [ [ 1Qetr e dedn < Cale - o
s 0 s

t 2 1 pt
/ we(e, €)de| dr < (i - 8) / / e (. €)2dédz < Colt — s
s 0 s

O
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Proof. Multiplying (4.11) by (CBT[;QB )e®'~*8, and integrating by parts over [0, 1], we have
1d N CﬁJrlQB
R
2dt B
AH1QB 1 AP
= — 1_aBu ¢ Tr / 1—C¥ﬂ x P C,Q x
[ oru o - [ e a) .
1 AH1Q8 1 CARYOL :
c c
+/ l—aﬁimUQ c z+/ l—aﬂixuhc .
o @ + [0 () Q)
1 B+10B 5
e (9 i), = ST
| ot i, S
For II;, using Cauchy inequality, we have
1 B+1 B 1
II < 02/ ¢1*aﬁ\(¥)x|2 +02/ uy. (4.36)
0 a*p 0
For I, we have
a cﬁHQﬁ .
= [ 600 - 90, - ()]
e / gl p (365“62’3_1% +(B+1)c’e,Q) [(1 - 0)Q]" Qx(1 — ¢) — ¢, Q]
0
1 1
—— 2L [Lomera gty LED [ gieres2gin - oyt
a” Jo a*p 0
1
-5 [ - o (1= (54 1) - .
0
This, together with Cauchy inequality applied to the last term and the fact ¢ = ¢g, gives
1n < Q2GR 4 € / PR (1 - co) 2T
1)
ﬁ"’ / ¢1 aB B c2 Qﬁ+’y(1 _CO) -1 (4.37)
< l/ PP (1 — ) QHI2AIQ2 4 .
2a* 0
For II5, using (4.7), (4.3) and Cauchy inequality, we have
1 1 1
I <Cy [ 6| HQPLE 1 Co [ 6B @) 4 Co [0 (eQP
o o 0 (4.38)
<Co [ 9T +Co [ 9 (eQLP + o
0 0
Since
B+10)8 1
0 21N (5 o
BePT1QA—1 e
we have

1 1 1
/ ¢ Q). |* <Co / ¢ Q% + Cy / ¢TI Q;
0 0 0
1 1
§C2/ ¢1_aﬁ|(cﬁ+lQB)w‘QC_QﬂQQ_Qﬁ+Cg/ (bl—oz,BQQC%x (440)
0 0

1
<c, / $1B (P TIQY), 2+ O,
0
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where we have used § < % and the fact ¢ = ¢g.
Substituting (4.40) into (4.38), we have

1
Il < G / 6198 (PH108), 2 + O (4.41)
0

Similar to II3, for I14 and II5, we have

1
I+ 115 < 02/ HP(PTLQP) L) + O, (4.42)
0

Putting (4.36), (4.37), (4.41) and (4.42) into (4.35), and using (4.15) and Gronwall inequality, we
get (4.34). O

Corollary 4.5. Under the assumptions of Theorem 3.1, it holds that

1
0
fort e [0,T].
Proof. (4.43) could be obtained by (4.39), (4.34) and (4.3). More precisely,

1 1 118 1
(51Q8), | Qe |
Qu] <Cs / e Qal |, [ 10|
/0 @] o TRt 0 ¢
1 3a(l1—B)—a(B+1) 1 a
<G / P I (81 8) | 4 / 6% [co|
0 0

1 1
a(1—28) sa-4  d-a
sca/ 63 |<cﬁ+1Qﬁ)z|+02/ 62 655 |co|

o ([[ormenent) ([ e ([[omsmt) ([)

SCQa

where we also have used ¢ = ¢, Hélder inequality, ¢'~ % |co.|? € L', @ > 0 and 3 < 1. O

4.2. Construction of weak solution. For boundary condition (2.61), one can use some argu-
ments like in [29, 30, 4, 31] and references therein to construction a weak solution to (2.58). Here
we only sketch the construction of weak solution to (2.58), (2.62) and (2.60). To do this, we use
the line method like in [15, 24] which need to be slightly modified. More precisely, we consider
systems of 3N ordinary differential equations when N goes to infinity:

%cgi—l(t) =0,

k k
d Nk k QUg; —Ugi_o
Ein—l +a*(Q3;_1)* k2 2 =0,

d, k P(C§i+1»Q§i+1)*P(C§i71:Q§i71) (u§i+2)Qg(c§i+lQl2ci+l)7(“‘1261')29(612%—IQIQCi—l) (444)
dt“2z + F k
“2z+2h(“2z+1Q21+1) “21}‘("21 1Q21 1) + ((‘2L+IQ2Z+1) j(clgi—ngi—l)
& &
= ;%2 [E(02i+1Q2i+1)(u§i+2 - “gz) - E(CQi—ngi—l)(ugi - ugi—Q)] , >0,
fori=1,2,...,N, where k = 5 N i and the boundary conditions are
ug(t) =0, (chny1, Qsny1)(t) =0 (4.45)

The initial data is given as

c5i-1(0) = co ((QZ -1 %) )
Q5_1(0) = ( 1)%), (4.46)
u.(0) = uo(ik), i =1,2,..., N.
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When i = N, we regard some terms related to usn 4o in (4.44)5 as

k 2k k k k k k k k
(U2N+2) 9(C2N+1Q2N+1) = u2N+2h(02N+1Q2N+1) = E(02N+1Q2N+1)(U2N+2 UQN) 0.
In the following, we will use (co;—1,@Q2i—1,uz;) instead of (clgi_l,Q’gi_l,ugi) when it will not
cause any confusion.

Proposition 4.2. Under the assumptions of Theorem 3.1, if

3

géf’ ((2Z - 1)5) N < Q21 <2B¢ <(21 - 1)];) N , and

N (uk y p (4.47)
E(ck,_, Q5 2 212 +/ —ug|?k < 2M,
; ( 21—1@21—1) 0 Zl ‘dS 2 | =
for (z,t) € [0,1] x [0,T%] C [0,1] x [0, T*], then
3a 3a
A B B 4
4.48)
N k (
M
ZE(Cgi—1Q§i—1) (v = um 2) / |*U21| k< 377
i=1
for z € [0,1] x [0,T*], provided that T* is small enough.
Corollary 4.6. Under the conditions of Theorem 3.1, we get
3a 3a
A Ea T
(4.49)

al k k (ulgz u2z 2 d 2
;E(Cztiziq) / z; \£U2i| k <2M,
for x € [0,1] x [0,T*], provided that T* is small enough.

The proof of Proposition 4.2 is divided into the following discrete version of Lemmas 4.1, 4.2,
4.3 and 4.4, i.e., Lemmas 4.6, 4.7, 4.8 and 4.9.

Lemma 4.6. Under the assumptions of Proposition 4.2, it holds that

k

(ng - u2i72)2
Zugzk + ZE Coi1Qai—1)(ud; + usiugi_o + u3,; 2)—kz

(4.50)
<Ci(1+ M*T + Z[uo(@'k)]‘*k,
i=1
fort € [0,T*], where Cy = C1(A, B), provided that T* is small.
Lemma 4.7. Under the assumptions of Proposition 4.2, it holds that
3a
Qair < §¢ ((m’ - 1)’5) ", (4.51)
fort € [0,T%), provided that T* is small.
Lemma 4.8. Under the assumptions of Pmposition 4.2, it holds that
EN:E(Clzctilzcifl) G Uzz 2) / 2i|2k < %, (4.52)

i=1
fort € [0,T*), provided that T* is small.
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Lemma 4.9. Under the assumptions of Proposition 4.2, it holds that

3a
A ) kY *
Q2i-1 > §¢7 ((Ql - 1)2) ;
for (z,t) € [0,1] x [0, T*], provided that T* is small.
Corollary 4.7. Under the assumptions of Theorem 3.1, it holds that

sup |ug;| < Cy,
1<i<N

and

U2; — U2;—2

kSOQa

i=1

fort € [0,T%] and some r € (1,2), where Cy = Co(A, B, M), provided that T* is small.

Corollary 4.8. Under the assumptions of Theorem 3.1, it holds that

N k (B—2)c
>0 ((% - 1>2> 0:Qai-1 [’k < Cs,
i=1

fort € [0,T*], provided that T* is small.

Corollary 4.9. Under the assumptions of Theorem 3.1, it holds that
N

Z |Q2i1(t) — Qai—1(s) [’k < Cat — s|?,

i;l
Z ugi(t) — uai(s)|*k < Calt — s,
i=1
fort € [0,T*], provided that T* is small.
Lemma 4.10. Under the assumptions of Theorem 3.1, it holds that

> =D g, - driat P <

k 2i41 Coi—1Wai—1

i=1
for t € [0,T*], provided that T* is small.

Corollary 4.10. Under the assumptions of Theorem 3.1, it holds that

N
Z |Q2i+1 — Q2i—1] < Co,

i=1
or t €10, T, provided that T* is small.
f 0, 7%], p

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

From the proof of Proposition 4.1, we know that there exists a Ty > 0 independent of k£ and
determined by (4.10), (4.16) and (4.28), such that T* > Ty. Similar to some arguments in [24],
we define the sequence of approximate solutions (cg, Q, ug) for (z,t) € [0,1] x [0, Ty] as follows:

cr(x,t) = coi—1(t),

Qr(w,t) = Q2i-1(t),

up(z,t) = % [(z — (1 — D)k)ugi(t) + (ik — x)ugi—2(t)],
for (1 — Dk <z <ik,i=1,2,...,N. A direct calculation implies
Ugi(t) — u2i—2(t)

8xuk(x7t) = A 3

for (i — 1)k <z <ik,i=1,2,...,N. Then by using Helly’s theorem and some similar arguments
as those in [24], we get a weak solution to (2.58), (2.62) and (2.60) on [0,1] x [0,Tp]. With the
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regularities, we can use the standard methods (see for instance [36] and references therein) to get
the uniqueness of the solution. We complete the proof of Theorem 3.1.

5. GLOBAL EXISTENCE OF WEAK SOLUTION WITH SMALL DATA
Here is a crucial proposition in this section:

Proposition 5.1. Under the assumptions of Theorem 3.2, for any given T > 0 (not necessarily
small), there exists a positive constant C(T') such that if

| (5.1)
BCZ 0% < Q< 246%, in 0,1] x [0,1] € [0,1] x [0,7],
then
i (= ) (5.2)
Byt
: g0 Q<—¢47 [0.1] > [0, T3],

provided 6 < C(T) which is determined by (5.8), (5.12) and (5.81).
Similar to the proof of Corollary 4.1, based on Proposition 5.1, we get the following corollary:

Corollary 5.1. Under the conditions of Theorem 3.2, assume that the solutions are smooth enough
in [0,1] x [0,T], we get

1/,2 1— c)rOr-1 BS7T s ~ 3a
/ LU= o5 and B % < 0 < 240, (5.3)
o \2 a*(y—1)
for (z,t) € [0,1] x [0,T], provided 6 < C(T) which is determined by (5.8), (5.12), (5.20), and

(5.31).

Proof of Proposition 5.1:

The proof of this proposition is divided into the following lemmas.

Lemma 5.1. Under the assumptions of Proposition 5.1, it holds that
1/,2 1
1O
/<u+( C)Q ) //Eu <2 (5.4)
0 2 (v -

Proof. Multiplying (3.65)3 by u, integrating by parts over [0, 1], and using (3.65)2, (5.1), the
fact ¢ = ¢y and Holder inequality, we have

2dt/ " +/ B —/ [P(e, Q) — u?g(cQ)]ua
< - % ; m +C3 (/01 Eui)é (/Olu‘lclﬁQlB)% (5.5)

d 1(1_0)7627—1 1 ) % 1 ) %
<o [ Bz E -
<), e ro (] me) we ()

fort €0,T1].
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where 8 <1 and C3 = Cg(Al,/i). Note that

lull </01 |M|<(/01Eu§>é (/ Q) aﬂ)%
curt ([ ) ([ +=00)
<C,67 70D (/0 Eu> :

where we have used (5.1), a(8 + 1) < 1, Cy = C4(B1, B) and u(0,t) = 0.
Putting (5.6) into (5.5), we have

d (Y (u?* (1- C)’YQ’Y ! 1_B+1\32
il — gy x <
dt /0 < 9 + CL*(")/ — > / E’LL 05 46 / E’LLZ,

where C5 = C5(A1, A, Bl, B)
(5.4) can be obtained by (5.7), provided that

ie., y> f+2, and that

(451*%)5 Cs < é

(5.8)
O

Remark 5.1. From the proof of Lemma 5.1, it seems not working for ¢ > 0. For example, the

term uh(cQ) seems difficult to handle by the above approach.
Lemma 5.2. Under the assumptions of Proposition 5.1, it holds that
Q< ¥4,
2
for (z,t) € [0,1] x [0, T1].
Proof. It follows from (3.65)3 and (3.65)3 that

PHIQP
(04 (o)) +Ple.Q) —g(eQ)). =0

Integrating (5.10) over [z, 1] x [0, ], we have

t 1 t
CB+1Qﬁ+a*5/O (1_6)’YQ’Y =C€+1Q§+a*5/x (U_UO)"FG*B/O UQg(cQ).

Multiplying (5.11) by CE(B-H), and using (5.6), (5.1), (5.4) and the fact ¢ = ¢g, we have

da* B 3 a*
0 <ap+ I 5 [ g
0 0

t
<QP + C5VopE~ (’”>+05/ W2 PQ
0

3a—af

<Qf + CsV5™s: +C5//Eu 5—%¢

B+1 3

<(A)Pe*" + 05695 + 505

where we have used

1 a(B+1)

>
4 =

d ———— >
an 1 >

805 Ba—af _ s0s
4 4’

O |

(5.10)

(5.11)
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ie,daf+a<2and g < %, since a > 0. Note that § > 0 and v > § + 2, we may choose § > 0
small enough such that

-\ B
(A)P + CsV/5 + C56' 71 (32A> . (5.12)

Then, we get

Lemma 5.3. Under the assumptions of Proposition 5.1, it holds that

1 t 1
/Eu§+/ / u? < Cs, (5.13)
0 0 0

fort € [0,T1].
Proof. Multiplying (3.65)s by u;, and 1ntegrat1ng by parts over [0, 1], we have
1 1
1d 1
[y [ mz =t [Py g [ (@
2 dt 2 Jo
/ Prug + / u?g(cQ)lsuy (5.14)

%/ [P —u2g(cQ) uz—ﬁ-ZIII
For I11y, similar to (4.18), we have
I = — w /1 Fu,Qu?. (5.15)
0
Integrating (3.65)3 over [z,1], and using (3.67), we have
Bu, = P(e.@) - wg(cQ) + [ e (516)

Substituting (5.16) into (5.15), and using Holder inequality, Cauchy inequality, (5.6) and (5.1), we

have
1 1 2 * 1
<t / ui +Cs / ¢ Qu2 NGRS / Quiu’g(cQ)
4 Jo 0 2 0
2

1 [t 1
<3 [ o ( / ¢2cﬁ1QﬁEui)
0

5 / Fu? / cPQYPEY? (5.17)

2

1 ) ) 1
_1/ u? +C55_TB1 (/ Eui) +C55_% (/ Eui)
4 Jo 0 0

Lt -2 L ’
§f/ u; + Csd™ 71 /Euz ,
4 Jo 0
1 4af+a

a(3—48)
_—— > - 7
> 1 >0 and 7
ie,daf+a<2and < %, since a > 0.

A

where

>0,
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For II1I,, similar to (4.21), we have

1
I1I, :m*/ (1—c)cPrQ 7 PE?
0

1
<cy / B,
0

3y—48 -1 >0,
— 2

(5.18)

where

ie. ,Y> 45+1

For HI3, using Cauchy inequality, (3.65)2, (5.6) and (5.1), we have

1
[11, <Cs / [Jutieg(cQ)| + w2(cQe]] ]
0
2

1t 1 ) 1
g—/ uf + 05/ u?(cQ)? + 0567% (/ Eui) (5.19)
0 0 0

4

1t 1 1 2
S*\/ uf+C’55_%/ EuiJng,é_% (/ Eui)

4 Jo 0 0

18

Substituting (5.17), (5.18) and (5.19) into (5.14), and integrating the result over [0, ¢] for ¢t < Ty,
we have
2

t 1 1 1 s
/ / u? +/ Eu? §2/ [P —u?g(cQ)uy + C56~ 71 / (/ Eui) +Cs
0 Jo 0 0 o \Jo

1 1 1 1
Si/ Eu§+c5/ Q2V*ﬁ*1c*3*1+c5/ ut(cQ)' P
0 0 0

2

R 1
+cg,5—’i/ (/ Eui) + 05
0 0
1 [t 9 _BH1 B+1 1 9 2
S§ Eux+C’56 7*1/ Eu / u? + Cs0~ */ /Euz + C5,
0 0

where we have used (5.4), v > S + 2, Cauchy inequality, (5.1), (5.6) and 8 < 1. By using (5.1)
and the smallness assumption on

Cs0t 51 < (5.20)

%M—*

the second term on the right hand side can be controlled by the second term on the left hand side.
Thus,

2

//u + - /Eu <Csé 54:1/ </01Eui) + C5, (5.21)

where we have used (5.4) and v > 5+ 2.

Note from (5.4) that
/3+1
L E -5
st

Hence, combining (5.21), v > 8+2 and Gronwall inequality, it can be concluded that (5.13) holds.
O

Lemma 5.4. Under the assumptions of Proposition 5.1, it holds that
2B671¢F

Q= 3 ; (5.22)

for (z,t) € [0,1] x [0,T1].
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Proof. It follows from (3.65)s that
(08 g g —ao (523)
Integrating (5.23) over [0,t], and using (5.16) we have
0% _of / / 1561
+a Ty = —|— a PTQ Euy
Q@ o7
¢%¥ * 3a ~ 18 —B-1 2 ¢
= +a qb 1Q c P—u‘g+ Usg
Qo 0 1
<¢3Ta t

~ Qo

t T
—|—a*/ (bSTa(l —e)Q PP —|—a*/ P QPP </ us>
0 0 1
9 e

Qo
For IV;, we have

IV, < Cst, (5.24)
where we have used
3y —48 -1
725+1and%>0,
i.e.,’yzﬁ—i—land'yzw;l.
For IV;, we have
x
IVy =a"¢ Q' Pe ‘ﬂ‘l/ u—a'¢ T Q! e’ 1/ uo
1
+ﬁ/¢4@2ﬂ ‘“Q/
(5.25)
<C63 gy

—(a* 1+ﬂ/¢4 —Beo=B-1y, /:u

+IV2 +IV2 —i—IV2,
where
t T
IV = —(a")*(1+ ) / ﬁQ‘l‘”c‘”‘Q(Euz—P+u2g>/ h

0 1

t 30 x
IVYQZ _ (a*)2(1+5)/ ¢TQ_1_2B —2B8-2 29/ u,
0 1
and

t T
V3 = —(a*)*(1 + ﬁ)/ (1 — 0)7Q7_1_2ﬂ0_25_2/ u.

1
For IV, using (5.16), Holder inequality, (5.1) and (5.13), we have

IV} <Cs6~ 51 ¢ “‘”““// |us|/ Jul
<055% 1W+2[3¢1 (4ﬁ+1)a/ (/ u2) (5.26)
0 0

1 1428 (4841)a
<C5t262 71 (]51_ 2 .
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For IV, using (5.1), (5.4), (5.6) and Holder inequality, we have

IVé <C5($§_1'Y+721B(5_'v T+a— (4ﬁ+1)a/ / Eu

(5.27)
<C5(5§_3"537+12¢1+a 408
Similarly, for IV, we have
IV3 < Cstor g+ =22 (5.28)
Putting (5.26), (5.27) and (5.28) into (5.25), we have
IVy <C507 7ot g3 =257 4 Ogpdgr— 507 gl 57
+C5(5§_ 7_12¢1+a a8 —|—C5t5 ¢ +(3’y Sﬁ 2).1.
Thus,
i i
¢ _¢ 4 Ost 4 Cso3 50 g3 =2 | Oypiad— 550 -8
Q ~ Qo (5.29)
+ C5(Sg 37ﬁ+12¢1+o¢ 4a + O5t5%¢%+(3'y—8£—2)a
Multiplying (5.29) by % we have
S 1 3a
BBOUOT 2 oot Coat TS 4 oprhgd gt
30 3
+C56T ST Opteb TR (5.30)
gg + Csd7Tt + C583 7771 + C5t 3637777 4 C0% 771
+ Cgter T
where we have used
a(df+1) <2, a(4—1)<1, and 2+ (37— 88 —2)a > 0.
Taking ¢ sufficiently small such that
2 1 1 1
S+ CsdTTT + C50% ™51 + C5T363 77T + C585 51 + C5T62 71 < 1, (5.31)
where we have used ) ) 5 3 )
- > i, and — > p+ ,
2 -1 2 v—1
ie,y>1+4+4p and v > %—l—l.
By (5.30) and (5.31), we get (5.22). O

Remark 5.2. Note that it is the condition (5.31) that forces 6 to depend on time T > 0. It is
also interesting to note the term Cst on the left hand side of (5.29). This term is made small by
multiplying by a term of the form 6P for some appropriate choice of p. This illustrates one reason
why the §-dependence appears in the lower limit as seen in (5.22).

From Lemmas 5.1, 5.2 and 5.4, we end the proof of Proposition 5.1.
Corollary 5.2. Under the assumptions of Theorem 3.2, it holds that
[u(-, )]z < Ce, (5.32)
and
l[ue (-, t)|[r < Cs, (5.33)
fort € [0,T) and some r € (1,2), where Cs = Cs(6, A1, A, By, B).
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Proof. (5.32) can be easily obtained by (5.6) and (5.13). Following the proof of (4.31) one can
deduce (5.33). O

Corollary 5.3. Under the assumptions of Theorem 3.2, it holds that

1
| oenqi < (5.34)
0
fort e[0,T].
Proof. Similar to the proof of Corollary 4.3, (5.34) can be obtained by (3.65)2 and (5.13). O
Corollary 5.4. Under the assumptions of Theorem 3.2, it holds that

1
[ 1060 - @) < ol - s,
0 (5.35)

1
/ lu(z, £) — u(z, s)|2dz < Colt — s,
0
fort,s €0,T].

Proof. Similar to the proof of Corollary 4.4, (5.35) can be obtained by (5.34), (5.13) and Holder
inequality. O

Lemma 5.5. Under the assumptions of Theorem 3.2, it holds that

[ o@n@ne s [ [ ora-gareng <a, (5.36)
fort e [0,T].
Proof. Multiplying (5.10) by <u+ (CBHEQB )x> #'~*8 . and integrating by parts over [0, 1], we
have
1d 1 B+1HB
5% ¢1—aﬁ|u+(c *;2 )w|2
1—ap C’B—HQB :| 1— 04,8|: CB—HQ'B :| 2 (5'37)
/<z> o (2, /¢ 5| el
=Vi+ Vs
For V;, we have
— d ' 1704[3(1_0)762771 ! —af
‘/1——%/0@5 W+(1—aﬁ)/o¢ Pu
1
_ o (BB~ 5. 0\ (1 - 0] o —
5 [ o (5@ e+ 5+ 0@ (-] [@u1 -0 -0
d 1 ap(l—c)Q! ' ' V[ s -
- — apr T 4O P+C _ aB(1 — o\ YOV HB—2.8+1 )2
< [t o [ pra [ L [t

1
zﬁ / ¢ P Quea(1= o) IQ (1= 0)(B+ 1)”Q% — B Q7]

+ ﬂ+1 / ¢1 af ﬁC2Qﬁ+v( C)V 17
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where we have used (3.65)2, integration by parts, Cauchy inequality, (5.3), v > % and (5.32).
This together with Cauchy inequality, (5.6) and the fact ¢ = ¢o gives

/ proes 1= VQW e /lp o [ B
< “ + + uz
1 dt 1) 6 0 6 0
_ / pl-oB(1 — )waﬂ 2084102 (5.38)

1)
+Ca/ S1BR (1 — o) 2 5+ / pl-ab 2 Qﬁp

OlEl

For V4, using Cauchy inequality, (5.6), (5.4) and the fact ¢ = ¢o, we have
o R T DR ee) By (P R
<Co [ B2 [ 9@ 1y [ 9oy
0 0 0
1 1
+Co [ 0N PTQN(QL |+ Ca [ Bu?
0 0
1 1 1
gCG/ Eui/ ¢1—“5|(c5+1Qﬂ)z+u|2+Oﬁ/ Eu?
0 0 0
1 1
G [ B [ 04 1) 4 5 Q + ol
0 0
1 1 1
SCG/ Eui/ ¢1—O¢5|(05+1Q5)1 + U|2 + CG/ Eui
0 0

1 1
+CG/ Eui/ ¢1—QB|C COmQ'B+1|+C / Eu / ¢1 af 5+2Q,3 1Q2
0 0

Since

0, — &Q%: (B4 1)Qc
T BAHIQAT Be

we have

1 1 1
_ 2 B _ _ _ _
/ HIaB 20102 < G / G0 PQIP|(PHIQP), [ + C / SoBLQIE,
0 0 0

Then

1 1 1
VesCo [ Ba [ 6O, a4 G [ B, (5.39)
0 0 0

where we have used (5.3) and 8 < 2. Substituting (5.38) and (5.39) into (5.37), we get
PP (1—c)rQ" !
1-apB 2 1a/3 ’Y T +HB—2,8+1 )2
R G T = A R
<C6/ P—i—CG/ Eu? + Cs / PPt ( l—co)_2Q’Bc§71P

1 1

B"’l / (bl (xﬁ 2 COC QBP+C6/ Eui/ ¢1—a5|(cﬁ+1Qﬁ)w+u|2
—Co 0 0

1 1 1
SC(;/ P+Cg/ Eui -l-CG/ ¢1_%ngP+C6/ Eui/ ¢1_a’6|(65+1Q5)x +u|2,
0 0 0 0 0

where we have used (5.3).

(5.40)
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From (5.11) and the proof of Lemma 5.2, we get

t
/ P < Cg. (5.41)
0

By (5.40), (5.4), (5.41), (3.68) and Gronwall inequality, we get (5.36). O
Similar to (4.43), we get the following corollary.

Corollary 5.5. Under the assumptions of Theorem 3.2, it holds that

1
/0 Q| < Cs, (5.42)

fort e [0,T].

Following the similar arguments with the last section, we get a unique weak solution to (3.65)-
(3.67) in [0,1] x [0,T]. This completes the proof of Theorem 3.2.
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