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Abstract. The purpose of this paper is to gain some insight into the characteristic behavior of
a general compressible two-fluid gas-liquid model in 2D by using numerical computations. Main
focus is on mass transport phenomena. Relatively few numerical results in higher dimensions can
be found in the literature for this two-fluid model, in particular, for cases where mass transport
dynamics are essential. We focus on natural extensions to 2D of known 1D benchmark test
cases, like water faucet and gas-liquid separation, previously employed by many researchers for
the purpose of testing various numerical schemes. For the numerical investigations, the WIMF
discretization method introduced in [SIAM J. Sci. Comput. 26 (2005), 1449] is applied, in
combination with a standard dimensional splitting approach. Highly complicated flow patterns
are observed reflecting the balance between acceleration forces, gravity, interfacial forces, and
pressure gradients. An essential ingredient in these results is the appearance of single-phase
regions in combination with mixture regions (dispersed flow). Solutions are calculated and
shown from early times until a steady state is reached. Grid refinement studies are included to
demonstrate that the obtained solutions are not grid-sensitive.
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1. Introduction

The starting point for this paper is a general, isothermal compressible two-fluid model (2D
variant) in the following form where the index l,g refers to a liquid and gas phase, respectively:

∂(αgρg)
∂t

+∇ · (αgρgvg) = 0,

∂(αlρl)
∂t

+∇ · (αlρlvl) = 0,

∂(αgρgvg)
∂t

+∇ · (αgρgvg ⊗ vg) + αg∇p + ∆p∇αg = Qg + Mg,

∂(αlρlvl)
∂t

+∇ · (αlρlvl ⊗ vl) + αl∇p + ∆p∇αl = Ql + Ml.

(1)

Here αg, αl are the volume fractions which satisfy the relation αl+αg = 1. Furthermore, ρl(p), ρg(p)
are fluid densities, p is pressure, vl,vg are fluid velocities, Ql,Qg represent external forces (friction
and gravity), Ml,Mg represent interfacial forces modelling interactions between the two phases.
In particular, Ml + Mg = 0.

The model must be supplemented with equations of state for the gas and liquid phase. Moreover,
expressions must be given for the interphase drag force, typically in the form Ml = −Mg =
C(αg, ρl, ρg)|vg − vl|(vg − vl), see for example [11]. Similarly, expressions for Qg,Ql must be
specified. The ∆p term is required in order to make the model well-defined. Several expressions
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for ∆p have been proposed in the literature. In this work the purpose of the interface correction
term ∆p is to ensure that the model becomes hyperbolic (real eigenvaules), and may have little
physical justification. We refer to [13] and references therein for more details.

Different discretization approaches. As described in the recent book edited by Prosperetti
and Tryggvason [31] there are, roughly speaking, two different classes of discretization techniques
that have been used for solving the two-fluid model. The first one is referred to as segregated
methods, the second type as coupled methods. The distinction between these two is not very
clear, nevertheless, by relating the various schemes to these two different groups it may be easier
to identify similarities and differences.

Group I (segregated methods). Some characteristics of the first group are, see Chapter 10 in
[31] for more details:

• A pressure evolution equation is solved in combination with the momentum equations in
a sequential and iterative fashion, see for example Chapter 10.3 in [31];

• Use of a staggered grid where pressure, densities and volume fraction are associated with
nodes whereas velocities are assigned the midpoints lying between the nodes. However, as
described in Chapter 10 in [31], there are also ”co-located” versions of these algorithms
where all the dependent variables are defined at the center of a control volume;

• The algorithms are suitable for (relatively) slow transients;
• It is easy to add new equations due to the one-by-one solution strategy;
• Examples of such codes are MFIX and CFX;
• Typically, various semi-implicit time discretization techniques are used leading to iterative

solution procedures (e.g. Newton or Picard linearization). As pointed out in Chapter 10.6
the convergence properties of these algorithms often demand small time steps in order to
achieve a converged solution;

• Some of the algorithms seem to work for a relatively weak stability condition (time step
restriction associated with the fluid flow velocity) by using a more coupled solution strategy
instead of a pure sequential. The code Olga mentioned below is an example of this;

• Finite volume type discretization on unstructured grids has been used to obtain codes for
solving problems in higher dimensions.

A partially coupled algorithm which still is natural to group among the segregated methods is
represented by the commercial code Olga [3]. A key feature of this algorithm is that, by relying
on relatively small time steps and on what amounts to a suitable correction term added to the
pressure equation, it is possible to avoid the iteration procedures typical for the segregated meth-
ods. Similarly, work by Kunz et al. [26] is an example of a tendency toward more strongly coupled
solution methods springing from the segregated approach.

Group II (coupled methods). Some of the characteristics of the second group of methods, at
least some of the more recent developments, are (see also Chapter 11 in [31]):

• Use of non-staggered grid;
• Typical applications of these methods are to solve for fast transients;
• More or less information about the eigenstructure of the Jacobian associated with the first

order system (first order spatial derivatives) is often required;
• Use of explicit time discretization, i.e., no or little use of iterations;
• Examples include Roe and Godunov based schemes;
• Extension to high-resolution schemes is obtained by using flux-limiter or slope-limiter

techniques [27];
• These schemes are often associated with a strong stability condition (i.e. the time step

must be related to the sonic speed);
• A dimensional splitting approach is often used for solving higher dimensional problems,

but there are also examples of use of a finite volume approach.
For a few examples of works in this direction we refer to [37, 9, 10, 13, 30, 29]. In addition, various
semi-implicit methods, based essentially on ideas of Liles and Reed [28], that naturally also fall
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in this group of methods are those described in Chapter 11.2 in [31]. Examples of such codes
are RELAP, TRAC, SIMMER. These methods are typically first order (in space) and involve a
combination of implicit and explicit time discretization. The purpose of the implicit component is
to remove strong stability conditions (time step restrictions), whereas explicit time discretization
is used for reduced computational cost and better accuracy of certain waves.

Mixture Flux (MF) methods. More recently, by combining ideas from the above two groups of
methods, explicit as well as hybrid explicit-implicit schemes were derived for solving the 4-equation
isothermal two-fluid model in 1D [14, 15, 16]. Some characteristics of these schemes are:

• Splitting of the physical flux into two parts, a convective flux and a pressure flux. This gives
a framework for separating out the slow and the fast waves and developing appropriate
numerical fluxes. In particular, numerical fluxes are constructed that allow for an accurate
resolution (at least similar to a first order Roe scheme) of the slow mass waves whose time
step is not determined by the fast sonic waves;

• Use of non-staggered grid;
• Use of a pressure evolution equation which is coupled to the momentum equations, however

solved in a non-iterative and conservative manner;
• Numerical fluxes for the convective terms of the mass equations are obtained as a combina-

tion of an upwind-based and centred-based discretization. The upwind direction is taken
relative to the fluid velocity. The motivation for this approach is to combine accuracy and
stability properties in a desired manner.

• In principle, new equations can naturally be added to the 4-equation model, although this
aspect has to a minor extent been explored so far;

• The basic MF (mixture flux) discretization can be used to derive a numerical scheme for a
general system of conservation laws [17]. In particular, the resulting scheme contains the
FORCE scheme [5, 7, 35] as a special case when an explicit time discretization is employed.

A good feature of the proposed approach is that no iterations are used. This may be a potential
advantage over the group of segregated methods, where the number of iterations required to reach
a certain accuracy, typically increases as the discretization grid is refined [31]. Concerning the
time discretization, both an explicit, weakly implicit (WIMF) and strongly implicit (SIMF) version
were developed. The main difference between these three variants is the stability condition. The
time step of the explicit version [15] must obey a CFL condition which involves the sonic speed,
the time step of the weakly implicit [14] must obey a CFL condition which involves the fluid
velocity, whereas the strongly implicit version [16] can give stable solutions for all time steps. For
instance, this is the situation for a simple flow case like transport of a volume fraction disturbance
with constant velocity and constant pressure. The same feature carries over to the water faucet
problem mentioned below, see Section 4.2. For more general flow cases, the situation becomes
more complicated since instabilities may develop due to, for example, effects from strong source
terms (stiffness of the source terms) and/or special problems related to transition to single-phase
flow.

Various simulation results. Many schemes have been developed and tested in a 1D-setting
[37, 9, 10, 13, 30, 29]. Classical test cases are various Riemann problems, water faucet [32],
and gas-liquid separation [9]. This is convenient since approximate analytical solutions can be
calculated and used to validate the quality of the numerical solutions. The two last examples
represent mass transport dynamics taking place on a time scale of the order of seconds, and
involve sharp volume fraction gradients and transition to local single-phase regions, which is a
particular difficult case to handle. These two examples are also included in a list of benchmark
problems specified by a group of experts at the ”Workshop on Two-Phase Flow Fundamentals”,
see [33].

In higher dimensions finite volume methods are a natural choice to consider. However, the
use of finite volume methods may not be so straightforward for the model (1), partly due to the
presence of non-conservative terms. In addition, the wave structure is complicated because of
interphase interactions, and upwinding may be both difficult and computationally expensive [11].
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Cortes [11] considered a finite volume based numerical method for the gas-liquid two-fluid
model in two dimensions. This is an upwind-type scheme based on a generalization of the density
perturbation method [10]. One-dimensional computations were performed to test basic properties
of the proposed scheme and a two-dimensional case was also considered which involved complex
geometry and strong disequilibria. Main focus was on fast transients where the time scale was of
the order of 10−3 sec.

Chang and Liou [6] investigated an AUSM+ type scheme in a finite volume setting for a two-fluid
model similar to (1). The AUSM-approach to a large extent avoids the use of the eigenstructure of
the first order system of conservation laws represented by the model (1). Several one-dimensional
test cases, including the Ransom’s water faucet and the air-water shock tube problem, were used
to demonstrate the features of this method. Finally, many two-dimensional problems were studied
where main focus was on fast transients, i.e., complicated wave phenomena taking place on a time
scale of the order of 10−6 − 10−3 sec.

However, there seems to be relatively few examples in the literature of numerical flow cases in
2D similar to the 1D water faucet and separation flow case. These examples are characterized by
strong kinematic nonequilibria as well as transition to single-phase regions.

Main objectives of this work. Concerning the above two-fluid model, the following statements
taken from [31] (Chapter 11.6) seem to be highly relevant.

”Uncertainties in the correct formulation of the equations and the modelling of source terms
may have a bigger impact on the result than the particular numerical model adopted. Con-
sequently, rather than focusing on the numerics alone it makes sense to try to balance the
numerical efforts with the expected fidelity of the modeling.”

”The formulation of a satisfactory set of averaged-equations models emerges as the single
highest priority in the modeling of complex multi-phase flows.”

One important step then becomes to bring forth converged solutions for some flow cases which
can reveal characteristic behavior possessed by the model. Such solutions should then be assessed
in view of physical insight obtained from experiments. We hope to contribute to taking a small
step in this direction by focusing on some mass transport problems which involve high kinematic
disequilibria in 2D domains. Such solutions can then provide a starting point for a discussion of
the physical effects associated with various terms appearing in the mathematical formulation of
the model. In this process, comparison with experimental data becomes crucial, although this is
beyond the scope of this work. To be more specific, the main objectives of this work are:

• Study the behavior of different wave structures when strong kinematic disequilibria are
taken into account (Section 4). In particular, we focus on extensions to 2D of 1D bench-
mark cases like water faucet and gas-liquid separation. The motivation is to demonstrate
characteristic behavior for a basic version of the two-fluid model in order to help identify-
ing possible obvious limitations associated with the continuous model formulation.

• For the numerical computations, we employ an extension to 2D of the WIMF scheme
previously studied in 1D [14]. Thus, another objective of this paper is to demonstrate the
potential of the WIMF scheme when it comes to simulations of flow cases more relevant
for industrial applications.

• Thirdly, we seek to illustrate (in Section 3) how the WIMF approach can be considered
as an attempt to unify the two different classes of numerical methods, referred to as
segregated and coupled methods. By doing so, we hope to encourage further investigations
where ideas and techniques from both classes are combined to obtain schemes that can be
used for simulation of more complex multi-phase purposes.

One particular motivation for developing a 2D code for the compressible gas-liquid two-fluid model,
could be to pave the way for validating the use of 1D models where two-dimensional effects are
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incorporated more indirectly, e.g. in the source terms that are used. For an interesting work in
this direction in the context of gas flow in pipes we refer to [21].

Simplified two-phase models. We also find it appropriate to mention that there is a research
activity on various simplified two-phase models. An example of such a simplified model is given
in the recent works [22, 23], see also references therein, where focus is on a 1D incompressible
gas-liquid model relevant for stratified and stratified wavy flow regime. The model consists of two
PDEs and two algebraic relations. Different numerical discretizations of the model are explored as
well as analysis of various stability criteria. This model was also studied in the earlier works [1, 2].
Other works relevant for stratified two-fluid models are represented by [20, 8]. These works deal
with the derivation of simplified models and corresponding analytical and numerical solutions.
Another example of a simplified 1D compressible two-phase gas-liquid model with relevance for
dispersed flow is studied in [19, 18]. The purpose of these works is to study some fundamental
issues related to existence of weak solutions.

The rest of this paper is organized as follows: In Section 2 we describe the transient two-fluid
gas-liquid model we are interested in. Section 3 describes the discretization strategy we apply.
Section 4 is devoted to numerical results for a number of test cases in 2D. We focus on natural 2D
extensions of commonly used 1D test-cases. We end the paper with a few concluding remarks in
Section 5.

2. A transient two-fluid model

In this section we shall give more details relevant for the model (1). First, we write the model
in component form using Cartesian coordinates.

∂t




ρgαg

ρlαl

ρgαgv
x
g

ρgαgv
y
g

ρlαlv
x
l

ρlαlv
y
l




+ ∂x




ρgαgv
x
g

ρlαlv
x
l

ρgαg(vx
g )2

ρgαgv
x
gvy

g

ρlαl(vx
l )2

ρlαlv
x
l vy

l




+ ∂y




ρgαgv
y
g

ρlαlv
y
l

ρgαgv
x
gvy

g

ρgαg(vy
g )2

ρlαlv
x
l vy

l

ρlαl(v
y
l )2




+




0
0

αg∂xp + ∆p∂xαg

0
αl∂xp + ∆p∂xαl

0




+




0
0
0

αg∂yp + ∆p∂yαg

0
αl∂yp + ∆p∂yαl




=




0
0

Qx
g + Mx

g

0
Qx

l + Mx
l

0




+




0
0
0

Qy
g + My

g

0
Qy

l + My
l




.

(2)

We introduce the state vector U defined by

U =




ρgαg

ρlαl

ρgαgv
x
g

ρgαgv
y
g

ρlαlv
x
l

ρlαlv
y
l




def
:=




mg

ml

Ix
g

Iy
g

Ix
l

Iy
l




. (3)

The above system contains more unknowns than equations and constitutive laws must be specified.
This will be done in the following.

2.1. Equation of state for the pressure. We assume that both the gas and liquid are com-
pressible and characterized by the following equation of states:

ρl = ρl,0 +
p− pl,0

a2
l

, ρg =
p

a2
g

, (4)
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where al and ag are the sonic speed, respectively, in liquid and gas, and pl,0 and ρl,0 are reference
pressure and density given as constants. We shall use the following choices

al = 103 m/s, ag =
√

105 m/s,

and
pl,0 = 105 Pa, ρl,0 = 103 kg/m3.

Moreover, we have given the following basic constraint

αl + αg = 1. (5)

2.2. Closure relations for the pressure fluctuations. It is well known that the system (1) is
non-hyperbolic if ∆p = 0. To make the system hyperbolic, an interfacial pressure correction term
∆p of the following form [34, 30, 13, 6] is used

∆p = σ
αgρgαlρl

αgρl + αlρg
|vg − vl|2, (6)

where σ is a parameter to be chosen. Here σ > 1 ensures a hyperbolic model unless the fluid
velocity difference |vg − vl| becomes too large [4, 34]. In this paper we use

σ = 1.2. (7)

Physically, ∆p could represent the effects of hydrostatics or surface tension. However, the above
choice (6) is motivated purely from mathematical considerations, i.e. eigenvalues become real.

2.3. Closure laws for source terms. We consider the following expression for Mg and Ml

similar to those used in [30, 11]:

Ml = −Mg = C(αg, ρl, ρg)(vg − vl), (8)

with
C(αg, ρl, ρg) = Kαgαlρg, K = C0φ(αg). (9)

C0 is a constant and for all the simulations in this paper we follow [14] and use

C0 = 5 · 104 s−1,

whereas the function φ(αg) is chosen to be

φ(αg) = e−k1αg + e−k2(1−αg), k1 = 50, k2 = 500. (10)

The role of the term φ(αg) is to increase the stability properties of the scheme when transition to
single-phase gas or liquid flow occurs. A similar procedure was used in [30]. For the source terms
Qg and Ql we have

Qg = αgρgg, Ql = αlρlg, (11)

where g = (0,−9.81) (positive direction is upward).

2.4. Resolution of primitive variables. Having solved for the conservative variables U, the
primitive variables (αg, p, vx

g , vy
g , vx

l , vy
l ) must be obtained. For the pressure variable we see that

by writing the volume fraction equation (5) in terms of the conserved variables mg = αgρg and
ml = αlρl as

mg

ρg(p)
+

ml

ρl(p)
= 1, (12)

we obtain a relation yielding the pressure p(mg,ml). This is generally a nonlinear equation which
does not easily allow for an algebraic solution. Typically an iterative numerical algorithm must
be used in order to obtain the pressure from (12). For the linear relations, the nonlinear equation
is represented by a second order polynomial for which analytical solutions are found. Equipped
with the pressure p we directly can get ρg and ρl. The volume fraction αg is then obtained from
αg = mg/ρg.

In particular, inserting the density relations (4) in (12) we get a nonlinear pressure law p(mg,ml)
of the form

p(mg,ml) = C
[
−b(mg,ml) +

√
b(mg,ml)2 + c(mg, ml)

]
, (13)
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with C = 1
2a2

l and k0 = ρl,0 − pl,0/a2
l > 0 and a0 = (ag/al)2 and

b(mg,ml) = k0 −ml −
(ag

al

)2

mg = k0 −ml − a0mg,

c(mg,ml) = 4k0

(ag

al

)2

mg = 4k0a0mg.

(14)

In particular, we observe that αg = 1 implies that ml = 0 and mg = ρg and

p(mg, 0) = C[−(k0 − a0ρg) + (k0 + a0ρg)] = a2
gρg.

Similarly, we observe that αl = 1 implies that ml = ρl and mg = 0 and

p(0,ml) = (ρl − ρ0)a2
l + pl,0, if k0 < ρl.

For k0 ≥ ρl (i.e. b ≥ 0) it follows that p(ml, 0) = 0. In other words, the use of (13) and (14) is
consistent with (4) when transition to single-phase regions occur.

Finally, the fluid velocities vg = (vx
g , vy

g ) and vl = (vx
l , vy

l ) are obtained directly from the
relations

vx
g =

U3

U1
, vy

g =
U4

U1
, vx

l =
U5

U2
, vy

l =
U6

U2
. (15)

3. Discretization Strategy

The two-fluid model (2) possesses fast sonic waves as well as slowly moving volume fraction
waves. The large difference in wave speeds makes it difficult to obtain accurate resolution of
the various wave phenomena. The Jacobian matrix (as well as corresponding eigenvalues and
eigenvectors) of the above two-phase model is not given by analytical expressions. Thus, it might
not be straightforward to apply modern upwind-type of schemes (Godunov and Roe type, for
instance) that rely on such information. Simplified variants must be used. One example of such a
simplified approach can be found in [10, 11].

The main building block in our approach is the use of central based fluxes, which require no
information about wave propagation, based on splitting the flux into convective and pressure
terms. This scheme is derived in Section 3.3. By carefully incorporating an upwind component in
the convective terms we obtain a central-upwind type of scheme which combines the robustness of
the central scheme with the accuracy of upwind based schemes, however, without making use of
the underlying eigenvalue structure. This modification is described in Section 3.4. Previously, we
have constructed both an explicit, a weakly-implicit, as well as a strongly implicit variant of this
scheme [15, 14, 16] in a 1D setting. In this section we derive a 2D version of the weakly-implicit
scheme.

3.1. The numerical scheme. We shall solve the model (2) in 2D domains by applying a stan-
dard dimensional splitting approach [27]. Assuming that we have the approximation Un where
Un(x, y) ≈ U(x, y, tn), we now want to construct an approximation Un+1 at the next time level
tn+1, such that Un+1(x, y) ≈ u(x, y, tn+1). This can be achieved by considering the following
sequence of operators.

Un+1 =
(
L∆t

y L∆t
x

)
Un, (16)

where the one-dimensional operator Lt
x and Lt

y, respectively, are associated with the following
one-dimensional models:

Lt
x :





∂t(αgρg) + ∂x(αgρgv
x
g ) = 0

∂t(αlρl) + ∂x(αlρlv
x
l ) = 0

∂t(αgρgv
x
g ) + ∂x(αgρg(vx

g )2) + αg∂xp + ∆p∂xαg = Qx
g + Mx

g

∂t(αlρlv
x
l ) + ∂x(αlρl(vx

l )2) + αl∂xp + ∆p∂xαl = Qx
l + Mx

l

∂t(αgρgv
y
g ) + ∂x(αgρgv

y
gvx

g ) = 0
∂t(αlρlv

y
l ) + ∂x(αlρlv

y
l vx

l ) = 0,

(17)



8 FRIIS, EVJE, AND FLÅTTEN

and

Lt
y :





∂t(αgρg) + ∂y(αgρgv
y
g ) = 0

∂t(αlρl) + ∂y(αlρlv
y
l ) = 0

∂t(αgρgv
x
g ) + ∂y(αgρgv

x
gvy

g ) = 0
∂t(αlρlv

x
l ) + ∂y(αlρlv

x
l vy

l ) = 0
∂t(αgρgv

y
g ) + ∂y(αgρg(vy

g )2) + αg∂yp + ∆p∂yαg = Qy
g + My

g

∂t(αlρlv
y
l ) + ∂y(αlρl(v

y
l )2) + αl∂yp + ∆p∂yαl = Qy

l + My
l .

(18)

We now describe a WIMF type scheme for the discretization of the one-dimensional operators Lt
x

and Lt
y similar to the one studied in [14] for solving the one-dimensional two-fluid model. We

describe the solution algorithm associated with Lt
x, the algorithm for Lt

y follows by analogy.

Remark 1. Note that it would be natural to replace the splitting (16) by a Strang splitting approach
for increased efficiency [27]. Similarly, we may also use a higher order Runge-Kutta technique
for the time discretization instead of a simple forward Euler step. For practical purposes it will
also be crucial to incorporate higher order spatial accuracy in the discretization of the convective
terms. However, for the purpose of this paper where the primary goal is to bring forth converged
solutions in order to demonstrate characteristic 2D behavior, we have preferred to use first order
discretization techniques on a relative fine grid. It is not surprising that the implementation of
higher order accuracy require care, in particular, due to the possible transition to single-phase
regions. These aspects will hopefully be addressed elsewhere.

3.2. The one-dimensional solution operator Lt
x. We focus on the one-dimensional model

(17) which we write in the following form

∂tmg + ∂x(Ix
g ) = 0, mk = αkρk, Ix

k = mkv
x
k , k = g,l

∂tml + ∂x(Ix
l ) = 0

∂tI
x
g + ∂x(Jxx

g ) + αg∂xp = −∆p∂xαg + Qx
g + Mx

g , Jxx
k = Ix

k vx
k , k = g,l

∂tI
x
l + ∂x(Jxx

l ) + αl∂xp = −∆p∂xαl + Qx
l + Mx

l

∂tI
y
g + ∂x(Jyx

g ) = 0, Iy
k = mkv

y
k , Jyx

k = Iy
kvx

k , k = g,l

∂tI
y
l + ∂x(Jyx

l ) = 0.

(19)

In the following we shall briefly describe the discrete version of (19) following along the line of
[17]. A more compact form of this model is given by

ut + g(u)x + a(u)h(u)x = q(u) + m(u), (20)

where u = (mg,ml, I
x
g , Ix

l , Iy
g , Iy

l )T , g = (Ix
g , Ix

l , Jxx
g , Jxx

l , Jyx
g , Jyx

l )T , a = (0, 0, αg, αl, 0, 0), h =
(0, 0, p, p, 0, 0)T , q = (0, 0,−∆p∂xαg + Qx

g ,−∆p∂xαl + Qx
l , 0, 0)T , and m = (0, 0,Mx

g ,Mx
l , 0, 0)T .

Note that we have grouped the differential term ∆p∂xαk together with the source terms (non-
differential terms) on the right-hand side of (20). The reason is that we shall use a straightforward
discretization of this term which contains no numerical diffusion, see Section 3.6 for the details.

Observing that (12) defines a relation which yields the pressure p = p(mg,ml) as a nonlinear
function which depends on the masses mg and ml, we can derive the differential

dp = κ(ρldmg + ρgdml) (21)

where
κ =

1
∂ρl
∂p αlρg + ∂ρg

∂p αgρl

. (22)

We now focus on a discretization of (20) where we for a moment neglect the source terms on
the right hand side. Assuming that we have given an approximation un(x) ≈ u(x, tn), we want
to calculate an approximation un+1(x) ≈ u(x, tn+1). For that purpose, locally in the time period
[tn, tn+1], we consider a decomposition of (20) into the two subsystems

vt + g(v + w)x = 0, v(·, 0) = un(·),
wt + a(v + w)h(v + w)x = 0, w(·, 0) = 0,

(23)
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where v and w now are the unknown variables. Setting

u = v + w, (24)

adding the two equations in (23), we see that u formally is a solution of (20) with initial data
u(·, 0) = un(·). Thus, (23) represents a reformulation of the original model (20). We now remove
some of the nonlinear coupling between the first and second subsystem of (23) by introducing the
variable h̃ given by

h̃ = h̃(v) = h(v + w)|w=const,

and defining b as the Jacobian associated with h̃(v)

b := Dvh̃ = Duh. (25)

Multiplying the first subsystem of (23) by b = Dvh̃, we obtain equations for h̃(x, t), namely
h̃t + b(x, t)g(v + w)x = 0. Thus, we approximate (23) by the the following extended model for
(v, w, h̃)

vt + g(v + w)x = 0, v(·, 0) = un(·),
wt + a(v + w)h̃x = 0, w(·, 0) = 0,

h̃t + b(x, t)g(v + w)x = 0, h̃(·, 0) = h(un)(·), t ∈ (0,∆t],

(26)

where b(x, t) represents the Jacobian Duh

b = Duh =




0 0 0 0 0 0
0 0 0 0 0 0

κρl κρg 0 0 0 0
κρl κρg 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (27)

where κ is given by (22) and we have used (21). In particular, we observe that the set of equations
associated with h̃t + b(x, t)g(v + w)x = 0 in (26) correspond to the pressure evolution equation

∂p

∂t
+ κ

(
ρl

∂

∂x
(αgρgv

x
g ) + ρg

∂

∂x
(αlρlv

x
l )

)
= 0. (28)

The approximation un+1(x) is obtained, in view of (24), by setting un+1(x) = v(x, ∆t)+w(x, ∆t).
Next, we propose a discretization of (26).

Remark 2. The approach we use where the original model (20) is associated with the extended
model (26), bears some similarity (in spirit) to the relaxation-based method [25] where the conser-
vation law

ut + f(u)x = 0, (29)

is associated with the relaxation approximation

ut + vx = 0, vt + a2ux = −1
ε
(v − f(u)), (30)

for an appropriate chosen constant a and small constant ε > 0. In the following we shall describe
one natural first-order discretization of the extended model (26) which combines stability and
accuracy properties such that interesting and complicated two-phase flow patterns can be calculated
when a sufficiently fine grid is used. We make no attempts here to optimize the discretization
of (26) but note that care must be taken, in particular, due to loss of stability associated with
transition to single-phase flow.

3.3. A basic discrete scheme - XFORCE.
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Method of lines. We want to construct an approximation to the model (23), which in turn is a
reformulation of (20), by deriving a discrete version of the extended model (26). We consider a
”method of lines” approach and solve via a two-step procedure as follows.

Step 1: We solve the first and third equation of (26) at the cell-interface xj+1/2 by the standard
Lax-Friedrichs type discretization:

.
vj+1/2 +

1
∆x

(
gj+1 − gj

)
= 0, vj+1/2(0) =

un
j + un

j+1

2
,

.

h̃j+1/2 +
bj+1/2

∆x

(
gj+1 − gj

)
= 0, h̃j+1/2(0) =

h(un
j ) + h(un

j+1)
2

,

(31)

for t ∈ (0, ∆t] where gj = g(vj + wj) and bj+1/2 is an appropriate defined average.
Step 2: Equipped with vj+1/2 and h̃j+1/2, we find wj through an evolution via the second equation

of (26), whereas vj is determined through a projection. That is,

.
wj +

aj

∆x

(
h̃j+1/2 − h̃j−1/2

)
= 0, wj(0) = 0,

.
vj=

.
vj−1/2 +

.
vj+1/2

2
,

(32)

for t ∈ (0,∆t]. Finally, in light of (24), we build an an approximate solution un+1
j by

employing vj and wj as follows:

un+1
j = vj(∆t) + wj(∆t). (33)

Fully discrete form. First, we rewrite as follows. Combining (31) and (32), we obtain a semi-
discrete scheme of the form

.
vj +

1
∆x

(
gj+1/2 − gj−1/2

)
= 0, vj(0) =

1
4
un

j−1 +
1
2
un

j +
1
4
un

j+1,

with gj+1/2 =
g(vj + wj) + g(vj+1 + wj+1)

2
,

(34)

.
wj +

aj

∆x

(
h̃j+1/2 − h̃j−1/2

)
= 0, wj(0) = 0,

with
.

h̃j+1/2 +
bj+1/2

∆x

(
gj+1 − gj

)
= 0, h̃j+1/2(0) =

h(un
j ) + h(un

j+1)
2

.

(35)

Finally, we apply a backward Euler discretization in time in (34). This gives

v1
j − v0

j

∆t
+

1
∆x

(
g1

j+1/2 − g1
j−1/2

)
= 0, v0

j =
1
4
un

j−1 +
1
2
un

j +
1
4
un

j+1,

with g1
j+1/2 =

g(un+1
j ) + g(un+1

j+1 )
2

.

(36)

In order to obtain a numerical flux h̃j+1/2 for the first equation of (35), we solve the second equation
in (35) forward in time a timestep ∆t, again, by applying a backward Euler discretization. This
gives us a fully discrete scheme of the form

w1
j − w0

j

∆t
+

a0
j

∆x

(
h̃1

j+1/2 − h̃1
j−1/2

)
= 0, w0

j = 0, a0
j = a(un

j ),

with
h̃1

j+1/2 − h̃0
j+1/2

∆t
+

b0
j+1/2

∆x

(
g1

j+1 − g1
j

)
= 0, h̃0

j+1/2 =
h(un

j ) + h(un
j+1)

2
,

(37)

where un+1
j = v1

j + w1
j , in view of (33), and g1

j = g(v1
j + w1

j ) = g(un+1
j ). Summing (36) and (37)

gives the discrete scheme

un+1
j − un

j

∆t
+

1
∆x

(
G

n+1/2
j+1/2 −G

n+1/2
j−1/2

)
+

a(un
j )

∆x

(
Hn+1

j+1/2 −Hn+1
j−1/2

)
= 0, (38)
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where G
n+1/2
j+1/2 and Hn+1

j+1/2 are given by

Gn+1
j+1/2 =

1
2




Ix,n+1
g,j + Ix,n+1

g,j+1

Ix,n+1
l,j + Ix,n+1

l,j+1

Jxx,n+1
g,j + Jxx,n+1

g,j+1

Jxx,n+1
l,j + Jxx,n+1

l,j+1

Jyx,n+1
g,j + Jyx,n+1

g,j+1

Jyx,n+1
l,j + Jyx,n+1

l,j+1



− 1

4λ




mn
g,j+1 −mn

g,j

mn
l,j+1 −mn

l,j

Ix,n
g,j+1 − Ix,n

g,j

Ix,n
l,j+1 − Ix,n

l,j

Iy,n
g,j+1 − Iy,n

g,j

Iy,n
l,j+1 − Iy,n

l,j




, (39)

and

Hn+1
j+1/2 =




0
0

Pn+1
j+1/2

Pn+1
j+1/2

0
0




, (40)

where

Pn+1
j+1/2 =

1
2
(pn

j + pn
j+1)− λ[κρl]nj+1/2(I

x,n+1
g,j+1 − Ix,n+1

g,j )− λ[κρg]nj+1/2(I
x,n+1
l,j+1 − Ix,n+1

l,j ), (41)

with λ = ∆t
∆x . We follow [14, 15, 16] and compute the cell interface value [κρg]nj+1/2 by using

Pn
j+1/2 together with the arithmetic average αn

k,j+1/2 = 1/2(αn
k,j + αn

k,j+1) where κ is given by
(22). Similarly, we obtain [κρl]kj+1/2.

Remark 3. As explained in [17] the above discretization, which was denoted as X-FORCE (eX-
tended FORCE), represents a natural generalization of the FORCE scheme introduced by Toro
[36]. In particular, for a nonlinear, scalar conservation law it is demonstrated that the X-FORCE
scheme converges to the entropy weak solution.

Remark 4. The above splitting where the h-flux component is associated with the pressure p,
and the corresponding discretization of the g-flux, provides a link between pressure-velocity coupled
methods as used in commercial codes like, for example, Olga and CFX [31] and the theory for
construction of conservative and non-oscillatory discrete schemes for nonlinear conservation laws
[27].

Component form. To sum up, (38)–(41) represent a discrete version of (19) of the following
form where λ = ∆t/∆x and δxaj = (1/∆x)(aj+1/2 − aj−1/2):

• Mass equations:

mn+1
g,j = mn

g,j −∆tδxI
x,n+1/2
g,j ,

mn+1
l,j = mn

l,j −∆tδxI
x,n+1/2
l,j ,

(42)

with

I
x,n+1/2
k,j+1/2 =

1
2
(Ix,n+1

k,j + Ix,n+1
k,j+1 )− 1

4λ
(mn

k,j+1 −mn
k,j), k=g,l. (43)

• Momentum equations associated with Ix
k :

Ix,n+1
g,j + ∆tαn

g,jδxPn+1
j + ∆tδxJ

xx,n+1/2
g,j = Ix,n

g,j

Ix,n+1
l,j + ∆tαk

l,jδxPn+1
j + ∆tδxJ

xx,n+1/2
l,j = Ix,n

l,j ,
(44)

with

Pn+1
j+1/2 + λ[κρl]nj+1/2

(
Ix,n+1
g,j+1 − Ix,n+1

g,j

)
+ λ[κρg]nj+1/2

(
Ix,n+1
l,j+1 − Ix,n+1

l,j

)
=

1
2
(pn

j + pn
j+1),

J
xx,n+1/2
k,j+1/2 =

1
2
(Jxx,n+1

k,j + Jxx,n+1
k,j+1 )− 1

4λ
(Ix,n

k,j+1 − Ix,n
k,j ), k=g,l.

(45)
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• Momentum equations associated with Iy
k :

Iy,n+1
g,j + ∆tδxJ

yx,n+1/2
g,j = Iy,n

g,j

Iy,n+1
l,j + ∆tδxJ

yx,n+1/2
l,j = Iy,n

l,j ,
(46)

with

J
yx,n+1/2
k,j+1/2 =

1
2
(Jyx,n+1

k,j + Jyx,n+1
k,j+1 )− 1

4λ
(Iy,n

k,j+1 − Iy,n
k,j ), k=g,l. (47)

Note that in order to obtain a linearly implicit scheme we should follow [16] and introduce a
linearization of the convective term Jxx,n+1

k,j appearing in the second equation of (45) and Jyx,n+1
k,j

in (47):

Jxx,n+1
k,j ≈ Ix,n+1

k,j vx,n
k,j := J

xx,n+1/2
k,j , Jyx,n+1

k,j ≈ Iy,n+1
k,j vx,n

k,j := J
yx,n+1/2
k,j . (48)

However, as explained in the next section, we shall take advantage of the fact that we can directly
replace these central-based fluxes with simple up-wind fluxes (based on fluid velocities) together
with an explicit time discretization similar to what was done in [14]. This will greatly improve
the accuracy of the representation of mass fronts.

3.4. Improved accuracy for mass transport dynamic. The central type flux (modified Lax-
Friedrichs) used for the convective fluxes introduces a large amount of numerical diffusion in the
approximation of sharp fronts related to the masses mg and ml. To fix this deficiency, without
destroying the stability properties of the basic scheme, we shall as gently as possible incorporate
upwind flux-components in the above basic scheme (42)–(47).

The two flux components g(u) and h(u) in (20) are coupled through the pressure term p(mg,ml)
occuring in h(u). Consequently, we may expect that the discretization of the convective terms in
(42), which describes the conservation of the mass quantities (mg,ml), must be carefully related
to the discretization of the pressure term p(mg,ml). This is indeed ensured by the discretization
(42)–(47). In other words, we cannot simply replace the diffusive central type flux (43) used in
(42) with a more accurate upwind type flux without destroying the overall stability property of
the scheme. A more gentle approach must be taken where an upwind flux component is mixed
with the central flux component (43). The implementation of this idea is described in detail in
Section 3.4.2.

On the other hand, the convective terms of the momentum equations (44)–(47) are more in-
dependent. This motivates for replacing the central based fluxes (45) and (47) for the convective
terms Jxx

k and Jyx
k (k=g,l) appearing, respectively, in (44) and (46) by simple upwind (relative to

the fluid velocities) fluxes. Details are given in Section 3.4.1.

3.4.1. Convective terms of the momentum equations.
• Momentum equations associated with Ix

k :
The central semi-implicit flux J

xx,n+1/2
k,j+1/2 appearing in (44) is replaced by the explicit upwind

flux Uxx,n
k,j+1/2 given by

Uxx,n
k,j+1/2 =

vx,n
k,j+1/2

2
(Ix,n

k,j + Ix,n
k,j+1)−

|vx,n
k,j+1/2|

2
(Ix,n

k,j+1 − Ix,n
k,j ), k=g,l, (49)

where vx,n
k,j+1/2 is given by the average

vx,n
k,j+1/2 = 1/2(vx,n

k,j + vx,n
k,j+1). (50)

• Momentum equations associated with Iy
k :

The central semi-implicit flux J
yx,n+1/2
k,j+1/2 appearing in (46) is replaced by the explicit upwind

flux Uyx,n
k,j+1/2 given by

Uyx,n
k,j+1/2 =

vx,n
k,j+1/2

2
(Iy,n

k,j + Iy,n
k,j+1)−

|vx,n
k,j+1/2|

2
(Iy,n

k,j+1 − Iy,n
k,j ), k=g,l, (51)

where vx,n
k,j+1/2 is given by (50).
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3.4.2. Convective terms of the mass equations.
• Mass equations:

mn+1
g,j = mn

g,j −∆tδxF
x,n+1/2
g,j ,

mn+1
l,j = mn

l,j −∆tδxF
x,n+1/2
l,j ,

(52)

where F
x,n+1/2
k,j is a hybridization of the central based flux I

x,n+1/2
k,j+1/2 given by (43) and the

upwind based flux Ux,n
k,j+1/2 described by (56). More precisely,

F
x,n+1/2
l,j+1/2 = an

j+1/2I
x,n+1/2
l,j+1/2 + bn

j+1/2U
x,n
l,j+1/2 + cn

l,j+1/2

(
I

x,n+1/2
g,j+1/2 − Ux,n

g,j+1/2

)
, (53)

F
x,n+1/2
g,j+1/2 = bn

j+1/2I
x,n+1/2
g,j+1/2 + an

j+1/2U
x,n
g,j+1/2 + cn

g,j+1/2

(
I

x,n+1/2
l,j+1/2 − Ux,n

l,j+1/2

)
, (54)

with

I
x,n+1/2
k,j+1/2 =

1
2
(Ix,n+1

k,j + Ix,n+1
k,j+1 )− 1

4λ
(mn

k,j+1 −mn
k,j), k=g,l, (55)

and

Ux,n
k,j+1/2 = vx,n

k,j+1/2

(mn
k,j + mn

k,j+1)
2

− |vx,n
k,j+1/2|

(mn
k,j+1 −mn

k,j)
2

, k=g,l, (56)

where vx,n
k,j+1/2 is given by (50). The coefficients appearing in (53) and (54) are given by

an
j+1/2 = [κρgαl

∂ρl

∂p
]nj+1/2, bn

j+1/2 = [κρlαg
∂ρg

∂p
]nj+1/2,

cn
k,j+1/2 = [κρkαk

∂ρk

∂p
]nj+1/2, k = g, l.

(57)

Remark 5. The hybridization described by (53) and (54) is motivated as follows (see also [14]):
First, we observe that we have the differential relations

dp = κ(ρldmg + ρgdml), dαl = κ(−∂ρl

∂p
αldmg +

∂ρg

∂p
αgdml), (58)

where κ is given by (22). We can solve for dmg and dml, and we then get

dmg = αg
∂ρg

∂p
dp− ρgdαl, dml = αl

∂ρl

∂p
dp + ρldαl. (59)

Relation (59) motivates for introducing a flux component Fp associated with dp and Fα associated
with dαl such that the mass fluxes Fl and Fg in (52) are given by

Fl = αl
∂ρl

∂p
Fp + ρlFα, Fg = αg

∂ρg

∂p
Fp − ρgFα. (60)

Fp is associated with pressure changes dp and it is natural to define, in view of the differential
relation (58)

Fp = κ(ρlIg + ρgIl), (61)

where Ik is the central flux component given by (43). Similarly, Fα is associated with volume
fraction changes dαl, and in view of (58) we define

Fα = κ(−∂ρl

∂p
αlUg +

∂ρg

∂p
αgUl), (62)

where Uk is the upwind flux component (56). Inserting (61) and (62) in (60), results in the fluxes
(53) and (54) with coefficients (57).

Remark 6. An important feature of the hybridization (53) and (54) is that the resulting scheme
possesses the property that a pressure equilibrium is maintained under a constant velocity field for
a CFL condition determined by the fluid velocity, see [14] for a detailed discussion. This feature
is also explored in the first numerical example of Section 4.
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Remark 7. The above scheme is semi-implicit in the sense that we solve implicitly for the mo-
mentum Ix,n+1

g and Ix,n+1
l , while we solve explicitly for the masses mn+1

g and mn+1
l as well as the

y-directed momentum Iy,n+1
g and Iy,n+1

l along the following three steps:

• Firstly, we solve simultaneously for Ix,n+1
g,j , Ix,n+1

l,j , and Pn+1
j+1/2 from the two momentum

equations given by (44) with updated fluxes (49), and the pressure equation (45). This
corresponds to solving a linear problem Ax = b where the matrix A possesses a band
structure.

• Secondly, we solve for mn+1
g,j and mn+1

l,j from (52) by employing the updated momentum
Ix,n+1
g,j and Ix,n+1

l,j , obtained from the first step, in the flux (55).
• Thirdly, we solve for Iy,n+1

g and Iy,n+1
l by using (46) and (51).

3.5. A modification to handle transition to single-phase flow. The upwind fluxes Ux,n
k,j+1/2,

Uxx,n
k,j+1/2, and Uyx,n

k,j+1/2 involved, respectively, in (52), (44), and (46) are all of the form

u = ρv,

for appropriate choices of ρ and v. It turns out that these upwind type fluxes are important for
the accuracy of large gradients in masses. However, they often introduce instability for flow cases
where the gas volume fraction αg becomes close to 0 or 1.

In order to make the numerical scheme able to handle such flow cases we follow along the line
of [14] and introduce the following modification

Uj+1/2 = (1− sj)U
upw
j+1/2 + sjU

force
j+1/2,

where

Uupw
j+1/2 = vj+1/2

(ρj + ρj+1)
2

− |vj+1/2|
(ρj+1 − ρj)

2
,

U force
j+1/2 =

1
2

(
ULxF

j+1/2 + ULW
j+1/2

)
,

where ULxF
j+1/2 and ULW

j+1/2 refer to the classical Lax-Friedrichs flux and Lax-Wendroff flux, re-
spectively. The FORCE flux U force

j+1/2 [7, 36] has a stabilizing effect at transition to single-phase,
however, at the price of introducing a smearing out effect. Therefore, the parameter s is chosen
such that only close to single-phase flow, s becomes close to 1. Otherwise it takes values close to
0. This is implemented by setting

sj = max(φj , φj+1), φ = φ(αg),

where φ(αg) is the transition fix function given by (10).

3.6. Discretization of source terms. What remains now is a description of the discretization
of the term q(u) = (0, 0,−∆p∂xαg + Qx

g ,−∆p∂xαl + Qx
l , 0, 0)T and m(u) = (0, 0,Mx

g ,Mx
l , 0, 0)T

occuring on the left hand side in the momentum equations (44), see also (19). The following
semi-implicit discretization is used for Mx

g and Mx
l similar to what was done in [14]:

(Mx
g )n+1/2

j = −C(αg, ρl, ρg)n
j

(Ix,n+1
g,j

mn
g,j

− Ix,n+1
l,j

mn
l,j

)
, (Mx

l )n+1/2
j = −(Mx

g )n+1/2
j . (63)

Finally, the source term q(u) is treated by a straightforward explicit and central based discretiza-
tion as follows:

(∆p∂xαk)n
j = ∆p(un

j )δxαn
k,j , αn

k,j+1/2 =
αn

k,j + αn
k,j+1

2
, k = g, l,

(Qx
k)n

j = Qx
k(un

j ).
(64)
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4. Numerical Results

In this section we explore the behavior of the two-fluid model for some flow examples where
characteristic 2D effects are involved. A main feature of the examples we focus on is that they
involve mass transport that typically leads to transition to single-phase flow. It is well known
that this is notoriously difficult for any discrete scheme to handle [31]. Consequently, we apply
the first order scheme presented in Section 3, which is robust enough to handle the transition
to single-phase flow in a satisfying manner. More research must be done in order to extend the
WIMF approach to higher order accuracy in such a way that the simulations presented below can
be handled properly. Grid refinement studies are performed for the various examples to ensure
that the solutions that are presented to a large extent have converged to a limit function, i.e., that
further grid refinement to a minor degree will change the solutions.

Furthermore, for the computations below we use a time step ∆t determined from the stability
condition

∆t = CFL min
(∆x

al
,
∆y

al

)
, (65)

where al = 1000 is the speed of sound in the liquid phase and CFL is the so-called CFL number
[27]. This stability condition takes into account that transition to single-phase liquid flow may
appear which implies that the maximal wave speed is determined by the speed of sound al.

We first, in Section 4.1, perform a test whose purpose is to verify that the 2D scheme gives
correct behavior for a flow case where a gas-dominated box moves with a constant speed in a
liquid dominated region under a constant pressure field. The scheme should be designed such that
the uniformity of pressure and fluid velocities is not disturbed.

Next, in Section 4.2 and 4.3, we consider a natural extension of the 1-D Ransom’s water faucet
(see for example [32, 33]) to a 2D setting, which we shall refer to as the waterfall flow example. An
initial liquid dominated jet corresponding to αg = 0.2 is surrounded by a mixture with a higher
gas volume fraction corresponding to αg = 0.4. We compute solutions, from early transients until
a steady state solution is produced showing that the initial uniform jet becomes thinner at the
lower part.

Finally, in Section 4.4–4.6 we consider two different extensions of 1-D gas-liquid separation flow
[9, 33]. For that purpose we consider a vertical intersection of a horizontal pipe. Again we present
solutions from early times until a steady state solution has been formed.

• Firstly, we consider the case when a stagnant uniform mixture corresponding to αg = 0.5
is separated due to gravity only.

• Secondly, we study the behavior when the pipe initially is filled with a gas dominated
mixture corresponding to αg = 0.8 which moves with a speed of 5 m/s in the horizontal
direction. At the same time a liquid dominated mixture corresponding to αl = 0.8 is
injected at the left end with a horizontal speed of 5 m/s.

• Finally, we extend the previous flow case by incorporating two layers which move with
different speeds, an upper gas-dominated layer and a lower liquid-dominated layer. This
creates an eddy-like behavior at the left inlet where a certain amount of gas is, so to speak,
trapped by the water entering at the inlet.

4.1. Linear transport of a gas volume ”box”. In this first example we consider a square
domain of length L = 100 m. We consider a ”gas-box” placed in liquid moving with a constant
velocity vx

l = vx
g = 10 m/s and vy

l = vy
g = 5 m/s, respectively, in x and y-direction. Pressure

is initially constant p|t=0 = 105 Pa. In the first test the ”gas-box”, which initially is located
at the center of the domain, corresponds to αg = 0.9 whereas the surrounding ”liquid-region”
corresponds to αl = 0.9. Results are shown in Fig. 1 for a grid composed of 200x200 cells. We
consider the volume fraction αg at time T = 2.5 s, and we present solutions computed by using
a time step corresponding to, respectively, CFL=3.33 and CFL=50 as described by (65). The
computations reveal that larger time steps give a better resolution of the gas-box. We also observe
that the pressure and fluid velocities remain constant (figures are not included), as expected from
the construction of the WIMF scheme described in Section 3. See also Remark 6.
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Figure 1. Top: Initial state (left) and approximate solution after T = 2.5 s
(right) on a grid of G = 200x200 cells with CFL=3.33. Bottom: Approximate
solution with the same grid, but CFL=50.

Figure 2. Initial state (left) and approximate solution (right) after T = 2.5 s on
a grid of G = 200x200 cells and with CFL=3.33.

In the second test, the ”gas-box” corresponds to αg = 1.0 − ε with ε = 10−5 whereas the
”liquid-region” corresponds to αl = 1.0− ε. We compute the solution after T = 2.5 s on the same
grid as above. It is observed that the volume fraction remains positive, and the uniformity of
pressure and fluid velocities is preserved. In addition, as explained in Section 3.5, it is observed
that the effect of replacing the upwind fluxes with a hybridization of an upwind and a FORCE
flux, is a slightly stronger smearing-out effect. For this case we are forced to use a relatively small
time step corresponding to CFL=3.33 in order to handle the transition to single-phase liquid flow
in a stable manner.
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Figure 3. Waterfall solutions after T = 0.6 s with a grid of G = 320x960 cells.
Top: gas volume fraction αg (left) and pressure p (right). Bottom: liquid veloc-
ity vy

l (left) and gas velocity vy
g (right)

4.2. Waterfall (1-D). We consider a quadrilateral domain of height H = 12 m and width L = 3
m. First, we want to reproduce the 1-D water faucet flow case [32, 9, 14, 30, 33, 29], but now in
a 2D setting.

Initial data. Consequently, we choose as initial data

αg|t=0 = 0.2, vy
l |t=0 = 10 m/s, vy

g |t=0 = 0 m/s.

In addition, horizontal fluid velocity components are zero,

vx
l |t=0 = 0 m/s, vx

g |t=0 = 0 m/s,

whereas initial pressure is p|t=0 = 105 Pa.

Boundary data. At the top the liquid velocity is set to vy
l = 10 m/s whereas gas velocity is

set to vy
g = 0, and αg = 0.2. Moreover, pressure p, as well as horizontal velocities vx

l and vx
g

are extrapolated. Similarly, along the two vertical sides horizontal fluid velocities vx
l and vx

g are
set to zero, whereas pressure p, volume fraction αg, and vertical fluid velocities vy

l and vy
g are

extrapolated. At the bottom, pressure is set to atmospheric pressure 105 Pa, all other variables
are extrapolated.
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Results. We compute solutions on a grid composed of G=320x960 cells. Solutions are shown in
Fig. 3 after T = 0.6 s. The result coincides directly with that obtained in [14] where comparison
with an approximate analytical solution was also included. In particular, it was observed that the
resolution of the gas front was similar to that of a first order Roe scheme.

4.3. Waterfall (2D). We consider the same domain as in the previous case, here denoted as R,
but now decomposed into two subdomains R1 and R2 where R = R1 ∪R2 and

R1 = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 12}, R2 = {(x, y) : 0 ≤ x ≤ 1 or 2 ≤ x ≤ 3, 0 ≤ y ≤ 12}.
Moreover, a water dominated jet corresponding to αg = 0.2 of width 1 m and associated with the
region R1 is surrounded by a fluid mixture associated with R2 where the gas volume fraction is
αg = 0.4. The water jet in the center of the domain moves with a vertical speed of 10 m/s (initial
gas speed is zero) whereas the mixture to the left and right moves with a vertical speed of 5 m/s
(initial gas speed is zero).

Initial data. Consequently, we choose as initial data

αg(R1)|t=0 = 0.2, vy
l (R1)|t=0 = 10 m/s, vy

g (R1)|t=0 = 0 m/s,

and
αg(R2)|t=0 = 0.4, vy

l (R2)|t=0 = 5 m/s, vy
g (R2)|t=0 = 0 m/s.

In addition, the horizontal fluid velocity components are zero,

vx
l (R)|t=0 = 0 m/s, vx

g (R)|t=0 = 0 m/s,

whereas the initial pressure is p(R)|t=0 = 105 Pa.

Boundary data. At the top the liquid velocity associated with the R1 region is set to vy
l = 10

m/s whereas vy
g = 0 and αg = 0.2. The corresponding data associated with the top of the R2

region are vy
l = 5 m/s, vy

g = 0, and αg = 0.4. Otherwise, at the vertical sides and at the bottom,
boundary data are treated as for the previous case.

Results. We compute solutions on a grid of G=160x480 cells. Solutions are shown in Fig. 4
after a time T = 0.6 s. For this flow example no transition to single-phase flow appears. Conse-
quently, the weakly implicit discretization allows us to compute solutions using large time steps
corresponding to a CFL number CFL=25. The solutions reflect a fairly complicated flow pattern
with characteristic 2D effects.

• After T = 0.6 s we observe from the gas volume fraction αg that there are three charac-
teristic gas fronts, one associated with the water jet located at the center, and another
two further behind on the left and right hand side. The one at the center moves with a
higher speed than the two others.

• The gas front associated with the water jet at the center, reflects a characteristic 2D
pattern where the gas volume fraction is highest close to the interface between the initial
R1 and R2 region.

• The bottom figures, which show results for the gas velocities vy
g and vx

g , demonstrate that
there is strong upward transport effect of gas ahead of the three gas fronts (see the figure
for vy

g ), which explains why the gas fronts are evolved. In addition, the horizontal velocity
vx
g indicates that gas flows toward the central water jet from both sides ahead of the gas

front and the result for vx
l shows that liquid is displaced from this region. Consequently,

the part of the water jet closer to the bottom becomes thinner, see the figure for αg.
Next we focus on the evolution of the gas volume fraction from early time T = 0.3 s until T = 1.8
s when a steady state solution has formed. Fig. 5 displays snapshots of the gas volume fraction
at six different times T = 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8 using the same grid as above. The figures
reflect that only minor changes appear after T = 1.2 s and the steady state solution reflects the
thinning effect that dominates the lower part of the water jet.

Finally, we have also included a grid refinement study in Fig. 6 for the αg and vy
l variable. We

compare the performance for three different grids corresponding to G1 = 80x240, G2 = 160x480,
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Figure 4. Waterfall solutions after T = 0.6 s on a grid of G = 160x480 cells.
Top: gas volume fraction αg (left) and pressure p (right). Middle: vertical liquid
velocity component vy

l (left) and horizontal liquid velocity component vx
l (right)

Bottom: vertical gas velocity component vy
g (left) and horizontal gas velocity

component vx
g (right).
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Figure 5. Waterfall solutions (gas volume fraction αg) for different times with a
grid of G = 160x480 cells. Top: T = 0.3 s (left) and T = 0.6 s (right). Middle:
T = 0.9 s (left) and T = 1.2 s (right) Bottom: T = 1.5 s (left) and T = 1.8 s
(right).

and G3 = 320x960 cells. Minor differences between the various grids are observed, and this justifies
the use of the G2 grid for the above discussion of this flow case.

4.4. Gas Liquid Separation (1-D). We consider a domain of height H = 0.25 m and length
L = 3 m. In the first case we start with a uniform mixture corresponding to αg = 0.5 which is at
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Figure 6. Convergence test for the waterfall example at time T = 0.6 s. Left
column: Gas volume fraction αg for different grids G1 = 80x240 (top), G2 =
160x480 (middle), G3 = 320x960 (bottom). Right column: Vertical liquid
velocity vy

l for different grids G1 = 80x240 (top), G2 = 160x480 (middle), G3 =
320x960 (bottom).

rest initially. Then we compute solutions as time is running and observe how gas and liquid will
separate due to gravity.

Initial data. Consequently, we choose as initial data

αg|t=0 = 0.5, vy
l |t=0 = 0 m/s, vy

g |t=0 = 0 m/s.

In addition, the horizontal fluid velocity components are zero,

vx
l |t=0 = 0 m/s, vx

g |t=0 = 0 m/s,

whereas the initial pressure is p|t=0 = 105 Pa.
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Figure 7. Gas-liquid separation (gas volume fraction αg) for different times with
grid G = 100x60 cells. Top: T = 0.0375 s (left) and T = 0.075 s (right). Bottom:
T = 0.15 s (left) and T = 0.3 s (right).

Boundary data. At the top and bottom, vertical velocity components vy
l and vy

g are set to zero
(since the fluid here faces the wall), whereas horizontal velocities vx

l and vx
g , volume fraction αg,

and pressure p are extrapolated. The left end is closed, which implies that vx
l and vx

g are set to
0, while vy

l , vy
g , αg and pressure p are extrapolated. The right outlet is open, in other words, the

pressure is set to 105 Pa whereas all other variables are extrapolated.

Results. In Fig. 7 the evolution of the gas volume fraction αg is demonstrated by displaying
snapshots for different times T = 0.0375, 0.075, 0.15 and 0.3 s. We have used a grid of G=100x60
cells. The WIMF scheme applied here has been verified before for this flow example by comparing
with an approximate analytical solution for gas-liquid separation [14]. The figures demonstrate how
two sharp mass fronts are formed, one close to the bottom which moves upward and another close
to the top which moves downward. The two fronts separate the mixture region where αg = 0.5,
respectively, from a pure liquid region (bottom) and pure gas region (top). After T = 0.3 s the
two mass fronts have met and one large, stagnant mass front, separating the pure liquid and pure
gas region, has emerged.

4.5. Separation with horizontal inflow - one layer. We consider the same domain as in the
previous case. Initially the ”pipe” is filled with a uniform gas-dominated mixture corresponding to
αg = 0.8 which moves from left to right with a speed of 5 m/s. At the left inlet, a liquid-dominated
mixture corresponding to αl = 0.8 is injected with a speed of 5 m/s.

Initial data. Consequently, we choose as initial data

αg|t=0 = 0.8, vy
l |t=0 = 0 m/s, vy

g |t=0 = 0 m/s,

whereas the horizontal fluid velocity components are set as follows

vx
l |t=0 = 5 m/s, vx

g |t=0 = 5 m/s,

and the initial pressure is p|t=0 = 105 Pa.
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Boundary data. At the top, bottom and right outlet boundary data are the same as for the
previous case. At the inlet end, we use the data

αg = 0.2, vx
l = 5, vx

g = 5, vy
l = vy

g = 0,

whereas the pressure p is extrapolated.

Results. In Fig. 8 we show the evolution of the gas volume fraction from time T = 0 until T = 1.2
s. A grid of G = 100 × 60 cells is used. The figures reflect that the two-fluid dynamic produces
a characteristic flow pattern where two different separation processes (due to gravity) take place,
respectively, within the gas-dominated region on the right hand side of the pipe and the liquid-
dominated region close to the left inlet. In addition, a sharp interface which separates the gas and
liquid dominated region is developed. We compute the solutions from small times, where highly
transient phenomena take place, up to a time where a steady state solution is produced where
gas occupies the upper part of the pipe whereas the remaining lower part of the pipe is filled with
liquid.

In Fig. 9 the behavior of the various quantities after T = 0.15 s is shown. The figures reveal a
strong kinematic disequilibrium at the left inlet as liquid is driven towards the bottom by gravity
and gas mainly is squeezed in the upward direction. We also observe that the horizontal fluid
velocities vx

l and vx
g are affected by the accumulation of liquid leading to the hump-like liquid-

dominated region close to the left inlet.
In Fig. 10 a grid-refinement study is presented for the αg and vy

g variable. We compare the
performance for three different grids corresponding to G1 = 50 × 30, G2 = 100 × 60, and G3 =
200 × 120 grid cells at time T = 0.3. In particular, the results reflect that the use of the grid
G2 = 100 × 60 to calculate the solutions discussed above should give reliable results where grid-
dependent effects to a large extent is not present.

4.6. Separation with horizontal inflow - two layers. We consider the same flow domain as
in the previous case, initially now filled with two layers, a gas dominated layer at the upper part
corresponding to αg = 0.8 and a lower liquid dominated layer corresponding to αl = 0.8. In other
words, for the domain R we set R = R1 ∪R2 where

R1 = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 0.0125}, R2 = {(x, y) : 0 ≤ x ≤ 3, 0.125 ≤ y ≤ 0.25}.
The upper layer moves from left to right with a speed of 5 m/s at initial time whereas the lower
layer moves with a speed of 1 m/s.

At the left inlet a liquid dominated mixture corresponding to αl = 0.8 is injected. The injection
takes place with a speed of 5 m/s at the upper part of the inlet and 1 m/s at the lower part,
consistent with the initial data inside the domain.

Initial data. Consequently, we choose as initial data for R1

αg(R1)|t=0 = 0.2, vx
l (R1)|t=0 = 1 m/s, vx

g (R1)|t=0 = 1 m/s,

and similarly for R2

αg(R2)|t=0 = 0.8, vx
l (R2)|t=0 = 5 m/s, vx

g (R2)|t=0 = 5 m/s,

whereas the vertical fluid velocity components are set as follows

vy
l (R)|t=0 = 0 m/s, vy

g (R)|t=0 = 0 m/s.

The initial pressure is p(R)|t=0 = 105 Pa.

Boundary data. At the top, bottom and right outlet boundary, data are the same as for the
previous case. At the inlet end, for the lower layer associated with R1 we use the data

αg = 0.2, vx
l = 1, vx

g = 1, vy
l = vy

g = 0,

and for the upper layer associated with R2

αg = 0.2, vx
l = 5, vx

g = 5, vy
l = vy

g = 0,

whereas the pressure p is extrapolated.
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Figure 8. Gas-liquid separation in combination with inflow of a liquid-
dominated mixture. The plots show gas volume fraction αg for different times
T = 0, 0.0375, 0.075, 0.10, 0.15, 0.225, 0.6, 1.2 s on a grid of G = 100x60 cells.
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Figure 9. Solutions after T = 0.15 s with a grid of G = 100x60 cells. Top: Gas
volume fraction αg (left) and pressure p (right). Middle: Vertical liquid velocity
vy
l component (left) and horizontal liquid velocity component vx

l (right) Bottom:
Vertical gas velocity component vy

g (left) and horizontal gas velocity component
vx
g .

Results. In Fig. 11 we show the evolution of the gas volume fraction from time T = 0 until
T = 1.2 s when a steady state solution has been formed. As for the previous case we employ a
grid of G = 100×60 cells. The figures reflect that the two-fluid dynamic produces a characteristic
flow pattern where different separation processes (due to gravity) take place, respectively, in the
upper gas-dominated region and the lower liquid-dominated region. A peculiar feature of this flow
process is the eddy-like behavior of a local high-gas region which is formed close to the inlet end.
Apparently, some of the gas which enters from the left inlet is not able to escape the liquid which
falls towards the bottom at the left inlet. This behavior is not seen for the previous example and
seems to be related to the fact that the upper layer moves with a higher speed than the lower,
which implies that the inflow of water is higher at the upper layer. It is also observed that at time
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Figure 10. Convergence test for gas-liquid separation with inflow at time T =
0.3 s. Left column: Gas volume fraction αg for different grids G1 = 50x30
(top), G2 = 100x60 (middle), G3 = 200x120 (bottom). Right column: Vertical
gas velocity component vy

g for different grids G1 = 50x30 (top), G2 = 100x60
(middle), G1 = 200x120 (bottom).

T = 2.4 s a steady state solution has been reached and the gas layer at the upper part occupies a
considerably larger part of the pipe than for the previous example, compare with Fig. 8.

In Fig. 12 a snapshot of solutions of the various quantities at time T = 1.2 s is displayed. The
eddy-like behavior associated with the local high-gas region close to the left inlet is more clearly
explained by the figures for vx

g and vy
g . We observe that the gas located in the center of this

high-gas region to a large extent is stagnant. At the same time there is a flow of gas mainly from
all sides towards this local high-gas region. In particular, the figure of vx

g shows that there is a
transport of gas from left towards right which explains why the high-gas region will not move
further into the pipe.
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Figure 11. Gas-liquid separation with inflow (gas volume fraction αg) for dif-
ferent times T = 0, 0.0375, 0.075, 0.10, 0.15, 0.225, 0.6, and 2.4 s with a grid of
G = 100x60 cells.
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Figure 12. Gas Liquid separation with inflow at time T = 1.2 s with a grid
of G = 100x60 cells. Top: Gas volume fraction αg (left) and pressure p (right).
Middle: Vertical liquid velocity component vy

l (left) and horizontal liquid velocity
component vx

l (right) Bottom: Vertical gas velocity component vy
g (left) and

horizontal gas velocity component vx
g (right).

In Fig. 13 a grid-refinement study is presented for the αg and vx
g variable. We compare the

performance for three different grids corresponding to G1 = 50 × 30, G2 = 100 × 60, and G3 =
200 × 120 grid cells after T = 0.3 s. In particular, the results reflect that the use of the grid G2

to calculate the solutions discussed above and shown in Fig. 11 and 12 is sufficient to capture all
the main trends.

5. Concluding remarks

We have conducted a numerical study of a common compressible gas-liquid two-fluid model in
two dimensions (2D). The numerical results are carried out by using a natural extension of the
WIMF method proposed in [14] in combination with a dimensional splitting approach.
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Figure 13. Convergence test for gas-liquid separation with inflow at time T =
0.3 s. Left column: Gas volume fraction αg for different grids G1 = 50x30 (top),
G2 = 100x60 (middle), G3 = 200x120 (bottom). Right column: Horizontal
gas velocity component vx

g for different grids G1 = 50x30 (top), G2 = 100x60
(middle), G3 = 200x120 (bottom).

The purpose of the two-dimensional simulations is to demonstrate characteristic two-dimensional
dynamics where mass transport is essential (in contrast to pressure waves). In particular, we dis-
cuss the 2D behavior when natural extensions of common 1D benchmark tests like water faucet
and gas-liquid separation are considered. These flow cases involve mass transport phenomena,
highly kinematic conditions (large discrepancy between fluid velocities), and transition to local
single-phase regions. In particular, we study flow cases for a 2D horizontal pipe where inflow of a
two-phase mixture from one end creates various highly dynamic flow scenarios. The predicted so-
lutions are a result of the balance between acceleration terms and gravity. The transient behavior,
as well as the convergence to steady state, are computed.
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These simulations motivate for further work in various directions. (i) Try to extend the scheme
to include higher-order accuracy in space; (ii) Consider a finite volume discretization which allows
for more general grids; (iii) Efficient calculation of steady state solutions; (iv) Extract simplified
models from the full 2-D model that can be used to capture important aspects of the full model.

Acknowledgement. The first author would like to acknowledge financial support from the Re-
search Council of Norway through the project ”SAGA-GEO” under grant number 166513/V30.

References

[1] D. Barnea and Y. Taitel, Kelvin-Helmholtz stability criteria for stratified flow: Viscous versus non-viscous
(inviscid) approaches, Int. J. Multiphase Flow 19, 639–649, 1993.

[2] D. Barnea and Y. Taitel, Nonlinear interfacial instability of separated flow, Chem. Eng. Sci. 49 (14), 2341–
2349, 1994.

[3] K. H. Bendiksen, D. Malnes, R. Moe, and S. Nuland, The dynamic two-fluid model OLGA: Theory and
application, in SPE Prod. Eng. 6, 171–180, 1991.

[4] D. Bestion, The physical closure laws in the CATHARE code, Nucl. Eng. Des. 124, 229–245, (1990).
[5] S.J. Billett and E.F. Toro, Centred TVD schemes for hyperbolic conservation laws, IMA J. Numerical Analysis

20, 47–79, 2000.
[6] C.-H. Chang and M.-S. Liou, A robust and accurate approach to computing compressible multiphase flow:

Stratified flow model and AUSM+-up scheme, J. Comput. Physics 225 (1), 840–873, 2007.
[7] G.-Q. Chen and E.F. Toro, Centered difference schemes for nonlinear hyperbolic equations, J. Hyperbolic

Differ. Equ. 1 (3), 531–566, 2004.
[8] W. Choi and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396, 1–36,

1999.
[9] F.Coquel, K. El Amine, E. Godlewski, B. Perthame, and P. Rascle, A numerical method using upwind schemes

for the resolution of two-phase flows, J. Comput. Phys. 136, 272–288, 1997.
[10] J. Cortes, A. Debussche, and I. Toumi, A density perturbation method to study the eigenstructure of two-phase

flow equation systems, J. Comput. Phys. 147, 463–484, 1998.
[11] J. Cortes, On the construction of upwind schemes for non-equilibrium transient two-phase flow, Computers &

Fluids 31, 159–182, 2002.
[12] D. Drew, L. Cheng, and J.R.T. Lahey, The analysis of virtual mass effects in two-phase flow, Int. J. Multiphase

Flow 5, 233-242, 1979.
[13] S. Evje and T. Fl̊atten, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys 192,

175–210, 2003.
[14] S. Evje and T. Fl̊atten, Weakly implicit numerical schemes for a two-fluid model, SIAM J. Sci. Comput. 26,

1449–1484, 2005.
[15] S. Evje and T. Fl̊atten, Hybrid central-upwind schemes for numerical resolution of two-phase flows, ESAIM:

Math. Mod. Num. Anal. 39 (2), 253–274, 2005.
[16] S. Evje and T. Fl̊atten, CFL-violating numerical schemes for a two-fluid model, J. Sci. Computing 29 (1),

83-114, 2006.
[17] S. Evje, T. Fl̊atten, and H.A. Friis, On a relation between pressure-based schemes and central schemes for

hyperbolic conservation laws, Num. Meth. Part. Diff. Eq 26 (2), 605-645, 2008.
[18] S. Evje, T. Fl̊atten, and H.A. Friis, Global weak solutions for a viscous liquid-gas model with transition to

single-phase gas flow and vacuum, Nonlinear Analysis, accepted, 2008.
[19] S. Evje, K.H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Diff. Eq. 245 (9),

2660-2703, 2008.
[20] J. Grue, H.A. Friis, E. Palm, and P.O. Rusas, A method for computing unsteady fully nonlinear interfacial

waves, J. Fluid Mech. 351, 223–252, 1997.
[21] M. Herty and M. Seaid, Simulation of transient gas flow at pipe-to-pipe intersections. Int. J. Num. Meth.

Fluids, in press.
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