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1 Introduction

A natural model for well-porous media flow is obtained by coupling a hyper-
bolic system of two conservation laws corresponding to the isothermal Euler
equations with source terms, and an integral equation. In dimensionless form
it is given by

∂t(ρ) + ∂x(ρu) =
1
η
ρqV, ∂t(ρu) + ∂x(ρu2) + ∂xp(ρ) = 0, η > 0,

p0 − p(x, t) =
∫ t

0

∫ 1

0

Hr(x, x′, t − t′)qV(x′, t′) dx′dt′,
(1)

for x ∈ [0, 1]. ρ, u, and p(ρ) are, respectively, density, velocity, and pressure,
whereas qV represents volumetric flow rate. p0 is initial pressure (assumed
to be constant) and η is a small parameter. The kernel Hr(x, x′, t − t′) is
characteristic for the porous media under consideration.

In order to get some understanding of basic underlying mechanisms present
in the model (1), we assume that the fluid is incompressible. We then get a
scalar conservation law on the form

∂tu + ∂x(u2) = −∂xp, p0 − p(x, t) = ε

∫ +∞

−∞
Gr(x, x′)ux′(x′, t) dx′, (2)

with ε =
µD

4ρk
, Gr(x, x′) =

r2√
(x − x′)2 + r2

, r > 0, (3)

where µ is fluid viscosity, k is permeability, D is a characteristic time, r the
well radius (which typically is small relatively the size of the porous media).
We may write (2) on the form

∂tu + ∂x(u2) = εGr
x ∗ ux = εGr

xx ∗ u, ε, r > 0. (4)
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Various properties of the model (4) was studied in [EK06]. In particular,
wellposedness was demonstrated, respectively, in a L∞ and L2 setting. The
purpose of this note is to replace the kernel Gr(x, x′) with an approximation
G̃r(x, x′) such that ‖Gr

x− G̃r
x‖L1(R) = O(r), and then derive various estimates

for the approximate well-reservoir model

∂tu + ∂x(u2) = εG̃r
x ∗ ux, ε, r > 0. (5)

These estimates, which imply existence and uniqueness of entropy weak solu-
tions, are sharper than those presented in [EK06]. This is essentially due to
the fact that the approximate kernel function G̃r leads to a source term pos-
sessing a dissipative nature. In that respect, the approximate well-reservoir
model (5) bears a clear link to the so-called radiating gas model, studied by
many researchers more lately [I97, KN99, N00, LT01, LM03, S03]. This model
can be written on the form

∂tu + ∂x(
1
2
u2) = ∂xp, p(x, t) =

∫ +∞

−∞
H(x, x′)ux′(x′, t) dx′ = H ∗ ux, (6)

with H(x, x′) = 1
2e−|x−x′|. Alternatively, one can express the model on the

form ∂tu+∂x(1
2u2) = Hxx ∗u = [H−δ]∗u = H ∗u−u, where δ represents the

Dirac delta function. In this note we shall see that the approximate model (5)
possesses a similar formulation. Nevertheless, there is also a clear difference
between (5) and (6) since the kernel H corresponding to the latter is associated
with the differential operator (1 − ∂2

xx). Consequently, (6) can be written on
the form

ut + uux = −px, −pxx + p = −ux. (7)

The fact that (6) can be written as a hyperbolic-elliptic coupled system on
the form (7), is explicitly used, for example in traveling wave analysis [KN99,
N00, S03].

2 Mathematical models

Porous media flow. Darcy’s law and the continuity equation for flow in
porous medium can be combined to give a transient pressure equation [B88]

cφ
∂p

∂t
−∇ ·

[k

µ
∇p

]
= Qvol(x, t). (8)

Here p is pressure, φ porosity, µ viscosity whereas Qvol(x, t) accounts for
the mass flow between well and porous media. We assume that the the
porosity φ and compressibility c is constant. Furthermore, let Xw(s) =
(xw(s), yw(s), zw(s)) with s ∈ [0, 1] (dimensionless) be a parametrization of
the line Γw describing the well path. The source term Qvol(x, t) represents a
delta function singularity along the well path Γw given by
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Qvol(x, t) =
∫

Γw

qV(α, t)δ(x − Xw(α)) dα, (9)

where δ(x) is a three-dimensional Dirac function δ(x) = δ(x)δ(y)δ(z), qV(α, t)
the volumetric influx or efflux rate per unit wellbore length, and α denotes
the arc-length function. In the following we restrict ourselves to a straight line
well geometry of length Lw. We also assume that Ω is a cube of length L.

In terms of dimensionless variables the pressure equation (8) takes the
form (see [EK06] for details)

∂p

∂t
−

[∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2

]
= Qvol(x, t), (10)

where (x, t) = (x, y, z, t) ∈ Ω × [0, T ]. In the following we shall apply the
integral formulation of (10).

p0(x) − p(x, t) =
∫ t

0

∫ 1

0

G(x,Xw(s′), t − t′)qV(s′, t′) ds′dt′, (11)

where G is the free-space kernel G(x,x′, t − t′) = 1
[4π(t−t′)]3/2 exp

[
− ‖x−x′‖2

4(t−t′)

]
.

By setting x = Xw(s)+rw for s ∈ [0, 1] in (11), we note that qV(s′, t′) satisfies
the integral equation

∆p(Xw(s) + rw, t) =
∫ t

0

∫ 1

0

G(s, s′, t − t′)qV(s′, t′) ds′dt′. (12)

Here ∆p(Xw(s) + rw, t) = p0(Xw(s) + rw) − p(Xw(s) + rw, t) represents the
change in pressure at the well boundary. Equation (12) is an integral equation
of first kind, Fredholm in space and Volterra in time.

A simplified model is obtained by assuming that the fluid in the porous
media is incompressible. Then the pressure is given by

−∇ ·
[k

µ
∇p

]
= Qvol(x, t), (13)

where Qvol is given by (9). Following the approach as described above, we
arrive at the following integral equation

∆p(Xw(s) + rw, t) =
∫ 1

0

G(Xw(s) + rw,Xw(s′))qV(s′, t) ds′, (14)

where ∆p(Xw(s) + rw, t) = p0(Xw(s) + rw) − p(Xw(s) + rw, t). Here the
kernel G is the Green’s function associated with the pressure equation −∆p =
δ(x − Xw). That is,

G(x,x′) =
1

4π‖x− x′‖ . (15)

Well flow. A single-phase, compressible, isothermal and unsteady well flow
model is given on the form
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∂t(Aρw) + ∂α(Aρwu) = ρwqV

∂t(Aρwu) + ∂α(Aρwu2) + A∂αpw = 0,
(16)

where α is the arc-length variable associated with the well path Γw. Here ρw

is the fluid density, u the fluid velocity, pw = p(ρw) the pressure, qV represents
volumetric flux per unit wellbore length. Moreover, A = πr2

w is the pipe cross-
sectional area for a well of radius rw. In terms of the non-dimensional variables
the model (16) takes the form (see [EK06] for more details)

∂t(ρw) + ∂s(ρwu) =
1
η
ρwqV, η =

LwAµ

DLkp̄
,

∂t(ρwu) + ∂s(ρwu2) + h0∂spw = 0, pw = pw(ρw), h0 =
p̄

ρ̄ū2
.

(17)

Here p̄, ρ̄, ū represent characteristic quantities and ū = Lw/D.
Coupled well-porous media flow. Equipped with the well model (17) and
the porous media model (12) we now formulate a coupled well-porous me-
dia flow model along the line of [OA01] by imposing the coupling condition
pw(ρw(s, t)) = p(Xw(s) + rw, t):=p(s, t). This results in a model on the form
(skipping the index ”w”)

∂t(ρ) + ∂s(ρu) =
1
η
ρqV, ∂t(ρu) + ∂s(ρu2) + ∂sP (ρ) = 0,

P0 − P (s, t) = h0

∫ t

0

∫ 1

0

G(Xw(s) + rw ,Xw(s′), t − t′)qV(s′, t′) ds′dt′,
(18)

where P (ρ) = h0p(ρ) and h0 = p̄
ρ̄ū2 . This model corresponds to the model

problem (1).
A simplified ”compressible well-incompressible porous media” model.
We may treat the reservoir fluid as an incompressible fluid. In view of (14)
and (15) we then obtain a well-porous media model on the form

∂t(ρ) + ∂s(ρu) =
1
η
ρqV, ∂t(ρu) + ∂s(ρu2) + ∂sP (ρ) = 0,

P0 − P (s, t) =
∫ 1

0

Hr(s, s′)qV(s′, t) ds′,
(19)

where Hr(s, s′) = h0G(Xw(s) + r,Xw(s′)) for G(x,x′) = 1
4π‖x−x′‖ . We intro-

duce the dimensionless radius r̄ = rw

Lw
and arrive at the following expression

for the kernel Hr(s, s′) with ε1 = h0L
4πr̄Lw

(see [EK06] for more details).

Hr(s, s′) = h0G(Xw(s) + r,Xw(s′)) = ε1

[(
(s − s′)/r̄

)2 + 1
]−1/2

. (20)

A simplified incompressible well-porous media model. We take a step
further and impose in (19) that the well fluid is incompressible, i.e. ρ = 1.
This yields the following simplified model
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∂s(u) =
1
η
qV, ∂t(u) + ∂s(u2) + ∂sP = 0,

P0 − P (s, t) =
∫ 1

0

Hr(s, s′)qV(s′, t) ds′,
(21)

where η = LwµA
Lkp̄D . In view of (20), we introduce the function Gr(s, s′) defined

by (3) and see that Hr(s, s′) = h0L
4πr̄2Lw

Gr(s, s′). Inserting this in (21), we
obtain the model problem (2)–(3), where we have replaced the finite domain
[0, 1] by the real axis.
An approximate well-porous media model relevant for (4). In this
section we focus on a well-reservoir model which represents an approxima-
tion to the well-porous media model (4). More precisely, we replace the kernel
Gr(x, x′) given in (3) by an approximate kernel G̃r(x, x′) defined in the fol-
lowing. First, we observe that

Gr
x(x) =

−r2x(
x2 + r2

)3/2
, Gr

xx(x) =
r2

(√
2x − r

)(√
2x + r

)
(
x2 + r2

)5/2
. (22)

We then introduce the approximation

G̃r
x(x) =

{
Gr

x(x) if |x| > r/
√

2,
c(1 − 2H(x)) if |x| ≤ r/

√
2, c = Gr

x(−r/
√

2),
(23)

where H(x) is the Heaviside function and c = 2
3
√

3
. We easily see that ‖Gr

x −
G̃r

x‖L1(R) = O(r). Next, we define G̃r(x) =
∫ x

−∞ G̃r
x(s) ds. Moreover, it follows

that G̃r ∈ C2(R/{0}) since

G̃r
xx(x) =

{
Gr

xx(x) if |x| > r/
√

2,

−2cδ(x) if |x| ≤ r/
√

2, c = Gr
x(−r/

√
2) = −Gr

x(r/
√

2),

where δ(x) is the Dirac mass centred at x = 0 In particular, we note that
G̃r

xx is continuous at ±r/
√

2 since Gr
xx(r/

√
2) = 0. We now consider the

corresponding well-porous media model defined by

∂tũ + ∂x(ũ2) = εG̃r
x ∗ ũx = εG̃r

xx ∗ ũ

= ε
(
Gr

xxχ|x−x′|>r/
√

2 ∗ ũ − 2cδ(x − x′)χ|x−x′|≤r/
√

2 ∗ ũ
)

= ε(Gr
xxχ|x−x′|>r/

√
2 ∗ ũ − 2cũ),

(24)

where χE(x) = 1 for x ∈ E and χE(x) = 0 for x /∈ E.

3 A well-posedness result for the model (24)

Definition 1 (Entropy weak solution). A function u ∈ L∞ ((0, T )× R)∩
C

(
[0, T ]; L1(R)

)
for any T > 0, is called an entropy weak solution to (24)
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provided for any convex C2 entropy η : R → R with corresponding entropy
flux q : R → R defined by q′(u) = 2uη′(u) there holds the inequality∫ T

0

∫
R

[η(u)φt + q(u)φx − η′(u)pxφ]dxdt +
∫

R

η(u0(x))φ(x, 0)dx ≥ 0, (25)

∀φ ∈ C∞
0 ([0, T )× R), φ ≥ 0 where p0 − p(x, t) = ε

∫
R

G̃r
x(x, x′)u(x′, t) dx′.

We rely on the standard approach and seek for a solution to (24) by letting
µ go to zero in the viscous approximation

∂tũ + ∂x(ũ2) = εG̃r
xx ∗ ũ + µ∂2

xxũ, µ > 0. (26)

Lemma 1. Let u and ū be solutions of (26) with initial data u0, ū0 ∈ L1(R)∩
L∞(R). Then, for any t > 0,∫

R

[u(x, t) − ū(x, t)]+ ds ≤
∫

R

[u0(x) − ū0(x)]+ ds, (27)

‖u(·, t) − ū(·, t)‖L1(R) ≤ ‖u0(·) − ū0(·)‖L1(R), (28)
If u0(x) ≤ ū0(x) a.e. on R, then u(x, t) ≤ ū(x, t) a.e. on R × [0, T ], (29)

−a ≤ ‖u(·, t)‖∞, ‖ū(·, t)‖∞ ≤ +a, a = max{‖u0‖∞, ‖ū0‖∞}. (30)

Proof. We know that (26) has smooth (classical) solutions. We define ηδ(·)
such that, pointwise we have ηδ(u − ū) → [u − ū]+, η′

δ(u − ū) → sgn(u −
ū)+, η′′

δ (u− ū)[u2− ū2] → 0, as δ ↓ 0. In view of (26) we can find an equation
for u − ū. Multiplying this equation by η′

δ(u − ū), we get∫
R

ηδ(u − ū)dx ≤
∫

R

ηδ(u0 − ū0)dx+∫ t

0

∫
R

η′′
δ (u − ū)(u2 − ū2)(u − ū)xdxdt + ε

∫ t

0

∫
R

η′
δG̃

r
xx ∗ (u − ū)dxdτ.

(31)

Taking the limit δ → 0, we get∫
R

[u(x, t) − ū(x, t)]+ dx ≤
∫

R

[u0(x) − ū0(x)]+ dx + R, (32)

where R = ε
∫ t

0

∫
R

sgn(u − ū)+G̃r
xx ∗ (u − ū) dxdτ . We must estimate R.∫ t

0

∫
R

sgn(u − ū)+[Gr
xxχ|x−x′|>r/

√
2] ∗ (u − ū) dxdτ

≤
∫ t

0

∫
R

∫
R

Gr
xxχ|x−x′|>r/

√
2 · [u − ū]+(x′, t) dx′ dxdτ

=
∫ t

0

∫
R

[u − ū]+(x′, t)
∫

R

Gr
yyχ|y|>r/

√
2 dy dx′dτ

= 2
∫ t

0

∫
R

[u − ū]+(x′, t)
∫ −r/

√
2

−∞
Gr

yy dy dx′dτ = 2c

∫ t

0

∫
R

[u − ū]+(x′, t) dx′dτ,
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where we have used the transformation y = x−x′ for a fixed x′. Consequently,∫ t

0

∫
R

sgn(u − ū)+
(
[Gr

xxχ|x−x′|>r/
√

2] ∗ (u − ū) − 2c(u − ū)
)

dxdτ ≤ 0,

and it follows from (32) that
∫

R
(u− ū)+ dx ≤ ∫

R
(u0− ū0)+ dx. From this, (28)

and (29) follow. To show that (30) holds, we multiply (24) by a regularization
of p|u|p−1sgn(u) and observe that

p|u|p−1sgn(u)ut = ∂t(|u|p), p|u|p−1sgn(u)(u2)x = ∂x(
2p

p + 1
sgn(u)|u|p+1),

p|u|p−1sgn(u)µ∂2
xxu = µ(uxp|u|p−1sgn(u))x − µp(p − 1)|u|p−2(ux)2.

Consequently,
∫

R
|u|p dx ≤ ∫

R
|u0|p dx+ε

∫
R

p|u|p−1sgn(u)G̃r
xx∗u dx. Moreover,∫

R

|u|p−1sgn(u)[Gr
xxχ|x−x′|>r/

√
2] ∗ u dx ≤ ‖u‖p−1

p ‖Gr
xxχ|x−x′|>r/

√
2 ∗ u‖p

≤ ‖u‖p−1
p ‖Gr

xxχ|x−x′|>r/
√

2‖1‖u‖p ≤ 2c‖u‖p
p.

Therefore, we conclude that
∫

R
p|u|p−1sgn(u)G̃r

xx ∗ u dx ≤ 0, which implies
that ‖u‖p ≤ ‖u0‖p for all p ≥ 1. Thus, (30) follows.

Lemma 2. Let uµ be the solution to (26) with u0 ∈ L1(R)∩L∞(R) as initial
data with

∫
R
|u0(x + h) − u0(x)| dx ≤ ω(|h|), for any h ∈ R, for some nonde-

creasing function ω on R
+ with ω(r) ↓ 0 as r ↓ 0. Then there exists a constant

C, depending only on ‖u0‖∞ such that, for any t > 0,∫
R

|uµ(x + h, t) − uµ(x, t)| dx ≤ ω(|h|), for any h ∈ R, (33)∫
R

|uµ(x, t + k) − uµ(x, t)| dx ≤ C(k + k2/3 + µk1/3)‖u0‖1 + 4ω(k1/3), (34)

for any k > 0.

This can be proved along the line of, for example [LM03]. In view of Lemma 2,
it follows by classical arguments that the sequence uµ is compact in L1

loc. More
precisely, the following theorem holds.

Theorem 1. Let uµ be the solution to (26) with u0 ∈ L1(R)∩L∞(R) as initial
datum. Then, as µ ↓ 0, for any T > 0, uµ → u strongly in Lp

loc(R× [0, T ]) for
p < ∞, and u ∈ L1(R× [0, T ])∩L∞(R× [0, T ]) is an entropy solution to (24)
in the sense of Definition 1.

Finally, we also mention that L1-stability of entropy weak solutions (thus,
uniqueness) can be proved along the line of [LM03]. It is also of interest
to study the difference between the solutions of (4) and (24). We have the
following result.
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Theorem 2. Let u and ũ denote entropy weak solutions, respectively of (4)
and (24) with initial data u0 ∈ BV (R). Then, for any t > 0,

‖u(·, t) − ũ(·, t)‖L1(R) ≤ 2
√

2
3
√

3
εrte2εt‖u0‖BV (R). (35)

Proof. Let e = u − ũ, where u and ũ are viscous approximations to (4) and
(24). Then et+(u2−ũ2)x = εG̃r

x∗ex+ε[Gr
x−c(1−2H)]χ|x−x′|<r/

√
2∗ux+µexx.

Along the line of Lemma 3.1 we get∫
R

e(x, t)+ dx ≤
∫

R

e0(x)+ dx + ε

∫ t

0

∫
R

sgn(e)+G̃r
xx ∗ e dxdτ

+ ε

∫ t

0

∫
R

sgn(u − ū)+[Gr
x − c(1 − 2H)]χ|x−x′|<r/

√
2 ∗ ux dxdτ.

(36)

Here
∫ t

0

∫
R

sgn(e)+G̃r
xx ∗ e dxdτ ≤ 0 whereas the last term is estimated as

follows∣∣∣∫ t

0

∫
R

sgn(u − ū)+[Gr
x − c(1 − 2H)]χ|x−x′|<r/

√
2 ∗ ux dxdτ

∣∣∣
≤

∥∥∥[Gr
x − c(1 − 2H)]χ|x−x′|<r/

√
2

∥∥∥
L1(R)

∫ t

0

‖ux‖L1(R)dτ ≤
√

2crte2εt‖u0‖BV (R),

where we have used that ‖[Gr
x−c(1−2H)]χ|x−x′|<r/

√
2‖L1(R) ≤ 2Gr

x(r/
√

2)r/
√

2 =√
2cr and ‖u(·, t)‖BV (R) ≤ e2εt‖u0‖BV (R), taken from Lemma 4.2 in [EK06].
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