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Abstract. In this work we show existence of global weak solutions for a two-phase gas-liquid model where the
gas phase is represented by a general isothermal pressure law whereas the liquid is assumed to be incompressible.
To make the model relevant for pipe and well-flow applications we have included external forces in the momentum
equation representing respectively wall friction forces and gravity forces. The analysis relies on a proper combination
of the methods introduced in [9, 10] where a two-phase gas-liquid model without external forces was studied for
the first time, and techniques that have been developed for the single-phase gas model. As a motivation for further
research, some numerical examples are also included demonstrating the ability of the model to describe the ascent
of a gas slug due to buoyancy forces in a vertical well. Characteristic features like expansion of the moving gas slug
as well as counter-current flow mechanisms (i.e., liquid is moving downward due to gravity and gas is displaced
upward) are highlighted. These examples are highly relevant for modeling of gas-kick flow scenarios which represent
a major concern in the context of oil and gas well control operations.
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1. Introduction and examples. This work is devoted to a study of a one-dimensional two-
phase model of the drift-flux type. The model is frequently used in industry simulators to simulate
unsteady, compressible flow of liquid and gas in pipes and wells [1, 4, 5, 7, 19, 23, 26, 31]. The
model consists of two mass conservation equations corresponding to each of the two phases gas
(g) and liquid (l) and one equation for the conservation of the momentum of the mixture and is
given in the following form:

∂t[αgρg] + ∂x[αgρgug] = 0
∂t[αlρl] + ∂x[αlρlul] = 0(1.1)

∂t[αgρgug + αlρlul] + ∂x[αgρgu
2
g + αlρlu

2
l + p] = q + ∂x[ε∂xumix], umix = αgug + αlul,

where ε ≥ 0. The model is supposed under isothermal conditions. The unknowns are: ρl, ρg the
liquid and gas densities; αl, αg volume fractions of liquid and gas satisfying αg + αl = 1; ul, ug

fluid velocities of liquid and gas; p common pressure for liquid and gas; and q representing external
forces like gravity and friction. Since the momentum is given only for the mixture, we need an
additional closure law, a so-called hydrodynamical closure law, which connects the two phase
velocities. More generally, this law should be able to take into account the different flow regimes.
In addition, we need a thermodynamical equilibrium model which specifies the fluid properties.
More details will be given in the next section. Otherwise, we refer to [6, 7, 13, 23, 25, 26, 28, 31]
for various numerical schemes which have been developed for the study of the drift-flux model.
See also [8] for a study of the relation between the drift-flux model and the more general two-fluid
model where two separate momentum equations are used instead of a mixture momentum equation
[4, 19].

In [9, 10] we studied a simplified version of the model (1.1) obtained by assuming that fluid
velocities are equal, ug = ul = u, and by neglecting the external forces, i.e., q = 0. In addition, we
neglected certain gas effects by considering a simplified momentum equation where acceleration
terms depend solely on the liquid phase. This is motivated by the fact that liquid phase density
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typically is much higher than gas phase density. Consequently, we considered a model in the form

∂t[αgρg] + ∂x[αgρgu] = 0
∂t[αlρl] + ∂x[αlρlu] = 0(1.2)

∂t[αlρlu] + ∂x[αlρlu
2] + ∂xp = ∂x[ε∂xu], p, ε ≥ 0.

Assuming a polytropic gas law relation

(1.3) p = Cργ
g ,

with γ > 1 for the gas phase whereas the liquid phase is treated as an incompressible fluid, i.e.,
ρl = Const, we get a pressure law of the form

(1.4) p(n,m) = C
( n

ρl −m

)γ

,

where we use the notation n = αgρg and m = αlρl. In particular, we see that there is a possibly
singular behavior associated with pressure at transition to pure liquid phase, i.e., αl = 1, which
yields m = ρl and n = 0. In addition, we have the possibility for vacuum as in the single-phase
gas model, i.e., that ρg = 0 which implies that n = 0 and p = 0.

Different forms for the viscosity function ε have been considered. In [9] we used

(1.5) ε = ε(m) =
mθ

(ρl −m)θ+1
, θ ∈ (0, 1/3),

whereas in [10] we considered

(1.6) ε = ε(n, m) =
nθ

(ρl −m)θ+1
, θ ∈ (0, 1/3).

More recently, Yao and Zhu [34] also studied the model (1.2) in a flow regime where the viscosity
coefficient ε > 0 was assumed to take the form (1.5). They gave a proof of the global existence
and uniqueness of weak solutions when θ is in (0, 1] and thereby improved the result of [9]. They
also gave an interesting asymptotic behavior result, and obtained the regularity of the solutions
by the energy method. The same authors also presented a nice result for the same gas-liquid
model (but constant viscosity term) when the masses m,n connected continuously to a vacuum
state m = n = 0 [35]. A key point in the analysis of the model (1.2) and exploited in the above
mentioned works, is to rewrite it in terms of Lagrangian coordinates (ξ, τ). This gives us a model
of the following form:

∂τn + (nm)∂ξu = 0
∂τm + m2∂ξu = 0(1.7)

∂τu + ∂ξp(n,m) = ∂ξ(ε(m)m∂ξu),

which also clearly can be written as

∂τ c = 0
∂τm + m2∂ξu = 0(1.8)

∂τu + ∂ξp(c,m) = ∂ξ(ε(m)m∂ξu), c =
n

m
.

A motivation for the form of the viscosity term ε. Motivated by lab experiments
different examples of a mixture viscosity term µm, where the gas-liquid mixture is considered as
a single-phase fluid, have been proposed. One of them is the following correlation [27, 32]:

(1.9)
1

µm
=

y

µg
+

1− y

µl
, (McAdams et al.’s model).
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Here y is defined as mass flux fraction

(1.10) y =
αgρgug

αgρgug + αlρlul
.

For equal fluid velocities ul = ug this corresponds to y = n
n+m .

If we assume that n << m (i.e., the liquid phase is dominating), then y = n
n+m ≈ n

m := c for
0 ≤ y ≤ 1. Moreover, typically the liquid viscosity µl is considerable larger than the gas viscosity
µg, see (2.6). Consequently, µl >> µg and we may approximate as follows by using the viscosity
model of McAdams et al (1.9):

(1.11)
1

µm
=

y

µg
+

1− y

µl
≈ y

µg
=

c

µg
.

Directly motivated by the traditional single-phase viscosity term of the form E = (µρ)θ+1 = Cρθ+1

in Lagrangian coordinates, see for example [29, 22, 24, 36, 30, 21], we may propose a similar
viscosity coefficient E = (µmρm)θ+1 for the gas-liquid mixture model (1.1) where µm is a mixture
viscosity defined by, e.g., (1.9), and ρm is a suitable mixture density. If we define a mixture density
ρm as

(1.12) ρm = [(αgρg)θ+1 + (αlρl)θ+1]
1

θ+1 ,

and combine it with the approximation (1.11), then E = (µmρm)θ+1 corresponds to

E = (µmρm)θ+1 = µθ+1
m [(αgρg)θ+1 + (αlρl)θ+1] = (µmαgρg)θ+1 + (µmαlρl)θ+1

= (αgρlµg)θ+1
(1

c

n

ρl −m

)θ+1

+ (αlµg)θ+1
(ρl

c

)θ+1

= (αgρlµg)θ+1
( m

ρl −m

)θ+1

+ (αlµg)θ+1
(ρl

c

)θ+1

:= E1 + E2,

where we have used the fact that ρg = ρl
n

ρl−m , see (3.4). Recalling that ρl is constant and that
c = n

m = c(x) is constant in time according to the first equation of (1.8), the most ”dynamic” part
of this viscosity term is the first part

(1.13) E1 = (αgρlµg)θ+1
( m

ρl −m

)θ+1

.

Comparing (1.13) with (1.5) and taking into account that the viscosity term in terms of the
Lagrangian description takes the form E = ε(m)m, see (1.8), we see that E1 coincides with the
one that is studied in [9] except that the coefficient (αgρlµg)θ+1 has been replaced by a constant.

Purpose of this work. The objective of this work is two-fold.
A) Firstly, we demonstrate some simple but highly relevant flow cases from an engineering

point of view. More precisely, we illustrate by numerical calculations that the drift-flux
model (1.1) can be used to study how a gas slug, initially located at the bottom of a
vertical well, will ascend driven by the buoyancy forces. The dynamics are determined
by a relatively complicated interplay between friction forces, gravity, and slip relation.
Strong gas slug expansion is possible near the surface and transition between two-phase
and single-phase regions typically will occur. This type of flow is highly relevant for gas
kick scenarios, that ultimately can lead to blowout [1], as well as for the study of volcanic
eruption mechanisms [20].

B) Secondly, we provide mathematical analysis of a simplified gas-liquid model similar to
(1.2) but with two important extensions relevant for the simulation cases demonstrated
in A): (i) inclusion of a frictional force term and gravity term, compare (1.14) with (1.7);
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and (ii) use of a general equation of state for the gas phase. In particular, we derive
an existence result for a class of weak solutions by employing a proper combination of
the techniques introduced in [9, 10] for the study of (1.2) and single-phase analysis as
described, e.g. in [36, 37, 38, 33]. We refer to the remark after Theorem 3.1 for more
details concerning additional difficulties due to the new terms and how these terms are
handled within the chosen mathematical framework.

To be precise, we study the following gas-liquid model described in terms of Lagrangian variables
where we replace (ξ, τ) by (x, t):

∂tn + (nm)∂xu = 0
∂tm + m2∂xu = 0(1.14)

∂tu + ∂xp(n,m) = −fm2u|u|+ g + ∂x(E(m)∂xu), x ∈ (0, 1),

with

(1.15) p(n,m) = P
( n

ρl −m

)
,

where P is a general pressure function whose properties are specified in Section 3.2, see (3.27)–
(3.29). Moreover, the viscosity term is the same as studied in [9, 34]

(1.16) E(m) := ε(m)m =
( m

ρl −m

)θ+1

, 0 < θ < 1/2.

We here note that θ is allowed to be in a larger interval compared to the works [9, 34]. Boundary
conditions are given by

(1.17) [p(n,m)− E(m)∂xu](0, t) = 0, u(1, t) = 0,

whereas initial data are

(1.18) n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (0, 1).

Hopefully the combination of (A) and (B) can serve as a motivation for other researchers to deepen
the insight into the mathematical properties of the general drift-flux model (1.1) as well as bring
forth further development of the drift-flux model itself to make it more applicable for various large
scale multiphase flow scenarios. Before we end this section we recall that the key results leading to
Theorem 3.1 is the fact that we can derive a series of a priori estimates for approximate solutions of
(1.14)–(1.18) and a corresponding limit procedure. The main estimates are to obtain appropriate
upper and lower pointwise bounds on the masses m and n. These estimates must be sharp enough
to handle the potential singular behavior associated with pressure p(n,m) and viscosity E(m).
For that purpose we introduce a transformed version of the model, see (4.8)–(4.11), described
in terms of new variables (c,Q, u). One crucial step is to obtain the result of Lemma 4.6 which
allows us to derive more control on Q, as expressed by Lemma 4.7. Ultimately, this gives us the
pointwise lower bound on Q as described by Lemma 4.8. These bounds can then be transferred
back to sufficient control on the masses m and n. Finally, equipped with the regularity results
of Lemma 4.12–4.14 we can apply standard compactness arguments to derive convergence of the
approximate solutions to limit functions that can be shown to be a weak solution of (1.14)–(1.18).

The rest of the paper is organized as follows: In Section 2 we present more details for the gas-
liquid model we study in a setting relevant for well control operations. We also present numerical
calculations of two characteristic gas slug flow examples where gravity and frictional forces play
an important role. In Section 3, motivated by the numerical examples we derive the simplified
version of the full model (1.1) with inclusion of friction and gravity, as given by (1.14). We present
the model in appropriate Lagrangian variables and give the main assumptions as well as the main
existence result, Theorem 3.1. Section 4 is devoted to the various a priori estimates which in turn
imply compactness and convergence to weak solutions.
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Fig. 2.1. Top: The behavior of the gas slug (left) and corresponding pressure (right) as the gas slug is moving
upwards. Note the increase in pressure as the gas slug is ascending towards the top. Bottom: The superficial
velocity of gas (αgvg) (blue) and liquid (αlvl) (red), respectively, reflect the upward movement of the gas slug and
the downward behavior of the surrounding liquid. Note that this problem is relatively complicated to solve as it
involves strong nonlinear phenomena associated with counter-current flow and challenges associated with transition
from two-phase to single-phase flow.

2. Application of the drift-flux model for well control operations.

2.1. Specification of the model (1.1). To close the system (1.1), we need to include the
following additional equations: The volume fractions are related by

(2.1) αl + αg = 1.

Thermodynamical laws specify fluid properties such as densities ρl, ρg and viscosities µl, µg. In
particular we will assume that the liquid density has the following form

(2.2) ρl = ρl,0 +
p− pl,0

a2
l

,

where al = 1000 [m/s] is the velocity of sound in the liquid phase and ρl,0 and pl,0 are given
constants. Here we will assume that ρl,0 = 1000 [kg/m3] and pl,0 = 1 [bar]. It is often assumed
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Fig. 2.2. A visualization of the gas volume fraction in x-t plan. The plot shows the linear trend associated
with the ascension velocity of the gas slug. Ultimately, all the gas will be localized in a pure single-phase gas region
at the top since the well is closed.

that the liquid is incompressible, i.e.

(2.3) ρl = ρl,0.

Typically, we assume that we consider a polytropic, isentropic ideal gas characterized by

(2.4) p(ρg) = a2
gρ

γ
g , γ ≥ 1.

In other words, we have

(2.5) ρg =
(

p

a2
g

)1/γ

, γ ≥ 1,

where ag = 316 [m/s] is the velocity of sound in the gas phase. Furthermore, the viscosity for
liquid and gas are assumed to be

(2.6) µl = 5 · 10−2 [Pa s], µg = 5 · 10−6 [Pa s].

Since we only have one momentum equation for the mixture of the two phases, the model must
be supplemented with an additional hydrodynamical closure law whose purpose is to determine
the fluid velocities ul, ug through a so-called slip relation. We may assume that the slip relation
can be expressed by a general relation

(2.7) f(αg, ul, ug, ρg, ρl) = 0.

A commonly used slip relation, see for example [1, 7], is given by

(2.8) f(αg, ul, ug, ρg, ρl) = ug − c0umix − c1 = 0,

where

umix = αlul + αgug,

and c0, c1 are flow dependent coefficients. c0 is the so-called profile parameter (or distribution
coefficient) whereas c1 is the drift velocity. The gas concentration tends to be highest in the center
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of the well for many flow scenarios, where the local mixture velocity is also fastest. Thus, when
integrated across the area of the the well, the average velocity of the gas tends to be greater
than that of the liquid. This effect is represented by the c0 parameter. c1, on the other hand,
represents the buoyancy effect. Important characteristics of the different flow patterns can be
captured through appropriate choices for these two parameters. For the source term q we have
two components

q = Ff + Fg,

where

(2.9) Fg = g(αlρl + αgρg)sinθ

represents the gravity force where g is the gravitational constant and θ is the inclination. Moreover,
Ff represents friction forces between the wall and the fluids. Typically, see for example [7] and
references therein, the following simple expression for Ff is assumed

(2.10) Ff = −32umix|umix|µmix

d2
,

where d is the inner diameter and the mixed viscosity µmix is given by

µmix = αlµl + αgµg,

where the viscosity µl, µg are given by (2.6). In order to see how pressure p is related to the masses
m = αlρl and n = αgρg we observe that the relation (2.1) can be written as

(2.11)
n

ρg(p)
+

m

ρl(p)
= 1.

Using this, we can express the pressure p as a function P of n and m, i.e.

(2.12) p = P (n,m).

In particular, for the choices (2.2) and (2.5) with γ = 1, we see that (2.12) corresponds to solving
a second order polynomial which has a unique physical relevant solution. More generally, for
γ > 1 the existence and uniqueness of solutions leading to a well-defined pressure p require finer
investigations. See for example [14, 15] and references therein for more information.

2.2. The ascent of a gas slug in the context of well control operations. Various
gas kick simulators have been developed for the purpose of studying well control aspects dur-
ing exploratory and development drilling subject to high pressure and temperature bottomhole
conditions. Precise predictions of wellbore pressures, liquid/gas volumes as well as flow rates at
the top of the well represent central issues. The Deepwater Horizon oil spill that took place in
2010 is a strong reminder of the need of sufficient well control. Clearly, the possibility of blowout
occurrences needs to be mitigated in order to avoid human casualties, financial losses (production
stop and equipment losses), and finally but not least, environmental damage. We refer to [1] and
references therein for more information pertaining to this subject. In particular, in [1] the simu-
lations are based on the drift-flux model (1.1) equipped with density-pressure relations similar to
those used in the present work as well as a slip law that is based on the formulation (2.8).

In the following we consider two different examples which involve the ascent of a gas slug
initially located at the bottom of a 100 m deep well; the first example assumes that the well is
closed at the top, whereas the second example assumes that the well is open at the top. The
wellbore has a diameter of d = 0.06 cm, otherwise we use the data as described in Section 2.1. In
particular, we use a slip relation (2.8) with c0 and c1 defined as

(2.13) c0 = 1.2− 0.2αg, c1 = 2(0.2 + αg)(1− αg).

We have also used γ = 1 in (2.4) which implies that the pressure (2.12) is obtained as the solution
of a second order polynomial. We rely on the numerical methods presented in [6, 7] for the
following numerical examples.
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Fig. 2.3. Top: The gas volume fraction (left plot) reflects the strong expansion effect as the gas slug is
approaching the surface where the pressure is equal to ambient pressure. Note the drop in pressure (right plot)
as the gas slug is approaching the top. Note also the viscous effect associated with the falling film of liquid that
surrounds the gas slug that leads to a lower pressure gradient locally in the slug region. Bottom: The strong
expansion of gas close to the open top leads to a strong increase in the gas and liquid superficial velocities.

Example 1: Gas slug in a closed well. In this example we consider the ascent of a gas
slug initially located at the bottom of a 100 m deep well. The well is closed at the bottom as well
as at the top. Due to the slip law that is used, the gas slug will immediately start ascending due
to the fact that the heavy liquid falls towards the bottom. We refer to Fig. 2.1 for a visualization
of the gas volume fraction αg, pressure p and superficial velocities (αgvg) and (αlvl) for different
times. Finally, the gas will be accumulated at the top of the closed well. The form of the gas slug
as it ascends (length, height, and shape) is strongly related to the slip coefficients c0 and c1 given
by (2.13). See also Fig. 2.2 for a plot of the gas volume fraction in space and time.

Example 2: Gas slug in an open well. In Fig. 2.3 we consider the same flow case as in
Example 1, except that the well now is open at the top. This implies that the pressure is kept fixed
at the ambient pressure (1 bar) at the top. As the gas slug ascends the drop in pressure results in
an expansion effect clearly seen from the plot of the gas volume fraction (top, left). At the same
time there will be a rather strong increase in fluid velocities (bottom). This simulation case gives
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Fig. 2.4. A visualization of the gas volume fraction in x-t plan. The plot shows the strong expansion effect
as the slug is approaching the surface.

an indication of the driving mechanisms as a gas slug approaches the surface and expands. See
also Fig. 2.4 for a plot of the gas volume fraction in space and time.

3. An existence result for a viscous gas-liquid model relevant for well operations.
Development of accurate and robust discretization techniques for solving the system (1.1) is natu-
rally related to a good understanding of its mathematical features (long-time behavior, estimates
of various quantities, compactness, etc.). In particular, clearly it is of interest to obtain existence,
stability, and uniqueness results of various versions of the model (1.1).

3.1. The gas-liquid model. In this work we apply the same simplifying assumptions as
used in the previous works [9, 10, 34].

(i) We use a simplified momentum equation by neglecting the gas-related terms. This is
motivated by the fact that the liquid density ρl is much higher than the gas density ρg,
typically, ρl/ρg = O(1000). The mixture momentum equation we consider is then in the
form

(3.1) ∂t[mul] + ∂x[mu2
l + p(n,m)] = Ff + Fg + ∂x[ε(m)∂xul]

where, in view of (2.9) and (2.10),

Ff = −32(αlµl)
d2

(αlul)|αlul| := −fm3ul|ul|, Fg = g(αlρl) sin θ := gm,

for appropriate constants f, g > 0. Here we use the fact that the liquid density ρl is
constant. We consider the model in a domain [a(t), b] such that the positive direction
coincides with the direction of the gravity force. The left point x = a(t) is moving
whereas the right point x = b is fixed. This is mostly motivated by the fact that we want
to make use of a mathematical framework similar to that employed in [33].

(ii) We assume that the model is used for a no-slip flow regime, i.e., ug = ul = u, which
corresponds to the choice c0 = 1 and c1 = 0 in (2.8).

Hence, we consider the model

∂tn + ∂x[nu] = 0
∂tm + ∂x[mu] = 0(3.2)

∂t[mu] + ∂x[mu2 + p(n,m)] = −fm3u|u|+ gm + ∂x[ε(m)∂xu], x ∈ (a(t), b)
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together with the constitutive relations

(3.3) αl + αg = 1, ρl = Constant, P = P (ρg),

where P represents a general pressure law for the gas phase whose properties are specified in
Section 3.2, see (3.27)–(3.29). Clearly, P becomes a function of the masses n and m by observing
that

(3.4) ρg =
n

αg
=

n

1− αl
= ρl

n

ρl −m
= k1

n

ρl −m
, k1 = ρl.

Here we again take advantage of the fact that the liquid is assumed to be incompressible. Conse-
quently,

(3.5) p(n,m) = P
(
k1

n

ρl −m

)
.

To conclude, in view of (3.2)–(3.5), we shall in the rest of this paper deal with the following
compressible gas-incompressible liquid two-phase model:

∂tn + ∂x[nu] = 0
∂tm + ∂x[mu] = 0(3.6)

∂t[mu] + ∂x[mu2] + ∂xp(n,m) = −fm3u|u|+ gm + ∂x[ε(m)∂xu], x ∈ (a(t), b),

where

p(n,m) = P
(
k1

n

ρl −m

)
,(3.7)

ε(m) = k2
mθ

(ρl −m)θ+1
, θ ∈ (0, 1/2),(3.8)

where k1 and k2 are constants. One special feature of the above two-phase model (3.6)–(3.8) is
the possible singularity associated with the pressure law at transition to pure liquid flow, that is,
when m = ρlαl = ρl, or vacuum in the gas phase corresponding to ρg = 0.

As already mentioned, we here propose to study the model (3.6) in a free boundary setting
where the top point (relatively the gravity force) x = a(t) is moving whereas the bottom point
x = b is fixed. Note that x = a(t) is the particle path separating the two-phase mixture and the
vacuum state n = m = 0 and is characterized as follows:

(3.9)
d

dt
a(t) = u(a(t), t), and [p(n, m)− ε(m)∂xu](a(t), t) = 0.

Furthermore, the initial data is specified as follows

(3.10) n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (a0, b),

where a0 = a(0). The boundary condition is set as follows:

(3.11) [p(n,m)− ε(m)∂xu]|x=a(t) = 0, u|x=b = 0.

In this work we shall assume that the initial masses n0(x),m0(x) connect to vacuum discontinu-
ously, i.e., inf [0,1] n0(x), inf [0,1] m0(x) ≥ C0 > 0 for a positive constant C0.

Following along the line of previous studies for the single-phase Navier-Stokes equations [29,
22, 24], it is convenient to replace the moving domain [a(t), b] by a fixed domain by introducing
suitable Lagrangian coordinates. First, in view of the particle paths Xt(x) given by

dXt(x)
dt

= u(Xt(x), t), X0(x) = x,
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the system (3.6) takes the form

dn

dt
+ nux = 0

dm

dt
+ mux = 0(3.12)

m
du

dt
+ p(n,m)x = −fm3u|u|+ gm + (ε(m)ux)x.

Next, we introduce the coordinate transformation

(3.13) ξ =
∫ x

a(t)

m(y, t) dy, τ = t,

such that the free boundary x = a(t) and the fixed boundary x = b, in terms of the (ξ, τ) coordinate
system, are given by

(3.14) ξa(t)(τ) = 0, ξb(τ) =
∫ b

a(t)

m(y, t) dy =
∫ b

a0

m0(y) dy = const,

where
∫ b

a0
m0(y) dy is the total liquid mass initially, which we normalize to 1. Applying (3.13) to

shift from (x, t) to (ξ, τ) in (3.12), we get

nτ + (nm)uξ = 0
mτ + (m2)uξ = 0
uτ + p(n,m)ξ = −fm2u|u|+ g + (ε(m)muξ)ξ, ξ ∈ (0, 1), τ ≥ 0,

where boundary conditions, in light of (3.11), are given by

[p(n, m)− ε(m)m∂ξu](0, τ) = 0, u(1, τ) = 0.

In addition, we have the initial data

n(ξ, 0) = n0(ξ), m(ξ, 0) = m0(ξ), u(ξ, 0) = u0(ξ), ξ ∈ (0, 1).

In the following, we find it convenient to replace the coordinates (ξ, τ) by (x, t) such that the
model we shall work with in the rest of this paper is given in the form

∂tn + (nm)∂xu = 0
∂tm + m2∂xu = 0(3.15)

∂tu + ∂xp(n,m) = −fm2u|u|+ g + ∂x(E(m)∂xu), x ∈ (0, 1),

with

(3.16) p(n,m) = P
( n

ρl −m

)

and

(3.17) E(m) := ε(m)m =
( m

ρl −m

)θ+1

, 0 < θ < 1/2,

where we, for simplicity, have set the constants k1, k2 associated with p and ε to be k1 = k2 = 1.
Moreover, boundary conditions are given by

(3.18) [p(n,m)− E(m)∂xu](0, t) = 0, u(1, t) = 0,

whereas initial data are

(3.19) n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (0, 1).
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3.2. Main result. Before we state the main result for the model (1.14)–(1.18), we describe
the notation we apply throughout the paper. W 1,2(I) = H1(I) represents the usual Sobolev space
defined over I = (0, 1) with norm ‖ ·‖W 1,2 . Moreover, Lp(K,B) with norm ‖ ·‖Lp(K,B) denotes the
space of all strongly measurable, pth-power integrable functions from K to B where K typically
is subset of R and B is a Banach space. In addition, let Cα[0, 1] for α ∈ (0, 1) denote the Banach
space of functions on [0, 1] which are uniformly Hölder continuous with exponent α. Similarly, let
Cα,α/2(DT ) represent the Banach space of functions on DT = [0, 1] × [0, T ] which are uniformly
Hölder continuous with exponent α in x and α/2 in t.

Assumptions. The above model is subject to the following assumptions.

(3.20) 0 < θ <
1
2
,

(3.21) c0(x) ∈ L∞([0, 1]), inf
x∈[0,1]

[c0(x)] > 0, (c0)x ∈ L∞([0, 1]),

(3.22) Q0(x) ∈ L∞([0, 1]), inf
x∈[0,1]

[Q0(x)] > 0, (Qθ
0)x ∈ L2([0, 1]),

(3.23) u0(x) ∈ L∞([0, 1]),

(3.24) P (c0Q0)x ∈ L2([0, 1]), (Qθ+1
0 u0,x)x ∈ L2([0, 1]).

The function Q0 is given by Q0 = Q(m0) where Q(s) = s
ρl−s , and c0 = n0

m0
. The role of these

functions are explained in Section 4.1. As a consequence of assumption (3.22) it is clear that

Q−1
0 (x) ≤ C,

and consequently,
∫ 1

0
Qp

0dx < ∞ for p < 0. This is used repeatedly in Section 4. Note that the
lower and upper bounds of c0 and Q0 (as well as bounds on c0,x and Q0,x) formulated in (3.21)
and (3.22) are satisfied by assuming

(3.25) inf
[0,1]

n0 > 0, sup
[0,1]

n0 < ∞, and inf
[0,1]

m0 > 0, sup
[0,1]

m0 < ρl,

and

(3.26) (n0)x, (m0)x ∈ L∞([0, 1]).

The general pressure function P is assumed to satisfy general conditions similar to those assumed
in the single-phase work [33]. More precisely, we assume that P as a function of s ∈ R∞0 = [0,∞)
satisfies:

∫ 1

0

P (s)
s2

ds < ∞,(3.27)

P (0) = 0, P ′(0) = 0; P (s), P ′(s), P ′′(s) > 0, ∀s ∈ R∞ = (0,∞),(3.28)

P (s), P (s)2s−1−θ,
P (s)

s
, P ′(s)s1−θ ∈ L∞loc(R∞0 ).(3.29)

Then we can state the main theorem.
Theorem 3.1 (Main Result). Under the assumptions (3.20)–(3.29) the initial-boundary prob-

lem (1.14)–(1.18) possesses a global weak solution (n,m, u) in the sense that for any T > 0,
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(A) we have the following regularity:

n,m ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ]; L2([0, 1])),
u ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ]; H1([0, 1])),

E(m)ux ∈ L∞([0, 1]× [0, T ]) ∩ C
1
2 ([0, T ]; L2([0, 1])).

In particular, the following pointwise estimates holds for µ > 0:

µ−1 inf
[0,1]

(c0) ≤ n(x, t) ≤ µ sup
[0,1]

(c0), c0 :=
n0

m0
,

0 < µ−1 ≤ m(x, t) ≤ µ < ρl, ∀(x, t) ∈ [0, 1]× [0, T ],

where the positive constant µ only depends on time T and the regularity of the initial data
as stated in the assumptions.

(B) Moreover, the following weak formulation of (1.14) hold:
∫ ∞

0

∫ 1

0

[
nφt − nmuxφ

]
dx dt +

∫ 1

0

n0(x)φ(x, 0) dx = 0
∫ ∞

0

∫ 1

0

[
mϕt −m2uxϕ

]
dx dt +

∫ 1

0

m0(x)ϕ(x, 0) dx = 0(3.30)
∫ ∞

0

∫ 1

0

[
uψt + (p(n,m)− E(m)ux)ψx − (fm2u|u| − g)ψ

]
dx dt

+
∫ 1

0

u0(x)ψ(x, 0) dx = 0,

for any test function φ, ϕ, ψ ∈ C∞0 (D), with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.
The proof of Theorem 3.1 is based on a priori estimates for the approximate solutions of (1.14)–

(1.18) and a corresponding limit procedure. As in [9, 10] we can obtain pointwise upper and lower
limits for m that is transferred also to n. This in turn opens up for all the Lemmas 4.11–4.14,
which allow use of standard compactness arguments.

The main idea in the following analysis, which also was employed in the works [9, 10, 34], is to
focus on the quantity Q(m) = m/(ρl−m) which connects pressure P (n,m) and viscosity coefficient
E(m). It turns out that we naturally can reformulate the initial boundary value problem (IBVP)
(1.14)–(1.18) described in terms of the variables (n,m, u) into a corresponding IBVP (4.8)–(4.11)
described in terms of the variables (c,Q, u) where c = n/m. However, the appearance of the
friction term −fm2u|u| requires special care. The following new aspects compared to the works
[9, 10, 34] are highlighted:

• Thanks to the fact that m = ρlQ/(1+Q) < ρl for all Q ≥ 0, we can directly get the upper
bound on Q as described in Lemma 4.2 by means of the energy estimate of Lemma 4.1.

• As far as Lemma 4.3 and Lemma 4.6 are concerned, it turns out that the friction term
appears as a non-negative term on the left hand side of the inequality, similar to the
energy estimate of Lemma 4.1. The higher order estimate of the velocity u as given by
Lemma 4.3 is then employed to control the friction term in Lemma 4.4.

• New arguments must be introduced due to the frictional term to obtain the result of
Lemma 4.11. In particular, we must show that W (t) =

∫ 1

0
|(h(Q)u)x|dx is in L1([0, T ])

for h(Q) given by (4.9).
• The analysis demonstrates that the gravity term and the general pressure function P

for the gas-liquid model are handled by techniques similar to those used in [33] for the
single-phase Navier-Stokes model.

4. A priori estimates. In this section we first describe how to obtain a more convenient
representation of our model. Then we give a series of a priori estimates that will imply existence
of weak solutions.
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4.1. Transformed models. We introduce the variable

(4.1) c =
n

m
,

and see from the first two equations of (1.14) that

∂tc =
1
m

nt − n

m2
mt = −nm

m
ux +

nm2

m2
ux = 0.

Consequently, the model (1.14)–(1.18) then can be written in terms of the variables (c,m, u) in
the form

∂tc = 0
∂tm + m2∂xu = 0(4.2)

∂tu + ∂xp(c,m) = −fm2u|u|+ g + ∂x(E(m)∂xu), x ∈ (0, 1),

with

(4.3) p(c,m) = P
( mc

ρl −m

)

and

(4.4) E(m) =
( m

ρl −m

)θ+1

, 0 < θ < 1/2.

Moreover, boundary conditions are given by

(4.5) [p(c,m)− E(m)ux](0, t) = 0, u(1, t) = 0, t ≥ 0,

whereas initial data are

(4.6) c(x, 0) = c0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (0, 1).

It is clear from the functions P and E that m must obey an upper limit strong enough to ensure that
these functions do not blow up. For that purpose we introduce the quantity Q(m) = m/(ρl −m)
and deduce a reformulated model in terms of the variables (c,Q, u). That is, we introduce the
variable

(4.7) Q(m) =
m

ρl −m
=

αl

1− αl
> 0, (which implies that m = ρl

Q

1 + Q
),

implicitly assuming m > 0 and m < ρl, and observe that

Q(m)t =
( m

ρl −m

)
t
=

( 1
ρl −m

+
m

(ρl −m)2
)
mt

=
ρl

(ρl −m)2
mt = −ρl

m2

(ρl −m)2
ux = −ρlQ(m)2ux,

in view of the second equation of (4.2). Consequently, we rewrite the model (4.2) in the form

∂tc = 0
∂tQ + ρlQ

2ux = 0(4.8)
∂tu + ∂xp(c,Q) = −h(Q)u|u|+ g + ∂x(E(Q)∂xu), x ∈ (0, 1),

with

p(c,Q) = P (cQ),
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and

(4.9) h(Q) = fρ2
l

( Q

1 + Q

)2

,

and

E(Q) = Qθ+1, 0 < θ < 1/2.

This model is then subject to the boundary conditions

(4.10) [p(c,Q)− E(Q)ux](0, t) = 0, u(1, t) = 0, t ≥ 0.

In addition, we have the corresponding initial data

(4.11) c(x, 0) = c0(x), Q(x, 0) =
m0(x)

ρl −m0(x)
, u(x, 0) = u0(x), x ∈ (0, 1).

In particular, the first equation of (4.8) gives that

(4.12) c(x, t) = c0(x) =
n0

m0
(x) > 0, t > 0.

4.2. A priori estimates. We are now ready to establish some important estimates. We let
C and C(T ) denote generic positive constants depending only on the intial data and the given
time T , respectively. In particular, we note from (4.9) that

(4.13) h(Q) ≤ C.

This estimate plays an important role in Lemma 4.2.
Lemma 4.1 (Energy estimate). Under the assumptions of Theorem 3.1 we have the basic

energy estimate
∫ 1

0

(1
2
u2 +

∫ Q

0

P (cs)
s2

ds +
gx

Q

)
(x, t) dx +

∫ t

0

∫ 1

0

Q1+θu2
x dx ds +

∫ t

0

∫ 1

0

h(Q)u2|u|dxds

(4.14)

=
∫ 1

0

(1
2
u2

0 +
∫ Q0

0

P (cs)
s2

ds +
gx

Q0

)
dx ≤ C, ∀t ∈ [0, T ].

Proof. Start by summing equation (4.8)(b) multiplied by (P (cQ)
ρlQ2 − gx

ρlQ2 ) with equation (4.8)(c)
multiplied by u to obtain

(4.15)
P (cQ)Qt

ρlQ2
+P (cQ)ux−Qt

gx

ρlQ2
− gxux +uut +uP (cQ)x = u(Q1+θux)x + gu−h(Q)u2|u|.

Then rewrite equation (4.15) as

(4.16)
∂

∂t

(1
2
u2 +

∫ Q

0

P (cs)
ρls2

ds +
gx

ρlQ

)
+ (P (cQ)u)x − gxux = u(Q1+θux)x + gu− h(Q)u2|u|,

and integrate it over [0, 1]× [0, t] to yield

∫ 1

0

(1
2
u2 +

∫ Q

0

P (cs)
ρls2

ds +
gx

ρlQ

)
dx +

∫ t

0

∫ 1

0

Q1+θu2
xdxds

=
∫ 1

0

(1
2
u2

0 +
∫ Q0

0

P (cs)
ρls2

ds +
gx

ρlQ0

)
dx +

∫ t

0

(Q1+θuux)|x=1
x=0ds(4.17)

−
∫ t

0

(uP (cQ))|x=1
x=0ds +

∫ t

0

(gxu)|x=1
x=0ds−

∫ t

0

∫ 1

0

h(Q)u2|u|dxds.
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Now invoking the boundary conditions (4.10) and the assumptions on the initial data we arrive
at the conclusion (4.14).

Lemma 4.2. Under the assumptions of Theorem 3.1 we have the pointwise upper bound

(4.18) Q(x, t) ≤ C(T ), ∀(x, t) ∈ [0, 1]× [0, T ].

Proof. Multiplying equation (4.8)(b) with θQθ−1, we observe that

(4.19) (Qθ)t = −ρlθQ
1+θux

We then integrate equation (4.19) over [0, t] and, moreover, equation (4.8)(c) over [0, x], which
gives

(4.20) Qθ(x, t) = Qθ
0(x)− ρlθ

∫ t

0

(Q1+θux)(x, s)ds

and

(4.21)
∫ x

0

ut(y, t)dy + P (cQ)− P (cQ(0, t)) + (Q1+θux)(0, t) = Q1+θux + gx−
∫ x

0

h(Q)u|u|dy.

We further substitute equation (4.21) into equation (4.20), and exploit the boundary conditions
such that

Qθ(x, t)+ρlθ

∫ t

0

P (cQ)(x, s)ds = Qθ
0(x) + ρlθ(

∫ x

0

u0(y)dy −
∫ x

0

u(y, t)dy)(4.22)

+ρlθgxt− ρlθ

∫ t

0

∫ x

0

h(Q)u|u|dyds.

Now invoking the estimate (4.13), Lemma 4.1, the assumptions (3.22) and (3.23), together with
an application of the Cauchy inequality on the third term on the right hand side of (4.22), we
arrive at the following estimate:

(4.23) Qθ(x, t) + ρlθ

∫ t

0

P (cQ)(x, s)ds ≤ C(T )

for 0 < x < 1, 0 < t ≤ T . But (4.23) implies (4.18), in light of assumption (3.28), and the proof
is completed.

Lemma 4.3. Under the assumptions of Theorem 3.1 we have the following higher order
estimate for any positive integer m

(4.24)
∫ 1

0

u2mdx + m(2m− 1)
∫ t

0

∫ 1

0

u2m−2Q1+θu2
xdxds + 2m

∫ t

0

∫ 1

0

h(Q)u2m|u|dxds ≤ C(T ).

Proof. Multiply equation (4.8)(c) by u2m−1 and integrate it over [0, 1]× [0, t]. Then by using
integration by parts and employing the boundary conditions, we arrive at

∫ 1

0

u2mdx + 2m(2m− 1)
∫ t

0

∫ 1

0

u2m−2Q1+θu2
xdxds + 2m

∫ t

0

∫ 1

0

h(Q)u2m|u|dxds

(4.25)

=
∫ 1

0

u2m
0 dx + 2m(2m− 1)

∫ t

0

∫ 1

0

u2m−2P (cQ)uxdxds + 2mg

∫ t

0

∫ 1

0

u2m−1dxds.

We further apply the Cauchy inequality, multiplying the second integrand on the right hand side
of equation (4.25) by the identity Q− 1+θ

2 Q
1+θ
2 , to obtain the estimate

∫ 1

0

u2mdx + m(2m− 1)
∫ t

0

∫ 1

0

u2m−2Q1+θu2
xdxds + 2m

∫ t

0

∫ 1

0

h(Q)u2m|u|dxds

(4.26)

≤
∫ 1

0

u2m
0 dx + m(2m− 1)

∫ t

0

∫ 1

0

u2m−2P (cQ)2Q−1−θdxds + 2mg

∫ t

0

∫ 1

0

u2m−1dxds.
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Moreover, we now make use of the Young’s inequality, ab < 1
pap + 1

q bq, where 1
p + 1

q = 1 and
p, q > 1, for the second and third terms on the right hand side of equation (4.26), respectively.
More precisely, using p = 2m − 1, q = 2m−1

2m−2 and p = 2m, q = 2m
2m−1 successively for the second

term, and then p = 2m, q = 2m
2m−1 for the third term, we get

m(2m− 1)
∫ t

0

∫ 1

0

u2m−2P (cQ)2Q−1−θdxds

≤ m(2m− 1)
[∫ t

0

∫ 1

0

1
2m− 1

[P (cQ)2Q−1−θ]2m−1dxds +
∫ t

0

∫ 1

0

2m− 2
2m− 1

u2m−1dxds
]

(4.27)

≤ C(T ) + C(T ) + m(2m− 2)
∫ t

0

∫ 1

0

2m− 1
2m

u2mdxds,

where we have also used Lemma 4.2 and the assumptions (3.29) on the pressure, to conclude that
P (cQ)2Q−1−θ ≤ C. Furthermore, we have

2mg

∫ t

0

∫ 1

0

u2m−1dxds ≤
∫ t

0

∫ 1

0

g2mdxds + (2m− 1)
∫ t

0

∫ 1

0

u2mdxds.(4.28)

We can then conclude from the equations (4.26), (4.27) and (4.28) that
∫ 1

0

u2mdx + m(2m− 1)
∫ t

0

∫ 1

0

u2m−2Q1+θu2
xdxds + 2m

∫ t

0

∫ 1

0

h(Q)u2m|u|dxds

(4.29)

≤ C(T ) + m(2m− 1)
∫ t

0

∫ 1

0

u2mdxds.

Clearly, equation (4.29) implies that
∫ 1

0

u2mdx ≤ C(T ) + m(2m− 1)
∫ t

0

∫ 1

0

u2mdxds,(4.30)

and thus
∫ 1

0
u2mdx ≤ C(T ) by Gronwall’s lemma. The conclusion (4.24) then follows directly from

equation (4.29).
Lemma 4.4. Under the assumptions of Theorem 3.1 we have the following upper bound

∫ 1

0

Q2θ−2Q2
x dx ≤ C(T ).(4.31)

Proof. Using equation (4.19) in combination with the momentum equation (4.8)(c) we obtain

(4.32) (Qθ)xt = −θρl(ut + P (cQ)x) + θρlg − θρlh(Q)u|u|.
Time-integration of this equation over [0, t] then gives

(4.33) (Qθ)x = (Qθ
0)x − θρl(u(x, t)− u0(x))− θρl

∫ t

0

P (cQ)xds + θρlgt− θρl

∫ t

0

h(Q)u|u|ds.

Furthermore, multiply equation (4.33) with (Qθ)x and integrate it with respect to x over [0, 1] to
obtain

∫ 1

0

[(Qθ)x]2dx=
∫ 1

0

(Qθ
0)x(Qθ)xdx− θρl

∫ 1

0

(u(x, t)− u0(x))(Qθ)xdx

−θρl

∫ 1

0

(Qθ)x

∫ t

0

P (cQ)xdsdx + θρlgt

∫ 1

0

(Qθ)xdx(4.34)

−θρl

∫ 1

0

(Qθ)x

∫ t

0

h(Q)u|u|dsdx.
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We now seek to limit the term
∫ 1

0
[(Qθ)x]2dx on the left side of equation (4.34) by making use

of the ’epsilon-version’ of Youngs inequality i.e. ab < εap + C(ε)bq for a, b ≥ 0, ε > 0 and
C(ε) = (εp)−

q
p q−1, on each of the four terms on the right side of (4.34). Using p = q = 1

2 together
with appropriate choices of ε, this leads to the following inequality

∫ 1

0

[(Qθ)x]2dx≤ 1
10

∫ 1

0

[(Qθ)x]2dx + C

∫ 1

0

[(Qθ
0)x]2dx

+
1
10

∫ 1

0

[(Qθ)x]2dx + C

∫ 1

0

(u(x, t)2 + u0(x)2)dx

+
1
10

∫ 1

0

[(Qθ)x]2dx + C

∫ 1

0

(∫ t

0

|P (cQ)x|ds
)2

dx

(4.35)

+
1
10

∫ 1

0

[(Qθ)x]2dx + Ct2 +
1
10

∫ 1

0

[(Qθ)x]2dx + C

∫ 1

0

(∫ t

0

h(Q)u2ds
)2

dx

≤ 1
2

∫ 1

0

[(Qθ)x]2dx + C

∫ 1

0

[(Qθ
0)x]2dx + C

∫ 1

0

(∫ t

0

h(Q)u2ds
)2

dx

+C

∫ 1

0

(u(x, t)2 + u0(x)2)dx + C

∫ 1

0

(∫ t

0

|P (cQ)x|ds
)2

dx + C(T ).

Using the assumptions on the initial data together with Lemma 4.1, (4.35) can be rephrased as
∫ 1

0

[(Qθ)x]2dx ≤ C

∫ 1

0

(∫ t

0

|P (cQ)x|ds
)2

dx + C

∫ 1

0

(∫ t

0

h(Q)u2ds
)2

dx + C(T ).(4.36)

However, the Hölder inequality implies that
∫ t

0

|P (cQ)x|ds ≤ C
(∫ t

0

(P (cQ)x)2ds
) 1

2
,(4.37)

and likewise
∫ t

0

h(Q)u2ds ≤ C
(∫ t

0

h(Q)2u4ds
) 1

2
.(4.38)

Moreover, noticing that

P (cQ)x = P ′(cQ)(cxQ + cQx) = P ′(cQ)(cxQ + c
1
θ
Q1−θ(Qθ)x),(4.39)

and using Fubini’s theorem, we get from equation (4.36)–(4.39) that
∫ 1

0

[(Qθ)x]2dx≤ C

∫ t

0

∫ 1

0

[P (cQ)x]2dxds + C

∫ t

0

∫ 1

0

h(Q)2u4dxds + C(T )

≤ C

∫ t

0

∫ 1

0

(
P ′(cQ)2[2(cxQ)2 + 2

c2

θ2
Q2−2θ(Qθ)2x]

)
dxds + C(T )(4.40)

≤ C(T )
∫ t

0

∫ 1

0

[(Qθ)x]2dxds + C(T ),

where we have also used (4.13), Lemma (4.3) with m = 2, Lemma (4.2), assumptions (3.29)
and (3.21), as well as the Cauchy inequality. Equation (4.40) then calls for the application of
Gronwall’s lemma, and the conclusion (4.31) follows since (Qθ)x = θQθ−1Qx.

Lemma 4.5. For any l > 1
2m , we have the following upper bound

∫ 1

0

xl

Q
dx ≤ C(T ).(4.41)
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Proof. A simple manipulation of equation (4.8)(b) leads to

(4.42)
( xl

Q(x, t)

)
t
= xlρlux(x, t).

We then integrate equation (4.42) over [0, 1]× [0, t] to yield

(4.43)
∫ 1

0

xl

Q(x, t)
=

∫ 1

0

xl

Q0(x, t)
+ ρl

∫ t

0

(
xlu(x, s)

)∣∣∣
x=1

x=0
ds− lρl

∫ t

0

∫ 1

0

xl−1u(x, s)dxds.

Now employing Young’s inequality (on the third term and with p = 2m and q = 2m
2m−1 ), the

boundary conditions, and (3.22) we get

(4.44)
∫ 1

0

xl

Q(x, t)
≤ C + C

∫ t

0

∫ 1

0

u2m(x, s)dxds + C

∫ t

0

∫ 1

0

x
2m(l−1)
2m−1 dxds.

Finally we observe that the second term is limited due to Lemma 4.3, and the last term is also
limited since m ≥ 1 and 2m(l−1)

2m−1 > −1 for l > 1
2m . This proves the lemma.

Lemma 4.6. Under the assumptions of Theorem 3.1 and for any integer m > 0 (sufficiently
large) and for α1 = (1− 1

2m )(θ − 1) < 0, we have the following upper bound

(4.45)
∫ 1

0

Qα1u2dx +
∫ t

0

∫ 1

0

Q1+θ+α1u2
x dxds +

∫ t

0

∫ 1

0

h(Q)Qα1u2|u|dxds ≤ C(T ).

Proof. First let

(4.46) αm =
θ − 1

2
,

and, moreover, define αm−1 as,

(4.47) αm−1 =
αm

2
+

θ − 1
2

=
3
2
αm.

It follows from the equations (4.8)(b) and (c) that

(Qαmu2m

)t= −αmρlQ
1+αmu2m

ux + 2mQαmu2m−1(Q1+θux)x
(4.48)

+2mQαmu2m−1g − 2mQαmu2m−1P (cQ)x − 2mh(Q)Qαmu2m |u|.

We integrate (4.48) over [0, 1]×[0, t], which after application of partial integration and the boundary
conditions yields

∫ 1

0

Qαmu2m

dx + 2m(2m − 1)
∫ t

0

∫ 1

0

Q1+θ+αmu2m−2u2
xdxds

+2m

∫ t

0

∫ 1

0

h(Q)Qαmu2m |u|dxds =
∫ 1

0

Qαm
0 u2m

0 dx− αmρl

∫ t

0

∫ 1

0

Q1+αmu2m

uxdxds

−2mαm

∫ t

0

∫ 1

0

Qθ+αmu2m−1Qxuxdxds + 2m(2m − 1)
∫ t

0

∫ 1

0

P (cQ)Qαmu2m−2uxdxds

(4.49)

+2mαm

∫ t

0

∫ 1

0

P (cQ)Qαm−1u2m−1Qxdxds + 2mg

∫ t

0

∫ 1

0

Qαmu2m−1dxds

:=
6∑

i=1

Im
i ≤ C(T ),



20 H.A. Friis and S. Evje

where the estimation of Im
i (for i = 1, 2, 3, 4, 5, 6) is given in the Appendix, see (4.89)–(4.94).

Obviously, equation (4.49) is also valid for αm−1 and m − 1 (instead of αm and m and with the
exception of the inequality part, which must be proved), and thus we obtain

∫ 1

0

Qαm−1u2m−1
dx + 2m−1(2m−1 − 1)

∫ t

0

∫ 1

0

Q1+θ+αm−1u2m−1−2u2
xdxds

+2m−1

∫ t

0

∫ 1

0

h(Q)Qαm−1u2m−1 |u|dxds =
∫ 1

0

Q
αm−1
0 u2m−1

0 dx

−αm−1ρl

∫ t

0

∫ 1

0

Q1+αm−1u2m−1
uxdxds− 2m−1αm−1

∫ t

0

∫ 1

0

Qθ+αm−1u2m−1−1Qxuxdxds

(4.50)

+2m−1(2m−1 − 1)
∫ t

0

∫ 1

0

P (cQ)Qαm−1u2m−1−2uxdxds

+2m−1αm−1

∫ t

0

∫ 1

0

P (cQ)Qαm−1−1u2m−1−1Qxdxds

+2m−1g

∫ t

0

∫ 1

0

Qαm−1u2m−1−1dxds :=
6∑

i=1

Im−1
i ≤ C(T ),

where the estimation of Im−1
i (for i = 1, 2, 3, 4, 5, 6) follows from the estimates in the Appendix, see

(4.95)–(4.102). These estimates, in turn, depend on the estimate (4.49). The recurrence relation
(4.47) then implies that αk = (2− 1

2m−k )( θ−1
2 ) for k = 1, . . . , m. In particular, α1 = (1− 1

2m )(θ−1).
We can thus conclude by induction that

∫ 1

0

Qα1u2dx +
∫ t

0

∫ 1

0

Q1+θ+α1u2
xdxds +

∫ t

0

∫ 1

0

h(Q)Qα1u2|u|dxds ≤ C(T ),(4.51)

and the proof is completed.
Lemma 4.7. Under the assumptions of Theorem 3.1 and for any integer m > 0 (sufficiently

large) and for β1 = (2− 1
2m )(θ − 1) < 0, we have

(4.52)
∫ 1

0

Qβ1dx ≤ C(T ).

Proof. From equation (4.8)(b) it follows that

(4.53) (Qβ1)t = −β1ρlQ
1+β1ux.

Integrate (4.53) over [0, 1]× [0, t] to obtain

(4.54)
∫ 1

0

Qβ1dx =
∫ 1

0

Qβ1
0 dx− β1ρl

∫ t

0

∫ 1

0

Q1+β1uxdxds.

Furthermore, we can obtain an estimate for
∫ 1

0
Qβ1dx by using the Cauchy inequality

∫ 1

0

Qβ1dx≤
∫ 1

0

Qβ1
0 dx + C

∫ t

0

∫ 1

0

Q
1+θ+α1

2 uxQ1+β1Q
−(1+θ+α1)

2 dxds

(4.55)

≤
∫ 1

0

Qβ1
0 dx + C

∫ t

0

∫ 1

0

Q1+θ+α1u2
xdxds + C

∫ t

0

∫ 1

0

Q1+2β1−θ−α1dxds.

Now notice, in view of assumption (3.22), that

∫ 1

0

Qβ1
0 dx ≤ C.
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Moreover,
∫ t

0

∫ 1

0

Q1+θ+α1u2
xdxds ≤ C(T )

due to Lemma 4.6. Thus by using these two latter facts and the fact that 1 + 2β1 − θ − α1 = β1,
equation (4.55) can be written as

∫ 1

0

Qβ1dx ≤ C(T ) + C

∫ t

0

∫ 1

0

Qβ1dxds.(4.56)

After an application of Gronwall’s lemma we arrive at the conclusion (4.52).
Lemma 4.8. Under the assumptions of Theorem 3.1 we have the following pointwise lower

bound on Q

(4.57) Q(x, t) ≥ C(T ), ∀(x, t) ∈ [0, 1]× [0, T ].

Proof. It follows from the Sobolev inequality that

(4.58) Qβ2(x, t) ≤ C

∫ 1

0

Qβ2dx + C

∫ 1

0

|(Qβ2)x|dx.

Choosing β2 such that β2 = θ + (1 − 1
2m+1 )(θ − 1), and noting that β1

2 = (1 − 1
2m+1 )(θ − 1) then

it’s clear that

β2 = θ +
β1

2
, β2 − β1 = θ − β1

2
> 0.

Moreover, for 0 < θ < 1
2 it is also clear that by choosing m sufficiently large, β2 < 0. Some further

straightforward manipulations, including application of the Cauchy inequality and Lemma 4.2,
then gives

Qβ2(x, t)≤ C

∫ 1

0

Qβ2dx + C

∫ 1

0

Qβ2−1|Qx|dx

≤ C

∫ 1

0

Qβ1Qβ2−β1dx + C

∫ 1

0

Qβ2−1|Qx|dx

(4.59)

≤ C max
x∈[0,1]

(Qβ2−β1)
∫ 1

0

Qβ1dx + C

∫ 1

0

Q2β2−2θdx + C

∫ 1

0

Q2θ−2Q2
xdx

≤ C(T ) + C

∫ 1

0

Qβ1dx + C

∫ 1

0

Q2θ−2Q2
xdx.

Moreover, application of Lemmas 4.7 and 4.4 let us conclude that

Qβ2(x, t) ≤ C(T ).(4.60)

But, since β2 < 0, (4.57) follows.
Corollary 4.9. Under the assumptions of Theorem 3.1 there is a constant µ > 0 such that

(4.61) µ−1 ≤ m ≤ µ < ρl, µ−1 inf
[0,1]

(c0) ≤ n ≤ µ sup
[0,1]

(c0),

for c = c0 = n0/m0.
Proof. In view of the expression for Q(m) given by (4.7) and the upper bound (4.18) and

lower bound (4.57) it is clear that the first estimate of (4.61) follows. The second follows from the
first and the fact that n = c0m.
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Corollary 4.10. Under the assumptions of Theorem 3.1 we have the estimates

(4.62)
∫ 1

0

|mx| dx ≤ C(T ),
∫ 1

0

|nx| dx ≤ C(T ),

for a constant C = C(T ).
Proof. It follows that

∂xQ(m)θ = θQ(m)θ−1Q′(m)∂xm = θρlQ(m)θ−1 Q(m)2

m2
∂xm = θρl

Q(m)θ+1

m2
∂xm,

since Q′(m) = (ρl/m2)Q(m)2. In view of this calculation and the pointwise upper and lower limits
for Q(m), as well as m, given respectively by (4.18), (4.57), and (4.61), it follows by application
of Lemma 4.4 that the first estimate of (4.62) holds. For the second estimate of (4.62) we note
that we have the relation

∂xn = m∂xc0 + c0∂xm, since n = c0m.

Thus, we estimate as follows:
∫ 1

0

|∂xn| dx ≤ ρl

∫ 1

0

|∂xc0| dx + sup
[0,1]

c0

∫ 1

0

|∂xm| dx ≤ C(T ),

by the first estimate of (4.62) and the assumption (3.21).
Lemmas 4.11–4.14 can be proved by following along the lines of [10] which in turn is strongly

inspired by works like [36, 37, 38]. In particular, in the next lemmas we for the first time need the
additional regularity of assumption (3.24).

Lemma 4.11. Under the assumptions of Theorem 3.1 we can prove that

(4.63)
∫ 1

0

u2
t dx +

∫ t

0

∫ 1

0

Q(m)θ+1u2
xt dx ds ≤ C(T ).

Proof. We differentiate the third equation of (4.8) with respect to time t, multiply the resulting
equation by 2ut and integrate over [0, 1]× [0, t], and obtain

∫ 1

0

u2
t (x, t) dx + 2

∫ t

0

∫ 1

0

[P (cQ)xt − (Qθ+1ux)xt]ut dx ds

(4.64)

=
∫ 1

0

u2
t (x, 0) dx− 2

∫ t

0

∫ 1

0

(h(Q)u|u|)tut dx ds.

First, it follows that

(4.65)
∫ 1

0

u2
t (x, 0) dx ≤ C(T ),

by considering the momentum equation of (4.8) at time t = 0

(u0)t + P (cQ0)x = −h(Q0)u0|u0|+ g + (Qθ+1
0 u0,x)x,

together with assumptions (3.21)–(3.23). We also note that
∫ t

0

∫ 1

0

[P (cQ)− (Qθ+1ux)]xtut dx ds

=
∫ t

0

([P (cQ)− (Qθ+1ux)]tut)
∣∣∣
x=1

x=0
ds−

∫ t

0

∫ 1

0

[P (cQ)− (Qθ+1ux)]tuxt dx ds

(4.66)

=
∫ t

0

([P (cQ)− (Qθ+1ux)]ut)t

∣∣∣
x=1

x=0
ds−

∫ t

0

([P (cQ)− (Qθ+1ux)]utt)
∣∣∣
x=1

x=0
ds

−
∫ t

0

∫ 1

0

[P (cQ)− (Qθ+1ux)]tuxt dx ds

= −
∫ t

0

∫ 1

0

[P (cQ)− (Qθ+1ux)]tuxt dx ds,
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by application of the boundary conditions (4.10). Moreover, using the second equation of (4.8) it
follows that

∫ t

0

∫ 1

0

(Qθ+1ux)tuxt dx ds=
∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds− (θ + 1)ρl

∫ t

0

∫ 1

0

Qθ+2u2
xuxt dx ds

(4.67)

=
∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds + I1,

and

(4.68)
∫ t

0

∫ 1

0

P (cQ)tuxt dx ds = −ρl

∫ t

0

∫ 1

0

P ′(cQ)cQ2uxuxt dx ds = I2,

and
∫ t

0

∫ 1

0

(h(Q)u|u|)tut dx ds

(4.69)

= −ρl

∫ t

0

∫ 1

0

h′(Q)Q2uxu|u|ut dx ds + 2
∫ t

0

∫ 1

0

h(Q)|u|u2
t dx ds = I3 + I4.

Now, we consider how to estimate I1, I2, I3, and I4. First, we have for I1

(4.70) |I1| ≤ 1
2

∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds + C

∫ t

0

∫ 1

0

Qθ+3u4
x dx ds =

1
2

∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds + I11,

where we have used ab ≤ εa2 + b2

4ε with ε = 1
2 . Similarly, we have for I2

|I2|≤ 1
2

∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds + C

∫ t

0

∫ 1

0

P ′(cQ)2c2Q3−θu2
x dx ds

(4.71)

=
1
2

∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds + I22.

Combining (4.64)–(4.71), we get

(4.72)
∫ 1

0

u2
t (x, t) dx +

∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds ≤ C(1 + I11 + I22 + I3 + I4).

We then estimate as follows:

(4.73) I11 =
∫ t

0

∫ 1

0

Qθ+3u4
x dx ds ≤

∫ t

0

max(Q2u2
x)V (s) ds

where V (s) =
∫ 1

0
Qθ+1u2

x dx. We observe that the third equation of (4.8) gives

Q1+θux = P (cQ) +
∫ x

0

ut(y, t) dy − g +
∫ x

0

h(Q)u|u| dy.

It follows that

Q2u2
x= [Qθ+1ux]2Q−2θ

= Q−2θ
(∫ x

0

ut dy + P (cQ)− g +
∫ x

0

h(Q)u|u| dy
)2

≤ C
(∫ 1

0

u2
t dx + P (cQ)2 + g2 + C2

)
≤ C(T )

∫ 1

0

u2
t dx + C(T ),
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by using Lemma 4.1, 4.2, and 4.8. Consequently, we have

(4.74) I11 ≤ C(T )
∫ t

0

V (s) ds + C(T )
∫ t

0

V (s)
∫ 1

0

u2
t dx ds ≤ C(T ) + C(T )

∫ t

0

V (s)
∫ 1

0

u2
t dx ds,

where V (s) ∈ L1([0, T ]) in view of (4.14) of Lemma 4.1. Moreover, we have

I22 =
∫ t

0

∫ 1

0

P ′(cQ)2c2Q3−θu2
x dx ds≤ max(c2θ)

∫ t

0

(max[P ′(cQ)(cQ)1−θ])2V (s) ds

(4.75)

≤ C(T )
∫ t

0

V (s) ds ≤ C(T ),

in view of assumptions (3.21) and (3.29) and Lemma 4.2. Finally, we estimate I3 and I4. We have

|I3|≤ max(h′(Q)2Q3−θ)
∫ t

0

∫ 1

0

Q1+θu4u2
x dx ds +

∫ t

0

∫ 1

0

u2
t dx ds

(4.76)

≤ C(T ) +
∫ t

0

∫ 1

0

u2
t dx ds,

in light of Lemma 4.3. Also

(4.77) |I4| ≤
∫ t

0

max(h(Q)|u|)
∫ 1

0

u2
t dx ds.

Furthermore, we observe that Sobolev embedding theorem gives

|h(Q)u| ≤
∫ 1

0

|h(Q)u| dx +
∫ 1

0

|(h(Q)u)x| dx ≤ C(T ) + W (s),

by Lemma 4.1. Next, we estimate

W (s)=
∫ 1

0

|(h(Q)u)x| dx =
∫ 1

0

|h′(Q)Qxu| dx +
∫ 1

0

|h(Q)ux| dx

≤
∫ 1

0

h′(Q)2Q2(1−θ)u2 dx +
∫ 1

0

Q2(θ−1)Q2
x dx +

∫ 1

0

|h(Q)ux| dx

(4.78)

≤ C(T ) +
∫ 1

0

|h(Q)2Q−(θ+1)| dx +
∫ 1

0

Qθ+1u2
x dx

≤ C(T ) + V (s),

where we have applied Lemma 4.1, 4.2, and 4.4 and the decay properties of h. Consequently,

(4.79) |I4| ≤
∫ t

0

max(h(Q)|u|)
∫ 1

0

u2
t dx ds ≤

∫ t

0

[C(T ) + V (s)]
∫ 1

0

u2
t dx ds.

Using (4.74), (4.75), (4.76), and (4.79) in (4.72) we get

(4.80)
∫ 1

0

u2
t (x, t) dx +

∫ t

0

∫ 1

0

Qθ+1u2
xt dx ds ≤ C(T ) + C(T )

∫ t

0

[1 + V (s)]
∫ 1

0

u2
t dx ds,

which by application of Gronwall’s lemma yields
∫ 1

0

u2
t dx ≤ C(T ) exp

(
C(T )

∫ t

0

[1 + V (s)] ds
)
≤ C(T ).
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The arguments for the proof of the next lemmas can be directly adopted from [10] combined
with arguments similar to those used above for the treatment of the friction term. We state the
lemma and refer to [10] for further details.

Lemma 4.12. Under the assumptions of Theorem 3.1 we have the estimates
∫ 1

0

|mx| dx ≤ C(T ),
∫ 1

0

|nx| dx ≤ C(T ),(4.81)

‖Q(m(x, t))θ+1ux(x, t)‖L∞(DT ) ≤ C(T ),(4.82)
∫ 1

0

|(Q(m)θ+1ux)x(x, t)| dx ≤ C(T ),(4.83)

for a suitable constant C(T ) and where DT = [0, 1]× [0, T ].
The following lemma, which gives the pointwise control on the velocity u, follows essentially

by employing the strict lower limit of Q and the estimate of Lemma 4.11. We refer to [10] for
details.

Lemma 4.13. Under the assumptions of Theorem 3.1 it follows that we have the estimates
∫ 1

0

|ux(x, t)| dx ≤ C(T ), ‖u(x, t)‖L∞(DT ) ≤ C(T ).(4.84)

What remains is continuity in time type of estimates in L2 norm. We just observe that the
arguments directly carry over to our model and again refer to [10] for details.

Lemma 4.14. Under the assumptions of Theorem 3.1, we have for 0 < s ≤ t ≤ T that
∫ 1

0

|m(x, t)−m(x, s)|2 dx ≤ C(T )|t− s|,(4.85)
∫ 1

0

|n(x, t)− n(x, s)|2 dx ≤ C(T )|t− s|,(4.86)
∫ 1

0

|u(x, t)− u(x, s)|2 dx ≤ C(T )|t− s|,(4.87)
∫ 1

0

|Q(m)θ+1ux(x, t)−Q(m)θ+1ux(x, s)|2 dx ≤ C(T )|t− s|.(4.88)

Remark 4.1. Note that due to the strict estimates of Corollary 4.9 we could get compact-
ness and existence of weak solution without the estimates of Lemmas 4.11–4.14 by using similar
arguments as those in [9]. However, the above approach opens for the possibility to treat the case
when masses degenerate at the boundaries. In this sense the chosen approach is more general and
therefore potentially more interesting. This case is left to another work.

4.3. Proof of Theorem 3.1. Following standard arguments we can apply the line method
as in [10], and formulate a semi-discrete version of the initial-boundary problem (1.14)–(1.18).
Semi-discrete version of the various lemmas can be obtained, and in combination with Helly’s
theorem, the result of Theorem 3.1 follows, see [17, 18, 36, 37, 38, 33] and references therein for
details.
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Appendix. In this Appendix we estimate the quantities Im
i and Im−1

i (for i = 1, 2, 3, 4, 5, 6),
which are used in the proof of Lemma 4.6. The arguments goes along the line of e.g. [33], which
in turn build upon central works like [36, 37, 38]. However, for completeness we include the proof.
Note that the equations (4.46) and (4.47) are extensively used throughout these proofs. We start
by estimating Im

i (for i = 1, 2, 3, 4, 5, 6).
Estimate for Im

1 . Using the Cauchy inequality, 0 < θ < 1
2 , the relation (4.46), assumptions

(3.22) and (3.23), we get

(4.89) Im
1 =

∫ 1

0

Qαm
0 u2m

0 dx ≤ C

∫ 1

0

Q2αm
0 dx + C

∫ 1

0

u2m+1

0 dx ≤ C(T ).

Estimate for Im
2 . Using the Cauchy inequality, relation (4.46), Lemma 4.1, and Lemma 4.3,

we have

Im
2 = −αmρl

∫ t

0

∫ 1

0

Q1+αmu2m

uxdxds

≤ C

∫ t

0

∫ 1

0

u2m+1
dxds + C

∫ t

0

∫ 1

0

Q2+2αmu2
xdxds

(4.90)

≤ C

∫ t

0

∫ 1

0

u2m+1
dxds + C

∫ t

0

∫ 1

0

Q1+θu2
xdxds

≤ C

∫ t

0

C(T )ds + C(T ) ≤ C(T ).

Estimate for Im
3 . Using the Cauchy inequality, relation (4.46), Lemma 4.3, and Lemma 4.4,

we have

Im
3 = −2mαm

∫ t

0

∫ 1

0

Qθ+αmu2m−1Qxuxdxds

≤ −2mαm

∫ t

0

∫ 1

0

|Q θ
2 + 1

2 u2m−1uxQ
θ
2− 1

2 QαmQx|dxds

(4.91)

≤ C

∫ t

0

∫ 1

0

Qθ+1u2m+1−2u2
xdxds + C

∫ t

0

∫ 1

0

Qθ+2αm−1Q2
xdxds

≤ C

∫ t

0

∫ 1

0

Qθ+1u2m+1−2u2
xdxds + C

∫ t

0

∫ 1

0

Q2θ−2Q2
xdxds ≤ C(T ).

Estimate for Im
4 . Using the Cauchy inequality, relation (4.46), Lemma 4.1, Lemma 4.2, as-

sumptions (3.21) and (3.29), and Lemma 4.3, we have

Im
4 = 2m(2m − 1)

∫ t

0

∫ 1

0

P (cQ)Qαmu2m−2uxdxds

≤ C

∫ t

0

∫ 1

0

u2m+1−4dxds + C

∫ t

0

∫ 1

0

[P (cQ)]2Q2αmu2
xdxds

(4.92)

≤ C

∫ t

0

∫ 1

0

u2m+1−4dxds + C

∫ t

0

[(P (cQ)
Q

)2]
maxx∈[0,1]

∫ 1

0

Qθ+1u2
xdxds

≤ C

∫ t

0

C(T )ds + C(T ) ≤ C(T ).
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Estimate for Im
5 . Using the Cauchy inequality, relation (4.46), assumptions (3.21) and (3.29),

Lemma 4.2, Lemma 4.3 and Lemma 4.4, we have

Im
5 = 2mαm

∫ t

0

∫ 1

0

P (cQ)Qαm−1u2m−1Qxdxds

≤ C

∫ t

0

∫ 1

0

u2m+1−2dxds + C

∫ t

0

∫ 1

0

[P (cQ)]2Q2αm−2Q2
xdxds

≤ C

∫ t

0

∫ 1

0

u2m+1−2dxds + C

∫ t

0

∫ 1

0

[P (cQ)]2Q−1−θQ2θ−2Q2
xdxds(4.93)

≤ C

∫ t

0

∫ 1

0

u2m+1−2dxds + C

∫ t

0

(
[P (cQ)]2Q−1−θ

)
maxx∈[0,1]

∫ 1

0

Q2θ−2Q2
xdxds

≤ C

∫ t

0

C(T )ds + C

∫ t

0

C(T )ds ≤ C(T ).

Estimate for Im
6 . Using the Cauchy inequality, relation (4.46), Lemma 4.3, Lemma 4.5, and

Young’s inequality (with p = 1
1−θ and q = 1

θ ), we have

Im
6 = 2mg

∫ t

0

∫ 1

0

Qαmu2m−1dxds

≤ C

∫ t

0

∫ 1

0

Q2αmdxds + C

∫ t

0

∫ 1

0

u2m+1−2dxds

≤ C

∫ t

0

∫ 1

0

Qθ−1dxds + C

∫ t

0

∫ 1

0

u2m+1−2dxds(4.94)

≤ C

∫ t

0

∫ 1

0

(xl

Q

)1−θ

x(θ−1)ldxds + C

∫ t

0

∫ 1

0

u2m+1−2dxds

≤ C

∫ t

0

∫ 1

0

(xl

Q

)
dxds + C

∫ t

0

∫ 1

0

x
(θ−1)l

θ dxds + C

∫ t

0

∫ 1

0

u2m+1−2dxds ≤ C(T ).

Note that for the estimate of the term
∫ t

0

∫ 1

0
x

(θ−1)l
θ dxds, implicitly we assume that for a given

θ ∈ (0, 1
2 ) we set l small enough to ensure that θ + (θ − 1)l > 0. At the same time l must satisfy

the condition l > 1/(2m) of Lemma 4.5. In other words, m must be chosen large enough.
Next we estimate Im−1

i (for i = 1, 2, 3, 4, 5, 6). In particular, we shall make use of the estimate
(4.49) corresponding to

∑6
i=1 Im

i ≤ C.
Estimate for Im−1

1 . This follows by the same arguments as for Im
1 .

(4.95) Im−1
1 ≤ C(T ).

Estimate for Im−1
2 . Using the Cauchy inequality, relation (4.46) and (4.47), Lemma 4.1 and

the inequality (4.49), we have

Im−1
2 = −αm−1ρl

∫ t

0

∫ 1

0

Q1+αm−1u2m−1
uxdxds

= −αm−1ρl

∫ t

0

∫ 1

0

|Q1+αm−1−αm
2 u2m−1

uxQ
αm
2 |dxds(4.96)

≤ C

∫ t

0

∫ 1

0

Qαmu2m

dxds + C

∫ t

0

∫ 1

0

Q1+θu2
xdxds ≤ C(T ).

Estimate for Im−1
3 . Using the Cauchy inequality, relation (4.46) and (4.47), Lemma 4.4, and
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the inequality (4.49), we have

Im−1
3 = −2m−1αm−1

∫ t

0

∫ 1

0

Qθ+αm−1u2m−1−1Qxuxdxds

= −2m−1αm−1

∫ t

0

∫ 1

0

∣∣∣Q θ
2 + 1

2+ αm
2 u2m−1−1QxuxQαm−1+

θ
2− 1

2−αm
2

∣∣∣dxds(4.97)

≤ C

∫ t

0

∫ 1

0

Q1+θ+αmu2m−2u2
xdxds + C

∫ t

0

∫ 1

0

Q2θ−2Q2
xdxds ≤ C(T ).

Estimate for Im−1
4 . Using the Cauchy inequality and relation (4.47) we obtain

Im−1
4 = 2m−1(2m−1 − 1)

∫ t

0

∫ 1

0

P (cQ)Qαm−1u2m−1−2uxdxds

≤ 2m−1(2m−1 − 1)
∫ t

0

∫ 1

0

∣∣∣Qαm
2 P (cQ)Qαm−1Q

−αm
2 u2m−1−2ux

∣∣∣dxds

(4.98)

≤ C

∫ t

0

∫ 1

0

Qαmdxds + C

∫ t

0

[P (cQ)
Q

]2

maxx∈[0,1]

∫ 1

0

u2m−4Qθ+1u2
xdxds

:= C1 + C2 ≤ C(T ).

The argument for the last line in (4.98) goes as follows. Considering C1 first and using Young’s
inequality (with p = 2

1−θ and q = 2
1+θ ), Lemma 4.5 and the assumption that 0 < θ < 1

2 , we see
that

C1= C

∫ t

0

∫ 1

0

Qαmdxds = C

∫ t

0

∫ 1

0

Q
θ−1
2 dxds = C

∫ t

0

∫ 1

0

(xl

Q

) 1−θ
2

x
θ−1
2 ldxds

(4.99)

≤ C

∫ t

0

∫ 1

0

xl

Q
dxds + C

∫ t

0

∫ 1

0

x( θ−1
θ+1 )ldxds ≤ C(T ),

for an appropriate choice of l. The estimate of C2 follows directly from assumption (3.21) and
(3.29) and Lemma 4.3 for m ≥ 2.

Estimate for Im−1
5 . After multiplying the integrand with the identity 1 = Q−

αm
2 Q

αm
2 and

applying of the Cauchy inequality twice we obtain

Im−1
5 = 2m−1αm−1

∫ t

0

∫ 1

0

P (cQ)Qαm−1−1u2m−1−1Qxdxds

≤ C

∫ t

0

∫ 1

0

Qαmu2m−2dxds + C

∫ t

0

∫ 1

0

P (cQ)2Q2αm−1−2−αmQ2
xdxds

≤ C

∫ t

0

∫ 1

0

Qαmu2m−2dxds + C

∫ t

0

[
P (cQ)2Q−1−θ

]
maxx∈[0,1]

∫ 1

0

Q2θ−2Q2
xdxds(4.100)

≤ C

∫ t

0

∫ 1

0

Q2αmdxds + C

∫ t

0

∫ 1

0

u2m+1−4dxds

+C

∫ t

0

[
P (cQ)2Q−1−θ

]
maxx∈[0,1]

∫ 1

0

Q2θ−2Q2
xdxds ≤ C(T ).

The last inequality in (4.100) is explained as follows. Using Young’s inequality (with p = 1
1−θ and

q = 1
θ ), Lemma 4.5 and the assumption that 0 < θ < 1

2 , we can estimate the first term as follows

C

∫ t

0

∫ 1

0

Q2αmdxds= C

∫ t

0

∫ 1

0

Qθ−1dxds = C

∫ t

0

∫ 1

0

(xl

Q

)1−θ

x(θ−1)ldxds

(4.101)

≤ C

∫ t

0

∫ 1

0

xl

Q
dxds + C

∫ t

0

∫ 1

0

x( θ−1
θ )ldxds ≤ C(T ),
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for an appropriate choice of l. Moreover, using assumption (3.29), the two last terms in (4.100) is
limited by Lemma 4.3 and Lemma 4.4, respectively.

Estimate for Im−1
6 . Using Lemma 4.3, Lemma 4.5, and Young’s inequality twice (with p =

2n
2n−1 and q = 2n, where n is an integer and p = −(2n−1)

2nαm−1
and q = 1

1+
2nαm−1

2n−1

, respectively), we

have

Im−1
6

= 2m−1g

∫ t

0

∫ 1

0

Qαm−1u2m−1−1dxds

≤ C

∫ t

0

∫ 1

0

u2n(2m−1−1)dxds + C

∫ t

0

∫ 1

0

Q
2nαm−1

2n−1 dxds(4.102)

= C

∫ t

0

∫ 1

0

u2n(2m−1−1)dxds + C

∫ t

0

∫ 1

0

(xl

Q

)−2nαm−1
2n−1

x
2nαm−1l

2n−1 dxds

≤ C

∫ t

0

∫ 1

0

u2n(2m−1−1)dxds + C

∫ t

0

∫ 1

0

x

2n
2n−1 αm−1l

1+
2nαm−1

2n−1 dxds + C

∫ t

0

∫ 1

0

xl

Q
dxds ≤ C(T ),

where n is chosen large enough and l > 1
2m is chosen small enough such that

2n
2n−1 αm−1l

1+
2nαm−1

2n−1

> −1.


