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Abstract. In this work we study a compressible gas-liquid models highly relevant for wellbore
operations like drilling. The model is a drift-flux model and is composed of two continuity

equations together with a mixture momentum equation. The model allows unequal gas and
liquid velocities, dictated by a so-called slip law, which is important for modeling of flow scenarios
involving for example counter-current flow. The model is considered in Lagrangian coordinates.
The difference in fluid velocities gives rise to new terms in the mixture momentum equation that

are challenging to deal with. First, a local (in time) existence result is obtained under suitable
assumptions on initial data for a general slip relation. Second, a global in time existence result
is proved for small initial data subject to a more specialized slip relation.
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1. Introduction

The drift-flux model is one of the commonly used models nowadays for the prediction of various
two-phase flows. It was first developed by Zuber and Findlay [37]. It is used in chemical engineering
to predict flow in bubble column reactors, in petroleum applications to model various wellbore
operations related to drilling as well as to study production of oil and gas. More recently, it is also
used for the study of geothermal energy related problems and injection of CO2, to mention some
of the applications [27]. The drift-flux model remains one of the best available ways to quickly
estimate the void fraction in a two-phase system. A one-dimensional transient drift-flux model
can be written in the following form:

∂t[αgρg] + ∂x[αgρgug] = 0,

∂t[αlρl] + ∂x[αlρlul] = 0,

∂t[αgρgug + αlρlul] + ∂x[αgρgu
2
g + αlρlu

2
l + P ] = −q + ∂x[ε∂xuM ], uM = αgug + αlul,

(1.1)

where ε ≥ 0. The model is supposed under isothermal conditions. The unknowns are ρl(P ), ρg(P )
the liquid and gas densities, αl, αg volume fractions of liquid and gas satisfying

αg + αl = 1, (1.2)

and ul, ug velocities of liquid and gas, P common pressure for liquid and gas, and q representing
external forces like gravity and friction. In the following we assume that the liquid is incompressible
whereas the gas phase is described by the polytropic gas law

P = Cργg , γ > 1, (1.3)

where, without loss of generality, we choose C = 1. Since the momentum is given only for the
mixture, we need an additional closure law, a so-called hydrodynamical closure law, which connects
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the two phase velocities. This law should be able to take into account the different flow regimes.
A commonly used slip relation is in the form [37, 16, 6, 20, 1]

ug = ĉ0uM + ĉ1. (1.4)

Here ĉ0 and ĉ1 are flow dependent coefficients. ĉ0 is referred to as the distribution parameter and
ĉ1 to as the drift velocity. Various discrete schemes have been developed for computing numerical
solutions of the compressible two-phase model (1.1)–(1.4), see [22, 11, 26, 12, 5, 6, 2, 13, 23] and
references therein. It is well known that it is difficult to solve this model efficiently due to strong
nonlinear coupling mechanisms and challenges associated with transition to single-phase regions.
Therefore it is of interest to deepen the insight into the finer mechanism of this model, also from
a mathematical point of view. In particular, it is desirable to obtain a better understanding of
the effect from the slip law (1.4).

The main objective of this paper is two-fold:

• Discuss some mathematical properties of the model (1.1) when it is studied in combination
with the general slip law (1.4) where the coefficients ĉ0 ≥ 1 and ĉ1 ≥ 0 are assumed to
be constant. More precisely, we establish a local in time result guaranteeing existence of
weak solutions for this general case.

• Present a global in time existence result of weak solutions when we consider the slip law
(1.4) with ĉ1 = 0 but ĉ0 > 1. Note from (1.4) that ĉ0 = 1 and ĉ1 = 0 imply that ug = ul,
i.e., no relative motion between the two phases.

We obtain our results by considering the model in Lagrangian variables in a free-boundary setting.
The precise description of the model problem is as follows (we refer to Section 2 for a detailed
derivation of the model): First, we introduce the variables (c, ρ, u) given as

c =
m− k∗

ρ
, ρ = n+m− k∗, u = ug, (1.5)

where

m = αlρl, n = αgρg, (1.6)

and k∗ = ρl(1− 1/ĉ0) represents a minimal mass of liquid that must be present in order to make
the slip law well-defined. The model we study in this work takes the following form:

∂tc = 0,

∂tρ+ ρ2∂xu = 0,

∂tu+ ∂x[P (c, ρ)− u2g(cρ)− uh(cρ) + j(cρ)] = ∂x[E(cρ)∂xu], in 0 < x < 1.

(1.7)

with boundary conditions

u(0, t) = 0, ρ(1, t) = c(1, t) = 0, (1.8)

or

ρ(0, t) = ρ(1, t) = 0, c(0, t) = c(1, t) = 0, (1.9)

and with initial conditions

c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1], (1.10)

where c(x, t) = c0(x) = m0(x)−k∗

ρ0(x)
. Moreover, the different functions appearing in the mixture

momentum equation are given as follows

P (c, ρ) =
( [1− c]ρ

a∗ − cρ

)γ
, a∗ = ρl/ĉ0 (i.e. ρl = a∗ + k∗),

g(cρ) = k∗
cρ

k∗ + cρ
, h(cρ) = 2ρl

( ĉ1
ĉ0

) cρ

k∗ + cρ
, j(cρ) = ρ2l

( ĉ1
ĉ0

)2 1

k∗ + cρ
,

E(cρ) = ε(c, cρ)ρ =
[cρ]β+1

(a∗ − [cρ])β+1
.

(1.11)

Some observations:
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(i) The terms associated with the functions g(·), h(·), and j(·) appear when some relative
motion between the gas and liquid phase is allowed, i.e., when ĉ0 > 1 and ĉ1 > 0. For this
case we derive the local existence result given by Theorem 3.1.

(ii) If ĉ0 > 1 and ĉ1 = 0, then h = j = 0 but g > 0. For this case we derive the global existence
result given by Theorem 3.2 subject to a smallness assumption on the initial data. Note
that the parameter δ > 0 appearing in the characterization of initial data, as described in
(3.68), depends on the specified global time T > 0. Hence, this result cannot be used to
study the long-time behavior of the system in question.

(iii) If ĉ0 = 1 and ĉ1 = 0, then also g = 0 in (1.11). This corresponds to the no-slip case where
both phases move with the same velocity. This case has been discussed in a number of
works [7, 8, 9, 32, 33, 34, 35].

The results are obtained for the model (2.58) and (2.59) which is directly related to the above
model through the transformation (2.57). Hence, the results of Theorem 3.1 and Theorem 3.2
expressed in terms of the variables (c,Q, u) can be transferred to the model (1.7)–(1.11) described
in terms of (c, ρ, u). See also Remark 3.1 and Remark 3.2. The model with slip parameters ĉ0 > 1
and ĉ1 = 0 has been studied in [4] and [31] and local in time existence results have been obtained.
However, both the local in time existence result for the general slip where ĉ0 > 1 and ĉ1 > 0 and
the global in time result for the slip with ĉ0 > 1 and ĉ1 = 0 are new. The main techniques we
rely on are the energy method and the continuation method, combined with some rather delicate
estimates for the lower limit of masses.

• The central part of the local existence result is Proposition 4.1 which ensures that for a
sufficient small time period [0, T ],

A

3
ϕ(x)

3α
4 ≤ Q ≤ 2Bϕ(x)

3α
4 ,

∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ 2M,

where A,B,M are constants related to initial data and M is large enough. Here, Q(c, ρ) =
ρ

a∗−cρ and ϕ(x) = 1− x and α is a positive parameter characterizing the mass decay rate

at the right boundary where masses vanish. Corresponding to these estimates we have
that |u| ≤ C + CM1/2, see (4.7) of Lemma 4.1.

• Similarly, the heart of the matter of the global existence result is Proposition 5.1 which
guarantees the following estimates∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
≤ 2δ,

B̃δ
1

γ−1

2
ϕ

3α
4 ≤ Q ≤ 2Ãϕ

3α
4 ,

for a sufficient small δ(T ) for a global time T > 0 and where Ã, B̃ are constants related
to initial data. Most interestingly, there is a fine tuned balance between the smallness on
the energy estimate and the smallness of the lower limit of Q which results in an estimate

of fluid velocity of the form |u| ≤ Cδ−
β+1

2(γ−1)

(∫ 1

0
Eu2

x

) 1
2

, see (5.6) of Lemma 5.1. The

fact that the δ-parameter is allowed to appear in the lower bound of Q is exploited in the
proof of Lemma 5.4. However, the price to pay for this is that the other lemmas become
more difficult because fluid velocity involves a δ−1 type of term that must be controlled.
The key that is repeatedly used to prove these results is the smallness on the energy, as
expressed by Lemma 5.1. As commented before, the fact that δ(T ) depends on global time
T (see Remark 5.2) prevents from deducing anything about the long-time behavior of the
model. This is a consequence of the new term that accounts for non-equal fluid velocity.
For the no-slip case the long-time behavior of the gas-liquid model has been investigated
in [19, 10].

These estimates pave the way for deriving the required regularity on u and Q in space and time, see
Corollary 4.4 and Corollary 4.5 for the local result (Corollary 5.4 and Corollary 5.5 for the global
result), which are sufficient to prove convergence to weak solutions. Techniques that are used are
motivated by previous studies of single-phase Navier-Stokes, see for example [24, 18, 21, 28, 29, 3].
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The structure of the work is as follows: In section 2 we derive the model (1.7)–(1.11). In Section
3 the local and global existence results are presented together with their respective assumptions
on initial data and parameters. In Section 4 a priori estimates for smooth solutions for the
local existence result are derived. Then, by using the line method where the continuous system
is approximated by a semi-discrete, corresponding estimates are obtained for the semi-discrete
approximations. This allows for showing the convergence to limit functions that are shown to be
weak solutions. Section 5 is devoted to the study of the model with the slip where ĉ1 = 0. Various
global in time estimates are obtained under a smallness assumption on the initial data.

2. Derivation of the model

We set n = αgρg and m = αlρl in (1.1) and consider the model

∂tn+ ∂x[nug] = 0,

∂tm+ ∂x[mul] = 0,

∂t[nug +mul] + ∂x[nu
2
g +mu2

l + P (n,m)] = ∂x[ε(n,m)∂xuM ],

(2.12)

where the mixture fluid velocity uM is defined as follows:

uM = αgug + αlul, (2.13)

and where the pressure law P (n,m) and viscosity term ε(n,m) are given by

P (n,m) =
( n

ρl −m

)γ
, ε(n,m) =

(m− k∗)β+1

(n+m− k∗)(ρl −m)β+1
, γ > 1, β > 0, (2.14)

together with the constitutive relations

αl + αg = 1, ug − ĉ0uM − ĉ1 = 0, ρl = ρl,0, ρg = ρg(P ), (2.15)

where ĉ0 and ĉ1 are assumed to be constants. As will be explained in the following the slip law
ug − ĉ0uM − ĉ1 = 0 requires that the liquid mass is above a critical lower limit k∗, i.e., m ≥ k∗.
This information is taken into account in the viscosity coefficient ε(n,m). Similarly, the upper
limit for the liquid mass m ≤ ρl is also accounted for in the viscosity term.

We now want to rewrite the model (2.12). Our approach is inspired by the work [14]. Given
the slip relation

ug = ĉ0uM + ĉ1, (2.16)

we introduce α∗
g, α

∗
l given by

α∗
g =

1

ĉ0
, α∗

l = 1− α∗
g. (2.17)

In the following we will assume that
ĉ0 > 1, (2.18)

implying that α∗
g < 1. This is consistent with previous applications of the slip velocity (2.16) in

the context of gas-liquid and liquid-oil flow modeling where ĉ0 typically is ranging between 1.0
and 1.5. Moreover, in view of (2.16) it follows that

ug =
ĉ0αlul + ĉ1
1− ĉ0αg

=
αlul + ĉ1α

∗
g

α∗
g − αg

=
αlul + ĉ1(1− α∗

l )

αl − α∗
l

. (2.19)

It is implicitly assumed that αg < α∗
g (or equivalently, that αl > α∗

l ) for this slip law to be valid.
From (2.19), we get

αlul = ug(αl − α∗
l )− (1− α∗

l )ĉ1. (2.20)

Clearly,

mul = ρlαlul = ρlug(αl − α∗
l )− ρl(1− α∗

l )ĉ1 = ρlug(αl − α∗
l )− d = ug(m− k∗)− d, (2.21)

where the constants d and k∗ are defined by

d = ρl(1− α∗
l )ĉ1, k∗ = ρlα

∗
l , (2.22)

and recall that the liquid is incompressible, i.e., ρl=constant. Now, we introduce the notation

ρ = ρM − α∗
l ρl = ρl(αl − α∗

l ) + αgρg = n+m− k∗, (2.23)
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where
ρM = αgρg + αlρl.

Next, we introduce the variable c defined by

c =
m− k∗

ρ
=

m− α∗
l ρl

ρ
=

ρl(αl − α∗
l )

ρ
. (2.24)

We then apply (2.20) and (2.24) and derive the following relations:

m = cρ+ k∗, (2.25)

cρug = ρl(αl − α∗
l )ug = ρl[αlul + (1− α∗

l )ĉ1] = mul + ρl(1− α∗
l )ĉ1 = mul + d, (2.26)

according to (2.22). In other words, mul = cρug − d. Moreover, we have from (2.23), (2.24), and
(2.21)

1− c = 1− m− k∗

ρ
=

n

ρ
, (2.27)

ρug = (ρM − k∗)ug = nug + (m− k∗)ug = nug +mul + d. (2.28)

The model (2.12), by adding the two mass conservation equations, can be written in the form

∂tm+ ∂x[mul] = 0,

∂t[n+m] + ∂x[nug +mul] = 0,

∂t[nug +mul] + ∂x[nu
2
g +mu2

l ] + ∂x[P (n,m)] = ∂x[ε(n,m)∂xuM ].

(2.29)

Employing, respectively, first (2.25) and (2.26), then (2.23) and (2.28), the first and second equa-
tion of (2.29) can be rewritten such that we arrive at the following form for the system in question:

∂t[cρ] + ∂x[cρug] = 0,

∂tρ+ ∂x[ρug] = 0,

∂t[ρug] + ∂x[ρu
2
g] + ∂x[nu

2
g +mu2

l − ρu2
g] + ∂x[P (n,m)] = ∂x[ε(n,m)∂xuM ].

(2.30)

Here we also have used (2.28) again to rewrite the momentum equation. Noting that

nu2
g − ρu2

g = (k∗ −m)u2
g = ρl(α

∗
l − αl)u

2
g,

the mixture momentum equation of (2.30) can be written in the form

∂t[ρug] + ∂x[ρu
2
g] + ∂x[ρl(α

∗
l − αl)u

2
g +mu2

l + P (n,m)] = ∂x[ε(n,m)∂xuM ]. (2.31)

Now, we want to rewrite the last term on the left hand side in terms of the variables (c, ρ, ug).
Firstly, we observe that

n = (1− c)ρ, m = cρ+ k∗. (2.32)

Hence, the pressure law P (n,m) takes the form

P (n,m) =
( n

ρl −m

)γ
=
( [1− c]ρ

[ρl − k∗]− cρ

)γ
=
( [1− c]ρ

a∗ − cρ

)γ
:= P (c, ρ), (2.33)

where a∗ = ρl − k∗ = ρlα
∗
g. Secondly, we note that

ρl(α
∗
l − αl)u

2
g +mu2

l = αlρl[u
2
l − u2

g] + k∗u2
g. (2.34)

Next, we observe in view of (2.20) that

αl(ul − ug) = −ugα
∗
l − (1− α∗

l )ĉ1, (2.35)

αl(ul + ug) = ug(2αl − α∗
l )− (1− α∗

l )ĉ1. (2.36)

Multiplying these two relations we get

α2
l (u

2
l − u2

g) = −u2
gα

∗
l [2αl − α∗

l ]− 2ĉ1ug[1− α∗
l ][αl − α∗

l ] + ĉ21[1− α∗
l ]

2. (2.37)

Then we have

αlρl(u
2
l − u2

g) = −ρlu
2
gα

∗
l [2−

α∗
l

αl
]− 2ρlĉ1ug[1− α∗

l ][1−
α∗
l

αl
] + ρlĉ

2
1[1− α∗

l ]
2 1

αl
. (2.38)
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In view of (2.34) and (2.38) we get

G(n,m, ug) := ρl(α
∗
l − αl)u

2
g +mu2

l

= ρlα
∗
l u

2
g

[
−2 +

α∗
l

αl

]
+ ρlα

∗
l u

2
g − 2ρlĉ1ug[1− α∗

l ][1−
α∗
l

αl
] + ρlĉ

2
1[1− α∗

l ]
2 1

αl

= ρlα
∗
l u

2
g

[
−1 +

α∗
l

αl

]
+ 2ρlĉ1ug[1− α∗

l ][−1 +
α∗
l

αl
] + ρlĉ

2
1[1− α∗

l ]
2 1

αl

= k∗u2
g

[k∗ −m

m

]
+ 2ρlĉ1ug[1− α∗

l ]
[k∗ −m

m

]
+ ρ2l ĉ

2
1[1− α∗

l ]
2 1

m

= −k∗u2
g

[ cρ

cρ+ k∗

]
− 2ρlug

( ĉ1
ĉ0

)[ cρ

cρ+ k∗

]
+ ρ2l

( ĉ1
ĉ0

)2[ 1

cρ+ k∗

]
=: −u2

gg(cρ)− ugh(cρ) + j(cρ),

(2.39)

where we have used (2.32) and we have defined the function g(·), h(·), and j(·) as

g(cρ) = k∗
cρ

k∗ + cρ
, h(cρ) = 2ρl

( ĉ1
ĉ0

) cρ

k∗ + cρ
, j(cρ) = ρ2l

( ĉ1
ĉ0

)2 1

k∗ + cρ
. (2.40)

For the viscosity term ε(n,m) we have

ε(n,m) =
c(m− k∗)β

(ρl −m)β+1
=

c[cρ]β

(a∗ − [cρ])β+1
:= ε(c, cρ). (2.41)

Hence, setting ug := u, using (2.39) in the momentum equation (2.31), we obtain a gas-liquid
model of the following form:

∂t[cρ] + ∂x[cρu] = 0,

∂t[ρ] + ∂x[ρu] = 0,

∂t[ρu] + ∂x[ρu
2] + ∂x[P (c, ρ)− u2g(cρ)− uh(cρ) + j(cρ)] =

1

ĉ0
∂x[ε(c, cρ)∂xu].

(2.42)

We may absorb the constant 1/ĉ0 into the viscosity term ε without loss of any generality.

2.1. Lagrangian coordinates. Following the approach of the works [8, 9, 32], which in turn
is motivated by studies for the single-phase gas model, we suggest to study the model (2.42),
described in terms of the variables (c, ρ, u), in a free boundary setting.

∂t[cρ] + ∂x[cρu] = 0,

∂t[ρ] + ∂x[ρu] = 0,

∂t[ρu] + ∂x[ρu
2] + ∂x[P (c, ρ)− u2g(cρ)− uh(cρ) + j(cρ)] = ∂x[ε(c, cρ)∂xu],

(2.43)

with x ∈ (a(t), b(t)) and t > 0. Initial data are

ρ(x, t = 0) = ρ0(x), c(x, t = 0) = c0(x) =
m0(x)− k∗

ρ0(x)
, u(x, t = 0) = u0(x), (2.44)

for x ∈ [a0, b0] where a0 = a(t = 0) and b0 = b(t = 0). Boundary conditions are set to be as
follows:

u(a(t), t) = 0, ρ(b(t), t) = 0, c(b(t), t) = 0, (2.45)

or

ρ(a(t), t) = 0, c(a(t), t) = 0, ρ(b(t), t) = 0, c(b(t), t) = 0. (2.46)

Here a(t) and b(t), which separate the gas-liquid mixture and the vacuum like state corresponding
to ρ = 0 and c = 0, satisfy

da

dt
= u(a(t), t), a(0) = a0, (2.47)

and

db

dt
= u(b(t), t), b(0) = b0. (2.48)
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We can introduce Lagrangian coordinates by using the transformation (x, t) → (ξ, τ) given by

ξ =

∫ x

a(t)

ρ(z, t) dz, τ = t, (2.49)

observing that ∫ b(t)

a(t)

ρ(z, t) dz =

∫ b0

a0

ρ(z, t = 0) dz = constant = 1.

This implies that [a(t), b(t)] is converted into the fixed interval [0, 1]. Since

∂

∂t
+ u

∂

∂x
=

∂

∂τ
,

∂

∂x
= ρ

∂

∂ξ
,

we can transform (2.43) into the following form:

∂τ [cρ] + [cρ]∂xu = 0,

∂τρ+ ρ∂xu = 0,

ρ∂τu+ ∂x[P (c, ρ)− u2g(cρ)− uh(cρ) + j(cρ)] = ∂x[ε(c, cρ)∂xu], in 0 < ξ < 1.

(2.50)

In other words,

∂τ [cρ] + cρ2∂ξu = 0,

∂τρ+ ρ2∂ξu = 0,

∂τu+ ∂ξ[P (c, ρ)− u2g(cρ)− uh(cρ) + j(cρ)] = ∂ξ[ε(c, cρ)ρ∂ξu], in 0 < ξ < 1.

(2.51)

We now replace (τ, ξ) by (t, x). Moreover, an easy calculation shows that (2.51) corresponds to

∂tc = 0,

∂tρ+ ρ2∂xu = 0,

∂tu+ ∂x[P (c, ρ)− u2g(cρ)− uh(cρ) + j(ρ)] = ∂x[E(cρ)∂xu], in 0 < x < 1,

(2.52)

with boundary conditions

u(0, t) = 0, ρ(1, t) = c(1, t) = 0, (2.53)

or

ρ(0, t) = ρ(1, t) = 0, c(0, t) = c(1, t) = 0, (2.54)

and with initial conditions

c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1], (2.55)

where c(x, t) = c0(x) =
m0(x)−k∗

ρ0(x)
. Moreover, we have that

P (c, ρ) =
( [1− c]ρ

a∗ − cρ

)γ
,

g(cρ) = k∗
cρ

k∗ + cρ
, h(cρ) = 2ρl

( ĉ1
ĉ0

) cρ

k∗ + cρ
, j(cρ) = ρ2l

( ĉ1
ĉ0

)2 1

k∗ + cρ
,

E(cρ) = ε(c, cρ)ρ =
[cρ]β+1

(a∗ − [cρ])β+1
.

(2.56)

Hence, the model (2.52)–(2.56) is now consistent with the model (1.7)–(1.11).

2.2. Reformulation. For the analysis of the model (2.52), it will be convenient to introduce the
function Q(c, ρ) given by

Q(c, ρ) =
ρ

a∗ − cρ
, which corresponds to ρ = a∗

Q

1 + cQ
. (2.57)
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A similar approach was also used in [8, 9], however, for a different model with equal fluid velocities.
The following nice relation holds for Q(c, ρ):

Q(c, ρ)t = Qcct +Qρρt = Qρρt

=
( 1

a∗ − cρ
+

cρ

(a∗ − cρ)2

)
ρt =

a∗

(a∗ − cρ)2
ρt

= − a∗ρ2

(a∗ − cρ)2
ux = −a∗Q(c, ρ)2ux.

Hence, the system (2.52) can be replaced by
∂tc = 0,

∂tQ+ a∗Q2∂xu = 0,

∂tu+ ∂x[P (c,Q)− u2g(cQ)− uh(cQ) + j(cQ)] = ∂x[E(cQ)∂xu], x ∈ (0, 1), t > 0,

(2.58)

with

P (c,Q) = [(1− c)Q(c, ρ)]γ , E(cρ) = ε(c, cρ)ρ = [cQ]β+1 := E(cQ),

g(cρ) = k∗
cρ

cρ+ k∗
= a∗α∗

l

( cQ

α∗
l + cQ

)
:= g(cQ),

h(cρ) = 2ρl

( ĉ1
ĉ0

) cρ

cρ+ k∗
= 2
( ĉ1
ĉ0

)
a∗
( cQ

α∗
l + cQ

)
:= h(cQ),

j(cρ) = ρ2l

( ĉ1
ĉ0

)2 1

k∗ + cρ
= ρl

( ĉ1
ĉ0

)2( 1 + cQ

α∗
l + cQ

)
:= j(cQ),

(2.59)

since

cρ = a∗
cQ

1 + cQ
.

Boundary conditions for our system (2.58)–(2.59) are (in view of (2.57) and (2.53), (2.54)):

u(0, t) = 0, (c,Q)(1, t) = 0, (2.60)

or

(c,Q)(0, t) = 0, (c,Q)(1, t) = 0. (2.61)

Initial conditions are (in view of (2.57) and (2.55)):

c(x, 0) = c0(x), Q(x, 0) = Q0(x) =
ρ0

a∗ − c0ρ0
, u(x, 0) = u0(x), x ∈ [0, 1]. (2.62)

3. Main results

Throughout the rest of the paper, we denote Lp = Lp([0, 1]),

∫ 1

0

f =

∫ 1

0

f dx when it will not

cause any confuse.

3.1. Local weak solution. Main assumptions:

c̃1ϕ
α
4 ≤ c0 ≤ c̃2ϕ

α
4 , Ac̃2

c̃1
ϕ

3α
4 ≤ Q0 ≤ Bc̃1

c̃2
ϕ

3α
4 , c̃1 ≤ c̃2, α > 0,

ϕ1−αβ |(cβ+1
0 Qβ

0 )x|2 ∈ L1, ϕ1−α
4 c20x ∈ L1,∫ 1

0

E(c0Q0)u
2
0x dx ≤ M,

(3.63)

for some constant M > 0 determined by (4.16), and

α(β + 1) < 1, 0 < β ≤ 3

4
, α(4β + 1) ≤ 2, γ ≥ 4β + 1

3
, γ > 1, (3.64)
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where

ϕ(x) =

{
x(1− x), for boundary (2.61),

1− x, for boundary (2.60).

For boundary condition (2.60), we require the compatibility condition u0(0) = 0.

Theorem 3.1. Under the assumptions of (3.63) and (3.64), there exists a constant T0 > 0 such
that (2.58), (2.62) and (2.61) or (2.60) admits a unique weak solution (c,Q, u) on [0, 1] × [0, T0]
in the sense that
(A) we have the following regularity:

c,Q ∈ L∞([0, T0];L
∞) ∩ C1([0, T0];L

2), E(cQ)ux ∈ L∞([0, T0];L
2),

u ∈ L∞([0, T0];L
∞) ∩ C

1
2 ([0, T0];L

2).

Moreover, the following estimates hold:

A

3
ϕ

3α
4 ≤ Q ≤ 2Bϕ

3α
4 ,

∫ 1

0

Eu2
x dx+

∫ t

0

∫ 1

0

u2
s dx ds ≤ 2M,

and

∥u∥L∞ +

∫ 1

0

(
ϕ1−αβ |(cβ+1Qβ)x|2 + ϕ(β−2)αQ2

t

)
dx ≤ C,

for (x, t) ∈ [0, 1]× [0, T0], where C depends on A,B,M, c̃1, c̃2, α, β, γ and the initial data.

(B) The following equations hold:

∂tc = 0, ∂tQ+ a∗Q2∂xu = 0, for a.e. (x, t) ∈ (0, 1)× (0, T0],

(c,Q)(x, 0) = (c0(x), Q0(x)), for a.e. x ∈ [0, 1],∫ T0

0

∫ 1

0

[
uφt +

(
P (c,Q)− u2g(cQ)− uh(cQ) + j(cQ)−

ρl(
ĉ1
ĉ0
)2

α∗
l

− E(cQ)ux

)
φx

]
dx dt

+

∫ 1

0

u0φ(x, 0) dx = 0,

for any test function φ ∈ C∞
0 ([0, 1]× [0, T0)) (for boundary condition (2.60), φ ∈ C∞

0

(
(0, 1] ×

[0, T0)
)
).

Remark 3.1. Denote ρ = a∗ Q
1+cQ , then from Theorem 3.1, we get a weak solution (c, ρ, u) on

[0, 1]× [0, T0] to (2.52), (2.55) and (2.53) or (2.54).

3.2. Global weak solution. If ĉ1 = 0 in the general slip law (2.16), the system (2.58) becomes
ct = 0,

Qt + a∗Q2ux = 0,

ut +
[
P (c,Q)− u2g(cQ)

]
x
= [E(cQ)ux]x, x ∈ (0, 1), t > 0.

(3.65)

System (3.65) is supplemented with initial data

(c,Q, u)(x, 0) = (c0, Q0, u0), (3.66)

and boundary condition

u(0, t) = 0, c(1, t) = Q(1, t) = 0. (3.67)
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Main assumptions:

B1ϕ
α
4 ≤ c0 ≤ A1ϕ

α
4 , α > 0,

B̃δ
1

γ−1ϕ
3α
4 ≤ Q0 ≤ Ãϕ

3α
4 ,∫ 1

0

(
u2
0

2
+

(1− c0)
γQγ−1

0

a∗(γ − 1)

)
≤ δ,

(c0Q0)
β+1
2 u0x ∈ L2, ϕ1−αβ |(cβ+1

0 Qβ
0 )x|2 ∈ L1, ϕ1−α

4 c20x ∈ L1,

(3.68)

and {
γ > max{β + 2, 1 + 4β, 2(3β+1)

3 + 1}, γ ≥ 2+8β
3 − 2

3α ,

0 < β ≤ 3
4 , α(β + 1) < 1, α(4β + 1) ≤ 2, α(4β − 1) ≤ 1,

(3.69)

where A1, Ã > 1, B1, B̃ < 1 and ϕ(x) = 1− x. The coefficient of the lower bound of Q0 related

to δ
1

γ−1 naturally comes from (3.68)3.

Theorem 3.2. Under the assumptions of (3.68) and (3.69), for any given T > 0, there exists a
positive constant C(T ) such that (3.65), (3.66) and (3.67) admits a unique weak solution (c,Q, u)
on [0, 1]×[0, T ] with the same regularities as (A) in Theorem 3.1, satisfying the following estimates∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
dx ≤ 2δ, and

B̃δ
1

γ−1

2
ϕ

3α
4 ≤ Q ≤ 2Ãϕ

3α
4 ,

and

∥u∥L∞ +

∫ 1

0

(
Eu2

x + ϕ1−αβ |(cβ+1Qβ)x|2 + ϕ(β−2)αQ2
t

)
dx+

∫ t

0

∫ 1

0

u2
s dx ds ≤ C,

for (x, t) ∈ [0, 1] × [0, T ], provided δ ≤ C(T ). Here C may depend on A1, B1, Ã, B̃, δ, α, β, γ and
the initial data. Moreover, the following equations hold:

∂tc = 0, ∂tQ+ a∗Q2∂xu = 0, for a.e. (x, t) ∈ (0, 1)× (0, T ],

(c,Q)(x, 0) = (c0(x), Q0(x)), for a.e. x ∈ [0, 1],∫ T

0

∫ 1

0

[
uφt +

(
P (c,Q)− u2g(cQ)− E(cQ)ux

)
φx

]
dx dt+

∫ 1

0

u0φ(x, 0) dx = 0,

for any test function φ ∈ C∞
0

(
(0, 1]× [0, T )

)
.

Remark 3.2. Denote ρ = a∗ Q
1+cQ , then from Theorem 3.2, we get a weak solution (c, ρ, u) on

[0, 1]× [0, T ] to (2.52), (2.53) and (2.55) with ĉ1 = 0 (i.e., h = j ≡ 0).

4. Local existence of weak solutions

4.1. A priori estimates. Assume that the solutions are smooth enough in [0, 1]× [0, T ]. Then we
get a crucial proposition:

Proposition 4.1. Under the conditions of Theorem 3.1, assume that the solutions are smooth
enough, and that

A

3
ϕ

3α
4 ≤ Q ≤ 2Bϕ

3α
4 and

∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ 2M, (x, t) ∈ [0, 1]× [0, T̃ ] ⊆ [0, 1]× [0, T ], (4.1)

then

A

2
ϕ

3α
4 ≤ Q ≤ 3B

2
ϕ

3α
4 and

∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ 3M

2
, (4.2)

for (x, t) ∈ [0, 1] × [0, T̃ ], provided that T is small enough which is determined by (4.10), (4.16)
and (4.28).
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Suppose Proposition 4.1 is true, we get a useful corollary as follows:

Corollary 4.1. Under the conditions of Theorem 3.1, assume that the solutions are smooth enough
in [0, 1]× [0, T ], we get

A

3
ϕ

3α
4 ≤ Q ≤ 2Bϕ

3α
4 and

∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ 2M, (x, t) ∈ [0, 1]× [0, T ], (4.3)

provided that T is small enough which is determined by (4.10), (4.16) and (4.28).

Proof. Since

A ≤ Q0

ϕ
3α
4

≤ B, and

∫ 1

0

E(c0Q0)u
2
0x ≤ M,

by the continuity of the solution, then there exists a constant T̃1 ∈ (0, T ) such that

inf
x∈[0,1]

Q

ϕ
3α
4

>
A

3
, sup

x∈[0,1]

Q

ϕ
3α
4

< 2B, and

∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s < 2M, (4.4)

for any t ∈ [0, T̃1]. We denote the maximal time for (4.4) by T̃2 ∈ [T̃1, T ]. If T̃2 = T , we have
nothing to do. For otherwise, we get from (4.4) and Proposition 4.1

inf
x∈[0,1]

Q

ϕ
3α
4

≥ A

2
, sup

x∈[0,1]

Q

ϕ
3α
4

≤ 3B

2
, and

∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ 3M

2
,

for any t ∈ [0, T̃2) ⊂ [0, T ]. This together with the continuity of the solution w.r.t. time in [0, T ]

implies that (4.4) is also valid at T̃2, which is contradicted with the definition of T̃2. Therefore,

we get T̃2 = T , which shows that (4.3) holds. �

Let’s go back to the proof of Proposition 4.1.

Proof of Proposition 4.1:

The proof of this proposition is divided into the following lemmas.

Lemma 4.1. Under the assumptions of Proposition 4.1, it holds that∫ 1

0

u4 +

∫ t

0

∫ 1

0

Eu2u2
x ≤ C1(1 +M3)T +

∫ 1

0

u4
0, (4.5)

for t ∈ [0, T̃ ], where C1 = C1(A,B).

Proof. Multiplying (2.58)3 by 4u3, integrating by parts over [0, 1], and using Cauchy inequality,
we have

d

dt

∫ 1

0

u4 + 12

∫ 1

0

Eu2u2
x

=12

∫ 1

0

[P (c,Q)− u2g(cQ)− uh(cQ) + j(cQ)]u2ux −
12ρl(

ĉ1
ĉ0
)2

α∗
l

∫ 1

0

u2ux

≤
∫ 1

0

Eu2u2
x + C1

∫ 1

0

u2Q2γ−β−1c−β−1 + C1

∫ 1

0

u4(1 + u2)(cQ)1−β + C1

∫ 1

0

u2(cQ)−β−1.

This together with (4.1), c = c0 and Young inequality implies

d

dt

∫ 1

0

u4 + 11

∫ 1

0

Eu2u2
x ≤C1∥u∥2L∞ + C1(∥u∥6L∞ + 1), (4.6)

where we have used

α(6γ − 4β − 4)

4
> −1 and α(β + 1) < 1,

i.e., γ > 2β+2
3 − 2

3α and α(β+1) < 1 (Note that α > 0 and α(β+1) < 1 concludes 2β+2
3 − 2

3α < 0.

Thus from (3.64), we have γ > 1 > 0 > 2β+2
3 − 2

3α ). Here C1 = C1(A,B).
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Claim:

∥u∥L∞ ≤ C1 + C1M
1
2 . (4.7)

In fact, for boundary (2.61), we obtain from (2.58)3∫ 1

0

u =

∫ 1

0

u0.

This deduces

|u(x, t)| ≤ |
∫ 1

0

u0|+ |u−
∫ 1

0

u| ≤ C1 +

∫ 1

0

|ux| ≤ C1 + C1M
1
2 ,

where we have used Hölder inequality, α(β + 1) < 1 and (4.1).
For boundary (2.60), we have

|u(x, t)| = |
∫ x

0

uy| ≤
∫ 1

0

|ux| ≤ C1 + C1M
1
2 .

Substituting (4.7) into (4.6), we get

d

dt

∫ 1

0

u4 + 11

∫ 1

0

Eu2u2
x ≤ C1(1 +M3). (4.8)

Integrating (4.8) over [0, t], we get (4.5). �

Lemma 4.2. Under the assumptions of Proposition 4.1, it holds that

Q ≤ 3B

2
ϕ

3α
4 , (4.9)

for (x, t) ∈ [0, 1]× [0, T̃ ], provided T is sufficiently small such that

Bβ +
√
MTC1 + C1T (1 +M) ≤

(
3B

2

)β

. (4.10)

Proof. It follows from (2.58)2, (2.58)3 and (2.58)1 that(
u+ (

cβ+1Qβ

a∗β
)x

)
t

+ [P (c,Q)− u2g(cQ)− uh(cQ) + j(cQ)]x = 0. (4.11)

Integrating (4.11) over [x, 1]× [0, t], we have

cβ+1Qβ + a∗β

∫ t

0

(1− c)γQγ

=cβ+1
0 Qβ

0 + a∗β

∫ t

0

∫ 1

x

us + a∗β

∫ t

0

(
u2g(cQ) + uh(cQ)

)
− a∗βρl(

ĉ1
ĉ0

)2
∫ t

0

(α∗
l − 1)cQ

α∗
l (α

∗
l + cQ)

.

(4.12)

Multiplying (4.12) by c
−(β+1)
0 , and using (2.58)1, Hölder inequality, (4.1) and (4.7), we have

Qβ ≤Qβ
0 +

a∗β
√
2MTϕ

1
2

cβ+1
0

+
C1T (1 +M)ϕα

cβ+1
0

+
C1Tϕ

α

cβ+1
0

≤Bβϕ
3αβ
4 +

√
MTC1ϕ

1
2−

α(β+1)
4 + C1T (1 +M)ϕα−α(β+1)

4 + C1Tϕ
α−α(β+1)

4

≤
(
Bβ +

√
MTC1 + C1T (1 +M)

)
ϕ

3αβ
4 ,

(4.13)

where we have used

1

2
− α(β + 1)

4
≥ 3αβ

4
and

3α− αβ

4
≥ 3αβ

4
,

i.e., 4αβ + α ≤ 2 and β ≤ 3
4 , and also have used

1− x ≤ C1ϕ. (4.14)
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In fact, for boundary condition (2.60), by the definition of ϕ, (4.14) is obvious, so it is for boundary
condition (2.61) and x ∈ [ 12 , 1]. If x ∈ [0, 1

2 ], for boundary condition (2.61), we can integrate (4.11)

again over [0, x] × [0, t], and get (4.12) with

∫ 1

x

us replaced by

∫ x

0

us. Then, using some similar

arguments as (4.13) will produce x instead of 1−x. Then x ≤ C1ϕ for x ∈ [0, 1
2 ]. In the following,

we do not mention it again when we use (4.14) for boundary condition (2.61), for brevity.
Since β > 0 from (3.64), we may choose T > 0 small enough such that

Bβ +
√
MTC1 + C1T (1 +M) ≤

(
3B

2

)β

.

This combining (4.13) implies

Q ≤ 3Bϕ
3α
4

2
.

�

Lemma 4.3. Under the assumptions of Proposition 4.1, it holds that∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ 3M

2
, (4.15)

for t ∈ [0, T̃ ], provided T is sufficiently small such that (4.10) and

C1 + C1(1 +M3)T ≤ M

20
(4.16)

are satisfied.

Proof. Multiplying (2.58)3 by ut, and integrating by parts over [0, 1], we have∫ 1

0

u2
t +

1

2

d

dt

∫ 1

0

Eu2
x

=
d

dt

∫ 1

0

[
P − u2g(cQ)− uh(cQ) + j(cQ)−

ρl(
ĉ1
ĉ0
)2

α∗
l

]
ux +

1

2

∫ 1

0

[(cQ)β+1]tu
2
x

−
∫ 1

0

Ptux +

∫ 1

0

[u2g(cQ)]tux +

∫ 1

0

[uh(cQ)]tux −
∫ 1

0

[j(cQ)]tux

=
d

dt

∫ 1

0

[
P − u2g(cQ)− uh(cQ) + j(cQ)−

ρl(
ĉ1
ĉ0
)2

α∗
l

]
ux +

5∑
i=1

Ii.

(4.17)

For I1, we have

I1 =
β + 1

2

∫ 1

0

cβ+1QβQtu
2
x = −a∗(β + 1)

2

∫ 1

0

cβ+1Qβ+2u3
x

=− a∗(β + 1)

2

∫ 1

0

EuxQu2
x,

(4.18)

where we have used (2.58)2.
Note from (2.58)3 and (2.61) (or (2.60)) that

Eux = P (c,Q)− u2g(cQ)− uh(cQ) + ρl(
ĉ1
ĉ0

)2
(α∗

l − 1)cQ

α∗
l (α

∗
l + cQ)

+

∫ x

1

ut. (4.19)

Substituting (4.19) into (4.18), and using Hölder inequality, (4.7) and Cauchy inequality, we have
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I1 ≤1

6

∫ 1

0

u2
t + C1

(∫ 1

0

ϕ
1
2Qu2

x

)2

+ C1(1 +M)

∫ 1

0

cQ2u2
x

≤1

6

∫ 1

0

u2
t + C1

(∫ 1

0

ϕ
1
2 c−β−1Q−βEu2

x

)2

+ C1(1 +M)

∫ 1

0

c−βQ1−βEu2
x

≤1

6

∫ 1

0

u2
t + C1(1 +M)M,

(4.20)

where we have used (4.1),

1

2
− 4αβ + α

4
≥ 0 and

α(3− 4β)

4
≥ 0,

i.e., 4αβ + α ≤ 2 and β ≤ 3
4 .

For I2, we have

I2 =− γ

∫ 1

0

(1− c)γQγ−1Qtux = γa∗
∫ 1

0

(1− c)γQγ+1u2
x

=γa∗
∫ 1

0

(1− c)γc−β−1Qγ−βEu2
x ≤ C1M,

(4.21)

where we have used

3γ − 4β − 1

4
≥ 0,

i.e., γ ≥ 4β+1
3 .

For I3, using Cauchy inequality, (4.1) and (4.7), we have

I3 ≤C1

∫ 1

0

[
|uutg(cQ)|+ u2|cQt|

]
|ux|

≤1

6

∫ 1

0

u2
t + C1(1 +M)

∫ 1

0

cQ2u2
x

≤1

6

∫ 1

0

u2
t + C1(1 +M)2.

(4.22)

Similarly, for I4 and I5, we have

I4 + I5 ≤ 1

6

∫ 1

0

u2
t + C1(1 +M)2. (4.23)

Substituting (4.20), (4.21), (4.22) and (4.23) into (4.17), and integrating the result over [0, t] for

t ≤ T̃ , we have

∫ t

0

∫ 1

0

u2
s +

∫ 1

0

Eu2
x ≤2

∫ 1

0

[
P − u2g(cQ)− uh(cQ) + j(cQ)−

ρl(
ĉ1
ĉ0
)2

α∗
l

]
ux

+ C1(1 +M)2T + C0,

(4.24)

where

C0 = M − 2

∫ 1

0

[
P0 − u2

0g(c0Q0)− u0h(c0Q0) + j(c0Q0)−
ρl(

ĉ1
ĉ0
)2

α∗
l

]
u0x.

By (4.17) and Cauchy inequality, we have
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∫ t

0

∫ 1

0

u2
s +

∫ 1

0

Eu2
x ≤1

6

∫ 1

0

Eu2
x + C1

∫ 1

0

Q2γ−β−1c−β−1

+ C1

∫ 1

0

(u4 + u2 + 1)(cQ)1−β + C1(1 +M)2T + C0

≤1

6

∫ 1

0

Eu2
x +

6M

5
+ C1 + C1(1 +M3)T,

(4.25)

where we have used γ > 2β+2
3 − 2

3α , β ≤ 1, (4.5) and (4.1).
Thus, ∫ t

0

∫ 1

0

u2
s +

5

6

∫ 1

0

Eu2
x ≤C1 +

6M

5
+ C1(1 +M3)T. (4.26)

Taking M sufficiently large such that

C1 + C1(1 +M3)T ≤ M

20
,

for some small T . This completes the proof of Lemma 4.3. �
Remark 4.1. Note that the L4 (instead of L2) estimate of u in (4.5) plays a crucial role in (4.25).

Lemma 4.4. Under the assumptions of Proposition 4.1, it holds that

Q ≥ A

2
ϕ

3α
4 , (4.27)

for (x, t) ∈ [0, 1]× [0, T̃ ], provided T is sufficiently small such that (4.10), (4.16) and

C1T + C1(1 +
√
M)T + C1

√
MT ≤ 1

A
(4.28)

are satisfied.

Proof. It follows from (2.58)2 that

d

dt
(
ϕ

3α
4

Q
) = −Q−2Qtϕ

3α
4 = a∗uxϕ

3α
4 . (4.29)

Integrating (4.29) over [0, t], and using (4.19), (4.1), α∗
l ≤ 1 and (4.7), we have

ϕ
3α
4

Q
=
ϕ

3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 ux =

ϕ
3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 (cQ)−(β+1)Eux

=
ϕ

3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 (cQ)−β−1

(
P (c,Q)− u2g(cQ)− uh(cQ) + ρl(

ĉ1
ĉ0

)2
(α∗

l − 1)cQ

α∗
l (α

∗
l + cQ)

+

∫ x

1

us

)
≤ϕ

3α
4

Q0
+ C1Tϕ

3α
4 ϕ

3γα
4 −α(β+1) + a∗

∫ t

0

ϕ
3α
4 (cQ)−β−1

(
−uh(cQ) +

∫ x

1

us

)
≤ 1

A
+ C1Tϕ

3(γ+1)α
4 −α(β+1) + C1(1 +

√
M)Tϕ

3α
4 ϕ−βα + C1

√
MTϕ

1
2ϕ

3α
4 ϕ−α(β+1).

Let
3(γ + 1)α

4
− α(β + 1) ≥ 0,

3α

4
− βα ≥ 0,

1

2
+

3α

4
− α(β + 1) ≥ 0,

i.e., γ ≥ 4β+1
3 , β ≤ 3

4 and α(4β + 1) ≤ 2, since α > 0. Then, taking T small enough such that

C1T + C1(1 +
√
M)T + C1

√
MT ≤ 1

A
,

we get (4.27). �

From Lemmas 4.2, 4.3 and 4.4, we end the proof of Proposition 4.1.
Next, we derive more estimates needed for the compactness arguments of the next section where

construction of a weak solution is shown.



16 EVJE AND WEN

Corollary 4.2. Under the assumptions of Theorem 3.1, it holds that

∥u(·, t)∥L∞ ≤ C2, (4.30)

and

∥ux(·, t)∥Lr ≤ C2, (4.31)

for t ∈ [0, T ] and some r ∈ (1, 2), where C2 = C2(A,B,M).

Proof. (4.30) can be obtained by (4.7). In order to get (4.31), note that α(β + 1) < 1, then
there exists a constant r ∈ (1, 2) such that

α(β + 1) <
2− r

r
.

This together with (4.3), (4.15) and Hölder inequality deduces∫ 1

0

|ux|r =

∫ 1

0

E
r
2 |ux|rE− r

2 ≤
(∫ 1

0

Eu2
x

) r
2
(∫ 1

0

E− r
2−r

) 2−r
2

≤ C2.

�
Corollary 4.3. Under the assumptions of Theorem 3.1, it holds that∫ 1

0

ϕ(β−2)αQ2
t ≤ C2, (4.32)

for t ∈ [0, T ].

Proof. (4.32) can be obtained by (2.58)2 and (4.15). More precisely,∫ 1

0

ϕ(β−2)αQ2
t ≤C2

∫ 1

0

ϕ(β−2)αQ4u2
x = C2

∫ 1

0

ϕ(β−2)αc−1−βQ3−βEu2
x

≤C2

∫ 1

0

ϕ(β−2)αϕ− (1+β)α
4 ϕ

3α(3−β)
4 Eu2

x

=C2

∫ 1

0

Eu2
x ≤ C2.

�
Corollary 4.4. Under the assumptions of Theorem 3.1, it holds that

∫ 1

0

|Q(x, t)−Q(x, s)|2dx ≤ C2|t− s|2,∫ 1

0

|u(x, t)− u(x, s)|2dx ≤ C2|t− s|,
(4.33)

for t, s ∈ [0, T ].

Proof. (4.33) can be obtained by (4.32), (4.15) and Hölder inequality. More precisely, without
loss of generality, we assume s ≤ t. Then∫ 1

0

|Q(x, t)−Q(x, s)|2dx =

∫ 1

0

∣∣∣∣∫ t

s

Qξ(x, ξ)dξ

∣∣∣∣2 dx ≤ (t− s)

∫ 1

0

∫ t

s

[Qξ(x, ξ)]
2dξdx ≤ C2|t− s|2,

and∫ 1

0

|u(x, t)− u(x, s)|2dx =

∫ 1

0

∣∣∣∣∫ t

s

uξ(x, ξ)dξ

∣∣∣∣2 dx ≤ (t− s)

∫ 1

0

∫ t

s

[uξ(x, ξ)]
2dξdx ≤ C2|t− s|.

�
Lemma 4.5. Under the assumptions of Theorem 3.1, it holds that∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 +
∫ t

0

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x ≤ C2, (4.34)

for t ∈ [0, T ].
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Proof. Multiplying (4.11) by ( c
β+1Qβ

a∗β )xϕ
1−αβ , and integrating by parts over [0, 1], we have

1

2

d

dt

∫ 1

0

ϕ1−αβ |(c
β+1Qβ

a∗β
)x|2

=−
∫ 1

0

ϕ1−αβut(
cβ+1Qβ

a∗β
)x −

∫ 1

0

ϕ1−αβ(
cβ+1Qβ

a∗β
)x[P (c,Q)]x

+

∫ 1

0

ϕ1−αβ(
cβ+1Qβ

a∗β
)x[u

2g(cQ)]x +

∫ 1

0

ϕ1−αβ(
cβ+1Qβ

a∗β
)x[uh(cQ)]x

−
∫ 1

0

ϕ1−αβ(
cβ+1Qβ

a∗β
)x[j(cQ)]x =

5∑
i=1

IIi.

(4.35)

For II1, using Cauchy inequality, we have

II1 ≤ C2

∫ 1

0

ϕ1−αβ |(c
β+1Qβ

a∗β
)x|2 + C2

∫ 1

0

u2
t . (4.36)

For II2, we have

II2 =− γ

∫ 1

0

ϕ1−αβ(
cβ+1Qβ

a∗β
)x[(1− c)Q]γ−1[Qx − (cQ)x]

=− γ

a∗β

∫ 1

0

ϕ1−αβ
(
βcβ+1Qβ−1Qx + (β + 1)cβcxQ

β
)
[(1− c)Q]γ−1[Qx(1− c)− cxQ]

=− γ

a∗

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x +

γ(β + 1)

a∗β

∫ 1

0

ϕ1−αβcβc2xQ
β+γ(1− c)γ−1

− γ

a∗β

∫ 1

0

ϕ1−αβQxcx(1− c)γ−1Qγ+β−1cβ [(1− c)(β + 1)− βc] .

This, together with Cauchy inequality applied to the last term and the fact c = c0, gives

II2 ≤− γ

2a∗

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x + C2

∫ 1

0

ϕ1−αβc20x(1− c0)
γ−2Qγ+βcβ−1

0

+
γ(β + 1)

a∗β

∫ 1

0

ϕ1−αβcβ0 c
2
0xQ

β+γ(1− c0)
γ−1

≤− γ

2a∗

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x + C2.

(4.37)

For II3, using (4.7), (4.3) and Cauchy inequality, we have

II3 ≤C2

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 + C2

∫ 1

0

ϕ1−αβEu2
x(cQ)1−β + C2

∫ 1

0

ϕ1−αβ |(cQ)x|2

≤C2

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 + C2

∫ 1

0

ϕ1−αβ |(cQ)x|2 + C2.

(4.38)

Since

Qx =
(cβ+1Qβ)x
βcβ+1Qβ−1

− (β + 1)Qcx
βc

, (4.39)

we have∫ 1

0

ϕ1−αβ |(cQ)x|2 ≤C2

∫ 1

0

ϕ1−αβQ2c20x + C2

∫ 1

0

ϕ1−αβc2Q2
x

≤C2

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2c−2βQ2−2β + C2

∫ 1

0

ϕ1−αβQ2c20x

≤C2

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 + C2,

(4.40)
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where we have used β ≤ 3
4 and the fact c = c0.

Substituting (4.40) into (4.38), we have

II3 ≤ C2

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 + C2. (4.41)

Similar to II3, for II4 and II5, we have

II4 + II5 ≤ C2

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 + C2. (4.42)

Putting (4.36), (4.37), (4.41) and (4.42) into (4.35), and using (4.15) and Gronwall inequality, we
get (4.34). �

Corollary 4.5. Under the assumptions of Theorem 3.1, it holds that∫ 1

0

|Qx| ≤ C2, (4.43)

for t ∈ [0, T ].

Proof. (4.43) could be obtained by (4.39), (4.34) and (4.3). More precisely,∫ 1

0

|Qx| ≤C2

∫ 1

0

|(cβ+1Qβ)x|
cβ+1Qβ−1

+ C2

∫ 1

0

|Qcx|
c

≤C2

∫ 1

0

ϕ
3α(1−β)−α(β+1)

4 |(cβ+1Qβ)x|+ C2

∫ 1

0

ϕ
α
2 |c0x|

≤C2

∫ 1

0

ϕ
α(1−2β)

2 |(cβ+1Qβ)x|+ C2

∫ 1

0

ϕ
5α−4

8 ϕ
4−α
8 |c0x|

≤C2

(∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2
) 1

2
(∫ 1

0

ϕα(1−β)−1

) 1
2

+ C2

(∫ 1

0

ϕ1−α
4 |c0x|2

) 1
2
(∫ 1

0

ϕ
5α−4

4

) 1
2

≤C2,

where we also have used c = c0, Hölder inequality, ϕ1−α
4 |c0x|2 ∈ L1, α > 0 and β < 1. �

4.2. Construction of weak solution. For boundary condition (2.61), one can use some argu-
ments like in [29, 30, 4, 31] and references therein to construction a weak solution to (2.58). Here
we only sketch the construction of weak solution to (2.58), (2.62) and (2.60). To do this, we use
the line method like in [15, 24] which need to be slightly modified. More precisely, we consider
systems of 3N ordinary differential equations when N goes to infinity:

d
dtc

k
2i−1(t) = 0,

d
dtQ

k
2i−1 + a∗(Qk

2i−1)
2 uk

2i−uk
2i−2

k = 0,

d
dtu

k
2i +

P (ck2i+1,Q
k
2i+1)−P (ck2i−1,Q

k
2i−1)

k − (uk
2i+2)

2g(ck2i+1Q
k
2i+1)−(uk

2i)
2g(ck2i−1Q

k
2i−1)

k

−uk
2i+2h(c

k
2i+1Q

k
2i+1)−uk

2ih(c
k
2i−1Q

k
2i−1)

k +
j(ck2i+1Q

k
2i+1)−j(ck2i−1Q

k
2i−1)

k

= 1
k2

[
E(ck2i+1Q

k
2i+1)(u

k
2i+2 − uk

2i)− E(ck2i−1Q
k
2i−1)(u

k
2i − uk

2i−2)
]
, t > 0,

(4.44)

for i = 1, 2, ..., N , where k = 2
2N+1 , and the boundary conditions are

uk
0(t) = 0, (ck2N+1, Q

k
2N+1)(t) = 0. (4.45)

The initial data is given as 
ck2i−1(0) = c0

(
(2i− 1)k2

)
,

Qk
2i−1(0) = Q0

(
(2i− 1)k2

)
,

uk
2i(0) = u0(ik), i = 1, 2, ..., N.

(4.46)
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When i = N , we regard some terms related to u2N+2 in (4.44)3 as

(uk
2N+2)

2g(ck2N+1Q
k
2N+1) = uk

2N+2h(c
k
2N+1Q

k
2N+1) = E(ck2N+1Q

k
2N+1)(u

k
2N+2 − uk

2N ) = 0.

In the following, we will use (c2i−1, Q2i−1, u2i) instead of (ck2i−1, Q
k
2i−1, u

k
2i) when it will not

cause any confusion.

Proposition 4.2. Under the assumptions of Theorem 3.1, if

A

3
ϕ

(
(2i− 1)

k

2

) 3α
4

≤ Q2i−1 ≤ 2Bϕ

(
(2i− 1)

k

2

) 3α
4

, and

N∑
i=1

E(ck2i−1Q
k
2i−1)

(
uk
2i − uk

2i−2

)2
k

+

∫ t

0

N∑
i=1

| d
ds

u2i|2k ≤ 2M,

(4.47)

for (x, t) ∈ [0, 1]× [0, T̃ k] ⊆ [0, 1]× [0, T k], then

A

2
ϕ

(
(2i− 1)

k

2

) 3α
4

≤ Q2i−1 ≤ 3B

2
ϕ

(
(2i− 1)

k

2

) 3α
4

, and

N∑
i=1

E(ck2i−1Q
k
2i−1)

(
uk
2i − uk

2i−2

)2
k

+

∫ t

0

N∑
i=1

| d
ds

u2i|2k ≤ 3M

2
,

(4.48)

for x ∈ [0, 1]× [0, T̃ k], provided that T k is small enough.

Corollary 4.6. Under the conditions of Theorem 3.1, we get

A

3
ϕ

(
(2i− 1)

k

2

) 3α
4

≤ Q2i−1 ≤ 2Bϕ

(
(2i− 1)

k

2

) 3α
4

, and

N∑
i=1

E(ck2i−1Q
k
2i−1)

(
uk
2i − uk

2i−2

)2
k

+

∫ t

0

N∑
i=1

| d
ds

u2i|2k ≤ 2M,

(4.49)

for x ∈ [0, 1]× [0, T k], provided that T k is small enough.

The proof of Proposition 4.2 is divided into the following discrete version of Lemmas 4.1, 4.2,
4.3 and 4.4, i.e., Lemmas 4.6, 4.7, 4.8 and 4.9.

Lemma 4.6. Under the assumptions of Proposition 4.2, it holds that

N∑
i=1

u4
2ik +

∫ t

0

N∑
i=1

E(c2i−1Q2i−1)(u
2
2i + u2iu2i−2 + u2

2i−2)

(
uk
2i − uk

2i−2

)2
k

≤C1(1 +M3)T +

N∑
i=1

[u0(ik)]
4k,

(4.50)

for t ∈ [0, T̃ k], where C1 = C1(A,B), provided that T k is small.

Lemma 4.7. Under the assumptions of Proposition 4.2, it holds that

Q2i−1 ≤ 3B

2
ϕ

(
(2i− 1)

k

2

) 3α
4

, (4.51)

for t ∈ [0, T̃ k], provided that T k is small.

Lemma 4.8. Under the assumptions of Proposition 4.2, it holds that

N∑
i=1

E(ck2i−1Q
k
2i−1)

(
uk
2i − uk

2i−2

)2
k

+

∫ t

0

N∑
i=1

| d
ds

u2i|2k ≤ 3M

2
, (4.52)

for t ∈ [0, T̃ k], provided that T k is small.
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Lemma 4.9. Under the assumptions of Proposition 4.2, it holds that

Q2i−1 ≥ A

2
ϕ

(
(2i− 1)

k

2

) 3α
4

, (4.53)

for (x, t) ∈ [0, 1]× [0, T̃ k], provided that T k is small.

Corollary 4.7. Under the assumptions of Theorem 3.1, it holds that

sup
1≤i≤N

|u2i| ≤ C2, (4.54)

and
N∑
i=1

∣∣∣∣u2i − u2i−2

k

∣∣∣∣r k ≤ C2, (4.55)

for t ∈ [0, T k] and some r ∈ (1, 2), where C2 = C2(A,B,M), provided that T k is small.

Corollary 4.8. Under the assumptions of Theorem 3.1, it holds that

N∑
i=1

ϕ

(
(2i− 1)

k

2

)(β−2)α

|∂tQ2i−1|2k ≤ C2, (4.56)

for t ∈ [0, T k], provided that T k is small.

Corollary 4.9. Under the assumptions of Theorem 3.1, it holds that
N∑
i=1

|Q2i−1(t)−Q2i−1(s)|2k ≤ C2|t− s|2,

N∑
i=1

|u2i(t)− u2i(s)|2k ≤ C2|t− s|,
(4.57)

for t ∈ [0, T k], provided that T k is small.

Lemma 4.10. Under the assumptions of Theorem 3.1, it holds that

N∑
i=1

[
ϕ
(
(2i− 1)k2

)]1−αβ

k
|cβ+1

2i+1Q
β
2i+1 − cβ+1

2i−1Q
β
2i−1|

2 ≤ C2, (4.58)

for t ∈ [0, T k], provided that T k is small.

Corollary 4.10. Under the assumptions of Theorem 3.1, it holds that

N∑
i=1

|Q2i+1 −Q2i−1| ≤ C2, (4.59)

for t ∈ [0, T k], provided that T k is small.

From the proof of Proposition 4.1, we know that there exists a T0 > 0 independent of k and
determined by (4.10), (4.16) and (4.28), such that T k ≥ T0. Similar to some arguments in [24],
we define the sequence of approximate solutions (ck, Qk, uk) for (x, t) ∈ [0, 1]× [0, T0] as follows:

ck(x, t) = c2i−1(t),

Qk(x, t) = Q2i−1(t),

uk(x, t) =
1
k [(x− (i− 1)k)u2i(t) + (ik − x)u2i−2(t)] ,

for (i− 1)k < x ≤ ik, i = 1, 2, ..., N . A direct calculation implies

∂xuk(x, t) =
u2i(t)− u2i−2(t)

k
,

for (i− 1)k < x ≤ ik, i = 1, 2, ..., N . Then by using Helly’s theorem and some similar arguments
as those in [24], we get a weak solution to (2.58), (2.62) and (2.60) on [0, 1] × [0, T0]. With the
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regularities, we can use the standard methods (see for instance [36] and references therein) to get
the uniqueness of the solution. We complete the proof of Theorem 3.1.

5. Global existence of weak solution with small data

Here is a crucial proposition in this section:

Proposition 5.1. Under the assumptions of Theorem 3.2, for any given T > 0 (not necessarily
small), there exists a positive constant C(T ) such that if∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
≤ 2δ,

B̃δ
1

γ−1

2
ϕ

3α
4 ≤ Q ≤ 2Ãϕ

3α
4 , in [0, 1]× [0, T1] ⊆ [0, 1]× [0, T ],

(5.1)

then ∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
≤ 3δ

2
,

2B̃δ
1

γ−1

3
ϕ

3α
4 ≤ Q ≤ 3Ã

2
ϕ

3α
4 , in [0, 1]× [0, T1],

(5.2)

provided δ ≤ C(T ) which is determined by (5.8), (5.12) and (5.31).

Similar to the proof of Corollary 4.1, based on Proposition 5.1, we get the following corollary:

Corollary 5.1. Under the conditions of Theorem 3.2, assume that the solutions are smooth enough
in [0, 1]× [0, T ], we get∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
≤ 2δ, and

B̃δ
1

γ−1

2
ϕ

3α
4 ≤ Q ≤ 2Ãϕ

3α
4 , (5.3)

for (x, t) ∈ [0, 1] × [0, T ], provided δ ≤ C(T ) which is determined by (5.8), (5.12), (5.20), and
(5.31).

Proof of Proposition 5.1:

The proof of this proposition is divided into the following lemmas.

Lemma 5.1. Under the assumptions of Proposition 5.1, it holds that∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
+

∫ t

0

∫ 1

0

Eu2
x ≤ 3δ

2
, (5.4)

for t ∈ [0, T1].

Proof. Multiplying (3.65)3 by u, integrating by parts over [0, 1], and using (3.65)2, (5.1), the
fact c = c0 and Hölder inequality, we have

1

2

d

dt

∫ 1

0

u2 +

∫ 1

0

Eu2
x =

∫ 1

0

[P (c,Q)− u2g(cQ)]ux

≤− d

dt

∫ 1

0

(1− c)γQγ−1

a∗(γ − 1)
+ C3

(∫ 1

0

Eu2
x

) 1
2
(∫ 1

0

u4c1−βQ1−β

) 1
2

≤− d

dt

∫ 1

0

(1− c)γQγ−1

a∗(γ − 1)
+ C3

(∫ 1

0

Eu2
x

) 1
2

∥u∥L∞

(∫ 1

0

u2

) 1
2

,

(5.5)
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where β ≤ 1 and C3 = C3(A1, Ã). Note that

∥u∥L∞ ≤
∫ 1

0

|ux| ≤
(∫ 1

0

Eu2
x

) 1
2
(∫ 1

0

(cQ)−(β+1)

) 1
2

≤C4δ
− β+1

2(γ−1)

(∫ 1

0

Eu2
x

) 1
2
(∫ 1

0

ϕ−α(β+1)

) 1
2

≤C4δ
− β+1

2(γ−1)

(∫ 1

0

Eu2
x

) 1
2

,

(5.6)

where we have used (5.1), α(β + 1) < 1, C4 = C4(B1, B̃) and u(0, t) = 0.
Putting (5.6) into (5.5), we have

d

dt

∫ 1

0

(
u2

2
+

(1− c)γQγ−1

a∗(γ − 1)

)
+

∫ 1

0

Eu2
x ≤C5

(
4δ1−

β+1
γ−1

) 1
2

∫ 1

0

Eu2
x, (5.7)

where C5 = C5(A1, Ã, B1, B̃).
(5.4) can be obtained by (5.7), provided that

1− β + 1

γ − 1
> 0,

i.e., γ > β + 2, and that (
4δ1−

β+1
γ−1

) 1
2

C5 ≤ 1

3
. (5.8)

�

Remark 5.1. From the proof of Lemma 5.1, it seems not working for ĉ1 > 0. For example, the
term uh(cQ) seems difficult to handle by the above approach.

Lemma 5.2. Under the assumptions of Proposition 5.1, it holds that

Q ≤ 3Ã

2
ϕ

3α
4 , (5.9)

for (x, t) ∈ [0, 1]× [0, T1].

Proof. It follows from (3.65)2 and (3.65)3 that(
u+ (

cβ+1Qβ

a∗β
)x

)
t

+ [P (c,Q)− u2g(cQ)]x = 0. (5.10)

Integrating (5.10) over [x, 1]× [0, t], we have

cβ+1Qβ + a∗β

∫ t

0

(1− c)γQγ =cβ+1
0 Qβ

0 + a∗β

∫ 1

x

(u− u0) + a∗β

∫ t

0

u2g(cQ). (5.11)

Multiplying (5.11) by c
−(β+1)
0 , and using (5.6), (5.1), (5.4) and the fact c = c0, we have

Qβ ≤Qβ
0 +

4a∗β
√
δϕ

1
2

cβ+1
0

+
a∗β

cβ+1
0

∫ t

0

u2g(cQ)

≤Qβ
0 + C5

√
δϕ

1
2−

α(β+1)
4 + C5

∫ t

0

u2c−βQ

≤Qβ
0 + C5

√
δϕ

3αβ
4 + C5

∫ t

0

∫ 1

0

Eu2
xδ

− β+1
γ−1ϕ

3α−αβ
4

≤(Ã)βϕ
3αβ
4 + C5

√
δϕ

3αβ
4 + C5δ

1− β+1
γ−1ϕ

3αβ
4 ,

where we have used

1

2
− α(β + 1)

4
≥ 3αβ

4
and

3α− αβ

4
≥ 3αβ

4
,
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i.e., 4αβ + α ≤ 2 and β ≤ 3
4 , since α > 0. Note that β > 0 and γ > β + 2, we may choose δ > 0

small enough such that

(Ã)β + C5

√
δ + C5δ

1− β+1
γ−1 ≤

(
3Ã

2

)β

. (5.12)

Then, we get

Q ≤ 3Ãϕ
3α
4

2
.

�

Lemma 5.3. Under the assumptions of Proposition 5.1, it holds that∫ 1

0

Eu2
x +

∫ t

0

∫ 1

0

u2
s ≤ C5, (5.13)

for t ∈ [0, T1].

Proof. Multiplying (3.65)3 by ut, and integrating by parts over [0, 1], we have∫ 1

0

u2
t +

1

2

d

dt

∫ 1

0

Eu2
x =

d

dt

∫ 1

0

[P − u2g(cQ)]ux +
1

2

∫ 1

0

[(cQ)β+1]tu
2
x

−
∫ 1

0

Ptux +

∫ 1

0

[u2g(cQ)]tux

=
d

dt

∫ 1

0

[P − u2g(cQ)]ux +

3∑
i=1

IIIi.

(5.14)

For III1, similar to (4.18), we have

III1 =− a∗(β + 1)

2

∫ 1

0

EuxQu2
x. (5.15)

Integrating (3.65)3 over [x, 1], and using (3.67), we have

Eux = P (c,Q)− u2g(cQ) +

∫ x

1

ut. (5.16)

Substituting (5.16) into (5.15), and using Hölder inequality, Cauchy inequality, (5.6) and (5.1), we
have

III1 ≤1

4

∫ 1

0

u2
t + C5

(∫ 1

0

ϕ
1
2Qu2

x

)2

+
a∗(β + 1)

2

∫ 1

0

Qu2
xu

2g(cQ)

≤1

4

∫ 1

0

u2
t + C5

(∫ 1

0

ϕ
1
2 c−β−1Q−βEu2

x

)2

+ C5δ
− β+1

γ−1

∫ 1

0

Eu2
x

∫ 1

0

c−βQ1−βEu2
x

≤1

4

∫ 1

0

u2
t + C5δ

− 2β
γ−1

(∫ 1

0

Eu2
x

)2

+ C5δ
− β+1

γ−1

(∫ 1

0

Eu2
x

)2

≤1

4

∫ 1

0

u2
t + C5δ

− β+1
γ−1

(∫ 1

0

Eu2
x

)2

,

(5.17)

where
1

2
− 4αβ + α

4
≥ 0 and

α(3− 4β)

4
≥ 0,

i.e., 4αβ + α ≤ 2 and β ≤ 3
4 , since α > 0.
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For III2, similar to (4.21), we have

III2 =γa∗
∫ 1

0

(1− c)γc−β−1Qγ−βEu2
x

≤C5

∫ 1

0

Eu2
x,

(5.18)

where
3γ − 4β − 1

4
≥ 0,

i.e., γ ≥ 4β+1
3 .

For III3, using Cauchy inequality, (3.65)2, (5.6) and (5.1), we have

III3 ≤C5

∫ 1

0

[
|uutg(cQ)|+ u2|cQt|

]
|ux|

≤1

4

∫ 1

0

u2
t + C5

∫ 1

0

u2(cQ)2 + C5δ
− β+1

γ−1

(∫ 1

0

Eu2
x

)2

≤1

4

∫ 1

0

u2
t + C5δ

− β+1
γ−1

∫ 1

0

Eu2
x + C5δ

− β+1
γ−1

(∫ 1

0

Eu2
x

)2

.

(5.19)

Substituting (5.17), (5.18) and (5.19) into (5.14), and integrating the result over [0, t] for t ≤ T1,
we have∫ t

0

∫ 1

0

u2
s +

∫ 1

0

Eu2
x ≤2

∫ 1

0

[P − u2g(cQ)]ux + C5δ
− β+1

γ−1

∫ t

0

(∫ 1

0

Eu2
x

)2

+ C5

≤1

2

∫ 1

0

Eu2
x + C5

∫ 1

0

Q2γ−β−1c−β−1 + C5

∫ 1

0

u4(cQ)1−β

+ C5δ
− β+1

γ−1

∫ t

0

(∫ 1

0

Eu2
x

)2

+ C5

≤1

2

∫ 1

0

Eu2
x + C5δ

− β+1
γ−1

∫ 1

0

Eu2
x

∫ 1

0

u2 + C5δ
− β+1

γ−1

∫ t

0

(∫ 1

0

Eu2
x

)2

+ C5,

where we have used (5.4), γ > β + 2, Cauchy inequality, (5.1), (5.6) and β ≤ 1. By using (5.1)
and the smallness assumption on δ

C5δ
1− β+1

γ−1 ≤ 1

4
, (5.20)

the second term on the right hand side can be controlled by the second term on the left hand side.
Thus, ∫ t

0

∫ 1

0

u2
s +

1

4

∫ 1

0

Eu2
x ≤C5δ

− β+1
γ−1

∫ t

0

(∫ 1

0

Eu2
x

)2

+ C5, (5.21)

where we have used (5.4) and γ > β + 2.
Note from (5.4) that

δ−
β+1
γ−1

∫ t

0

∫ 1

0

Eu2
x ≤ 3

2
δ1−

β+1
γ−1 .

Hence, combining (5.21), γ > β+2 and Gronwall inequality, it can be concluded that (5.13) holds.
�

Lemma 5.4. Under the assumptions of Proposition 5.1, it holds that

Q ≥ 2B̃δ
1

γ−1ϕ
3α
4

3
, (5.22)

for (x, t) ∈ [0, 1]× [0, T1].
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Proof. It follows from (3.65)2 that

d

dt

(
ϕ

3α
4

Q

)
= −Q−2ϕ

3α
4 Qt = a∗ϕ

3α
4 ux. (5.23)

Integrating (5.23) over [0, t], and using (5.16), we have

ϕ
3α
4

Q
=
ϕ

3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 ux =

ϕ
3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 Q−1−βc−β−1Eux

=
ϕ

3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 Q−1−βc−β−1

(
P − u2g +

∫ x

1

us

)
≤ϕ

3α
4

Q0
+ a∗

∫ t

0

ϕ
3α
4 (1− c)γQγ−1−βc−β−1 + a∗

∫ t

0

ϕ
3α
4 Q−1−βc−β−1

(∫ x

1

us

)
=
ϕ

3α
4

Q0
+ IV1 + IV2.

For IV1, we have

IV1 ≤ C5t, (5.24)

where we have used

γ ≥ β + 1 and
3γ − 4β − 1

4
≥ 0,

i.e., γ ≥ β + 1 and γ ≥ 4β+1
3 .

For IV2, we have

IV2 =a∗ϕ
3α
4 Q−1−βc−β−1

∫ x

1

u− a∗ϕ
3α
4 Q−1−β

0 c−β−1
0

∫ x

1

u0

+ a∗(1 + β)

∫ t

0

ϕ
3α
4 Q−2−βc−β−1Qs

∫ x

1

u

≤C5δ
1
2−

β+1
γ−1ϕ

1
2−

α(4β+1)
4 − (a∗)2(1 + β)

∫ t

0

ϕ
3α
4 Q−βc−β−1ux

∫ x

1

u

=C5δ
1
2−

β+1
γ−1ϕ

1
2−

α(4β+1)
4 + IV 1

2 + IV 2
2 + IV 3

2 ,

(5.25)

where

IV 1
2 = −(a∗)2(1 + β)

∫ t

0

ϕ
3α
4 Q−1−2βc−2β−2(Eux − P + u2g)

∫ x

1

u,

IV 2
2 = (a∗)2(1 + β)

∫ t

0

ϕ
3α
4 Q−1−2βc−2β−2u2g

∫ x

1

u,

and

IV 3
2 = −(a∗)2(1 + β)

∫ t

0

ϕ
3α
4 (1− c)γQγ−1−2βc−2β−2

∫ x

1

u.

For IV 1
2 , using (5.16), Hölder inequality, (5.1) and (5.13), we have

IV 1
2 ≤C5δ

− 1+2β
γ−1 ϕ− (4β+1)α

2

∫ t

0

∫ 1

x

|us|
∫ 1

x

|u|

≤C5δ
1
2−

1+2β
γ−1 ϕ1− (4β+1)α

2

∫ t

0

(∫ 1

0

u2
s

) 1
2

≤C5t
1
2 δ

1
2−

1+2β
γ−1 ϕ1− (4β+1)α

2 .

(5.26)
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For IV 2
2 , using (5.1), (5.4), (5.6) and Hölder inequality, we have

IV 2
2 ≤C5δ

1
2−

1+2β
γ−1 δ−

β+1
γ−1ϕ

1
2+α− (4β+1)α

2

∫ t

0

∫ 1

0

Eu2
x

≤C5δ
3
2−

3β+2
γ−1 ϕ

1+α−4αβ
2 .

(5.27)

Similarly, for IV 3
2 , we have

IV 3
2 ≤ C5tδ

1
2ϕ

1
2+

(3γ−8β−2)α
4 . (5.28)

Putting (5.26), (5.27) and (5.28) into (5.25), we have

IV2 ≤C5δ
1
2−

1+β
γ−1ϕ

1
2−

α(4β+1)
4 + C5t

1
2 δ

1
2−

1+2β
γ−1 ϕ1− (4β+1)α

2

+ C5δ
3
2−

3β+2
γ−1 ϕ

1+α−4αβ
2 + C5tδ

1
2ϕ

1
2+

(3γ−8β−2)α
4 .

Thus,

ϕ
3α
4

Q
≤ϕ

3α
4

Q0
+ C5t+ C5δ

1
2−

1+β
γ−1ϕ

1
2−

α(4β+1)
4 + C5t

1
2 δ

1
2−

1+2β
γ−1 ϕ1− (4β+1)α

2

+ C5δ
3
2−

3β+2
γ−1 ϕ

1+α−4αβ
2 + C5tδ

1
2ϕ

1
2+

(3γ−8β−2)α
4 .

(5.29)

Multiplying (5.29) by 2B̃δ
1

γ−1

3 , we have

2B̃δ
1

γ−1ϕ
3α
4

3Q
≤2

3
+ C5δ

1
γ−1 t+ C5δ

1
2−

β
γ−1ϕ

1
2−

α(4β+1)
4 + C5t

1
2 δ

1
2−

2β
γ−1ϕ1− (4β+1)α

2

+ C5δ
3
2−

3β+1
γ−1 ϕ

1+α−4αβ
2 + C5tδ

1
2+

1
γ−1ϕ

1
2+

(3γ−8β−2)α
4

≤2

3
+ C5δ

1
γ−1 t+ C5δ

1
2−

β
γ−1 + C5t

1
2 δ

1
2−

2β
γ−1 + C5δ

3
2−

3β+1
γ−1

+ C5tδ
1
2+

1
γ−1 ,

(5.30)

where we have used

α(4β + 1) ≤ 2, α(4β − 1) ≤ 1, and 2 + (3γ − 8β − 2)α ≥ 0.

Taking δ sufficiently small such that

2

3
+ C5δ

1
γ−1T + C5δ

1
2−

β
γ−1 + C5T

1
2 δ

1
2−

2β
γ−1 + C5δ

3
2−

3β+1
γ−1 + C5Tδ

1
2+

1
γ−1 ≤ 1, (5.31)

where we have used
1

2
>

2β

γ − 1
, and

3

2
>

3β + 1

γ − 1
,

i.e., γ > 1 + 4β and γ > 2(3β+1)
3 + 1.

By (5.30) and (5.31), we get (5.22). �

Remark 5.2. Note that it is the condition (5.31) that forces δ to depend on time T > 0. It is
also interesting to note the term C5t on the left hand side of (5.29). This term is made small by
multiplying by a term of the form δp for some appropriate choice of p. This illustrates one reason
why the δ-dependence appears in the lower limit as seen in (5.22).

From Lemmas 5.1, 5.2 and 5.4, we end the proof of Proposition 5.1.

Corollary 5.2. Under the assumptions of Theorem 3.2, it holds that

∥u(·, t)∥L∞ ≤ C6, (5.32)

and

∥ux(·, t)∥Lr ≤ C6, (5.33)

for t ∈ [0, T ] and some r ∈ (1, 2), where C6 = C6(δ,A1, Ã, B1, B̃).
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Proof. (5.32) can be easily obtained by (5.6) and (5.13). Following the proof of (4.31) one can
deduce (5.33). �

Corollary 5.3. Under the assumptions of Theorem 3.2, it holds that

∫ 1

0

ϕ(β−2)αQ2
t ≤ C6, (5.34)

for t ∈ [0, T ].

Proof. Similar to the proof of Corollary 4.3, (5.34) can be obtained by (3.65)2 and (5.13). �

Corollary 5.4. Under the assumptions of Theorem 3.2, it holds that
∫ 1

0

|Q(x, t)−Q(x, s)|2dx ≤ C6|t− s|2,∫ 1

0

|u(x, t)− u(x, s)|2dx ≤ C6|t− s|,
(5.35)

for t, s ∈ [0, T ].

Proof. Similar to the proof of Corollary 4.4, (5.35) can be obtained by (5.34), (5.13) and Hölder
inequality. �

Lemma 5.5. Under the assumptions of Theorem 3.2, it holds that∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 +
∫ t

0

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x ≤ C6, (5.36)

for t ∈ [0, T ].

Proof. Multiplying (5.10) by
(
u+ ( c

β+1Qβ

a∗β )x

)
ϕ1−αβ , and integrating by parts over [0, 1], we

have

1

2

d

dt

∫ 1

0

ϕ1−αβ |u+ (
cβ+1Qβ

a∗β
)x|2

=−
∫ 1

0

ϕ1−αβ

[
u+ (

cβ+1Qβ

a∗β
)x

]
[P (c,Q)]x +

∫ 1

0

ϕ1−αβ

[
u+ (

cβ+1Qβ

a∗β
)x

] [
u2g(cQ)

]
x

=V1 + V2.

(5.37)

For V1, we have

V1 =− d

dt

∫ 1

0

ϕ1−αβ (1− c)γQγ−1

a∗(γ − 1)
+ (1− αβ)

∫ 1

0

ϕ−αβPu

− γ

a∗β

∫ 1

0

ϕ1−αβ
(
βcβ+1Qβ−1Qx + (β + 1)cβcxQ

β
)[

(1− c)Q
]γ−1[

Qx(1− c)− cxQ
]

≤− d

dt

∫ 1

0

ϕ1−αβ (1− c)γQγ−1

a∗(γ − 1)
+ C6

∫ 1

0

P + C6

∫ 1

0

u2 − γ

a∗

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x

− γ

a∗β

∫ 1

0

ϕ1−αβQxcx(1− c)γ−1Qγ−1
[
(1− c)(β + 1)cβQβ − βcβ+1Qβ

]
+

γ(β + 1)

a∗β

∫ 1

0

ϕ1−αβcβc2xQ
β+γ(1− c)γ−1,
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where we have used (3.65)2, integration by parts, Cauchy inequality, (5.3), γ ≥ 8β
3 and (5.32).

This together with Cauchy inequality, (5.6) and the fact c = c0 gives

V1 ≤− d

dt

∫ 1

0

ϕ1−αβ (1− c)γQγ−1

a∗(γ − 1)
+ C6

∫ 1

0

P + C6

∫ 1

0

Eu2
x

− γ

2a∗

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x

+ C6

∫ 1

0

ϕ1−αβc20x(1− c0)
γ−2Qγ+βcβ−1

0 +
γ(β + 1)

a∗β

∫ 1

0

ϕ1−αβc20x
cβ0

1− c0
QβP.

(5.38)

For V2, using Cauchy inequality, (5.6), (5.4) and the fact c = c0, we have

V2 =
1

a∗β

∫ 1

0

ϕ1−αβ(cβ+1Qβ)x[u
2g(cQ)]x +

∫ 1

0

ϕ1−αβ [u2g(cQ)]xu

≤C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x|2 + C6

∫ 1

0

ϕ1−αβEu2
x(cQ)1−β

+ C6

∫ 1

0

ϕ1−αβu2|(cβ+1Qβ)x||(cQ)x|+ C6

∫ 1

0

Eu2
x

≤C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x + u|2 + C6

∫ 1

0

Eu2
x

+ C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(β + 1)cβcxQ
β + βcβ+1Qβ−1Qx||cxQ+ cQx|

≤C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x + u|2 + C6

∫ 1

0

Eu2
x

+ C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |cβ0 c20xQβ+1|+ C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβcβ+2
0 Qβ−1Q2

x.

Since

Qx =
(cβ+1Qβ)x
βcβ+1Qβ−1

− (β + 1)Qcx
βc

,

we have∫ 1

0

ϕ1−αβcβ+2
0 Qβ−1Q2

x ≤ C6

∫ 1

0

ϕ1−αβc−β
0 Q1−β |(cβ+1Qβ)x|2 + C6

∫ 1

0

ϕ1−αβcβ0Q
β+1c20x.

Then

V2 ≤C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x + u|2 + C6

∫ 1

0

Eu2
x, (5.39)

where we have used (5.3) and β ≤ 3
4 . Substituting (5.38) and (5.39) into (5.37), we get

1

2

d

dt

∫ 1

0

ϕ1−αβ

(
|u+ (

cβ+1Qβ

a∗β
)x|2 +

(1− c)γQγ−1

a∗(γ − 1)

)
+

γ

2a∗

∫ 1

0

ϕ1−αβ(1− c)γQγ+β−2cβ+1Q2
x

≤C6

∫ 1

0

P + C6

∫ 1

0

Eu2
x + C6

∫ 1

0

ϕ1−αβc20x(1− c0)
−2Qβcβ−1

0 P

+
γ(β + 1)

a∗β

∫ 1

0

ϕ1−αβc20x
cβ0

1− c0
QβP + C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x + u|2

≤C6

∫ 1

0

P + C6

∫ 1

0

Eu2
x + C6

∫ 1

0

ϕ1−α
4 c20xP + C6

∫ 1

0

Eu2
x

∫ 1

0

ϕ1−αβ |(cβ+1Qβ)x + u|2,

(5.40)

where we have used (5.3).
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From (5.11) and the proof of Lemma 5.2, we get∫ t

0

P ≤ C6. (5.41)

By (5.40), (5.4), (5.41), (3.68) and Gronwall inequality, we get (5.36). �
Similar to (4.43), we get the following corollary.

Corollary 5.5. Under the assumptions of Theorem 3.2, it holds that∫ 1

0

|Qx| ≤ C6, (5.42)

for t ∈ [0, T ].

Following the similar arguments with the last section, we get a unique weak solution to (3.65)-
(3.67) in [0, 1]× [0, T ]. This completes the proof of Theorem 3.2.
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