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Abstract. We study a viscous two-phase liquid-gas model relevant for well
and pipe flow modelling. The gas is assumed to be polytropic whereas the
liquid is treated as an incompressible fluid leading to a pressure law which
becomes singular when transition to single-phase liquid flow occurs. In order
to handle this difficulty we reformulate the model in terms of Lagrangian vari-
ables and study the model in a free-boundary setting where the gas and liquid
mass are of compact support initially and discontinuous at the boundaries.
Then, by applying an appropriate variable transformation, point-wise control
on masses can be obtained which guarantees that no single-phase regions will
occur when the initial state represents a true mixture of both phases. This
paves the way for deriving a global existence result for a class of weak solu-
tions. The result requires that the viscous coefficient depends on the volume
fraction in an appropriate manner. By assuming more regularity of the initial
fluid velocity a uniqueness result is obtained for an appropriate (smaller) class
of weak solutions.

1. Introduction. The starting point for the investigations of this work is a one-
dimensional two-phase model of the drift-flux type. This model is frequently used
to simulate unsteady, compressible flow of liquid and gas in pipes [1, 3, 4, 15, 7, 26,
11, 21]. The model consists of two mass conservation equations corresponding to
each of the two phases and one equation for the conservation of the momentum of
the mixture and is given in the following form:
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∂t[αgρg] + ∂x[αgρgug] = 0

∂t[αlρl] + ∂x[αlρlul] = 0

∂t[αlρlul + αgρgug] + ∂x[αgρgu
2
g + αlρlu

2
l + p] = −q + ∂x[ε∂xumix],

(1)

with umix = αgug + αlul and ε ≥ 0. The model is supposed under isothermal
conditions. The unknowns are ρl, ρg the liquid and gas densities, αl, αg volume
fractions of liquid and gas satisfying αg + αl = 1, ul, ug velocities of liquid and
gas, p common pressure for liquid and gas, and q representing external forces like
gravity and friction. Since the momentum is given only for the mixture, we need an
additional closure law, a so-called hydrodynamical closure law, which connects the
two phase velocities. More generally, this law should be able to take into account
the different flow regimes. In addition, we need a thermodynamical equilibrium
model which specifies the fluid properties. More details will be given in the next
section. Otherwise, we refer to [1, 2, 5, 6, 7, 11, 12, 13, 18, 20, 21, 22, 26] for various
numerical schemes which have been developed for the study of the drift-flux model.
See also [8] for a study of the relation between the drift-flux model and the more
general two-fluid model where two separate momentum equations are used instead
of a mixture momentum equation [3, 15].

Few results concerning existence, uniqueness, and stability seem to exist for two-
phase liquid-gas models of the form (1). The main purpose of this work is to
initiate some work in this direction. Many new challenges, compared to single-
phase Navier-Stokes flow type of models, occur. Thus, in this work we focus on a
simplified model obtained by assuming that fluid velocities are equal ug = ul = u
and by neglecting the external forces, i.e., q = 0. In addition, we neglect certain gas
effects by considering a simplified momentum equation where acceleration terms
depend solely on the liquid phase. This is motivated by the fact that liquid phase
density typically is much higher than gas phase density. Consequently, we consider
a model in the form

∂t[αgρg] + ∂x[αgρgu] = 0

∂t[αlρl] + ∂x[αlρlu] = 0

∂t[αlρlu] + ∂x[αlρlu
2] + ∂xp = ∂x[ε∂xu], p, ε ≥ 0.

(2)

Assuming polytropic gas law relation p = Cργ
g with γ > 1 and incompressible liquid

ρl = Const we get a pressure law of the form (see Section 2 for more details)

p(n,m) = C
( n

ρl −m

)γ

,

where we use the notation n = αgρg and m = αlρl. In particular, we see that
pressure becomes singular at transition to pure liquid phase αl = 1 which yields
m = ρl. In order to treat this difficulty we first assume that we consider (2) in a
free boundary problem setting where the masses m and n initially occupy only a
finite interval [a, b] ⊂ R. That is,

n(x, 0) = n0(x) > 0, m(x, 0) = m0(x) > 0, u(x, 0) = u0(x), x ∈ [a, b],

and n0 = m0 = 0 outside [a, b]. The viscosity coefficient ε is in general assumed to
be a functional of the masses m and n, i.e. ε = ε(n,m), and a main purpose of the
current study is to identify an appropriate form which can guarantee that pressure
does not blow up, that is, transition to single-phase liquid flow is avoided.
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Rewriting the model (2) in terms of Lagrangian variables, the free boundaries
are converted into fixed and we get a model in the form

∂tn+ (nm)∂xu = 0

∂tm+m2∂xu = 0

∂tu+ ∂xp(n,m) = ∂x(ε(n,m)m∂xu), x ∈ (0, 1),

(3)

with boundary conditions

p(n,m) = ε(n,m)mux, at x = 0, 1, t ≥ 0,

and initial data

n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ [0, 1].

We obtain an existence result (Theorem 3.1) for the model (3) for a class of weak
solutions and for a flow regime where the viscosity coefficient is of the form

ε = ε(m) =
mβ

(ρl −m)β+1
, β ∈ (0, 1/3).

This relation implies a certain balance between the pressure and viscous forces as
m is approaching the critical limit ρl which is sufficient to guarantee that the liquid
mass m can be controlled pointwise from below and from above. This pointwise
control is then transferred to the gas mass n through the common fluid velocity
u and the two mass conservation equations of (3). More precisely, by assuming
initially that the gas and liquid mass n and m do not disappear or blow up on [0, 1],
that is,

C−1 ≤ n(x, 0) ≤ C, 0 < µ ≤ αl(x, 0) ≤ 1 − µ < 1,

for a suitable constant C > 0 and µ > 0, then the same will be true for the masses n
and m for all t ∈ [0, T ] for any specified time T > 0. This allows us to obtain various
estimates which ensure convergence to a class of weak solutions. By imposing more
regularity on the fluid velocity we also derive a uniqueness result (Theorem 6.3) in
a corresponding smaller class of weak solutions.

The main tool in this analysis is the introduction of a suitable variable trans-
formation allowing for application of ideas and techniques similar to those used in
[24, 17, 19, 27, 25, 16] in previous studies of the single-phase Navier-Stokes equa-
tions. We conclude this section by noting that the model (2) where both fluids
(gas and liquid) were assumed to be compressible and with a constant viscosity
coefficient ε was studied in [9]. A global existence result was obtained for a class
of weak solutions for rather general initial data. In a recent work [10] we deal with
the model (3) in a context where it is assumed that the initial masses m and n are
connected to the boundary in a continuous manner.

The rest of this paper is organized as follows. In Section 2 we give a detailed
description of the model (1) and present the motivation for studying the simplified
model (2). In Section 3 we give more details relevant for the model (3) obtained from
(2), and we state the main theorem. In Section 4 we describe a priori estimates for an
auxiliary model obtained from (3) by using an appropriate variable transformation.
In Section 5 we consider approximate solutions to (3) obtained by regularizing
initial data. By means of the estimates of Section 4, we get a number of estimates
which imply compactness. Convergence to a weak solution then follows by standard
arguments. Finally, in Section 6 we present a uniqueness result for an appropriate
(smaller) class of weak solutions.



4 STEINAR EVJE AND KENNETH H. KARLSEN

2. Motivation. The purpose of this section is to give further details relevant for
the drift-flux model (1). Ultimately this will lead us to consider the simpler model
(2).

2.1. Specification of the model (1). To close the system, we need to include the
following additional equations. The volume fractions are related by

αl + αg = 1. (4)

Thermodynamical laws specify fluid properties such as densities ρl, ρg and viscosities
µl, µg. In particular we will assume that the liquid density has the following form

ρl = ρl,0 +
p− pl,0

a2
l

, (5)

where al = 1000 [m/s] is the velocity of sound in the liquid phase and ρl,0 and pl,0

are given constants. Here we will assume that ρl,0 = 1000 [kg/m3] and pl,0 = 1
[bar]. It is often assumed that the liquid is incompressible, i.e.

ρl = ρl,0.

We assume that we consider a polytropic, isentropic ideal gas characterized by

p(ρg) = a2
gρ

γ
g , γ ≥ 1. (6)

In other words, we have

ρg =

(

p

a2
g

)1/γ

, γ ≥ 1, (7)

where ag = 316 [m/s] is the velocity of sound in the gas phase. Furthermore, the
viscosity for liquid and gas are assumed to be

µl = 5 · 10−2 [Pa s], µg = 5 · 10−6 [Pa s]. (8)

Since we only have one momentum equation for the mixture of the two phases, the
model must be supplemented with an additional hydrodynamical closure law whose
purpose is to determine the fluid velocities ul, ug through a so-called slip relation.
We may assume that the slip relation can be expressed by a general relation

f(αg, ul, ug, ρg, ρl) = 0.

A commonly used slip relation is given by

f(αg, ul, ug, ρg, ρl) = ug − c0umix − c1 = 0, (9)

where
umix = αlul + αgug,

and c0, c1 are flow dependent coefficients. We refer to [7] and references therein for
more details. For the source term q we have two components

q = Ff + Fg,

where Fg = g(αlρl + αgρg)sinθ represents the gravity where g is the gravitational
constant and θ is the inclination. Moreover, Ff represents forces between the wall
and the fluids. Typically [7], the following simple expression for Ff is assumed

Ff =
32umixµmix

d2
, (10)

where d is the inner diameter and the mixed viscosity µmix is given by

µmix = αlµl + αgµg,
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where the viscosity µl, µg are given by (8).
The construction of simple, but efficient numerical schemes for the model (1)

equipped with the above additional closure relations (4)–(10) has been studied more
recently in [5, 6, 7]. For other works on numerical methods for this model we refer to
[20, 26, 11, 12] and references therein. It is convenient to express the above system
in the form

∂t





n
m
nug +mul



 + ∂x





nug

mul

nu2
g +mu2

l + p



 =





0
0
−q + ∂x[ε(n,m)∂xumix]



 ,

(11)

where n = αgρg and m = αlρl and ε ≥ 0 is a (n,m)-dependent viscous coefficient
and umix = αlul + αgug. In order to see how pressure p is related to the masses m
and n we observe that the relation (4) can be written as

n

ρg(p)
+

m

ρl(p)
= 1. (12)

Using this, we can express the pressure p as a function P of n and m, i.e.

p = P (n,m).

In particular, assuming that liquid is incompressible we get from (12) that

ρg = ρl
n

ρl −m
,

which can be plugged into (6) yielding

p(ρg) = a2
gρ

γ
l

( n

ρl −m

)γ

= k1

( n

ρl −m

)γ

=: P (n,m), k1 = a2
gρ

γ
l . (13)

We will use this pressure law for the model we analyse in the next section.

2.2. A simplified viscous two-phase model. As a first step, instead of working
directly with the full two-phase model (11) we suggest to replace it by a simpler
one. We introduce a simplification by replacing the mixture momentum equation
by the momentum equation of the liquid phase only. This is motivated by the fact
that the liquid phase density is much higher than for the gas phase, typically to
the order of ρg/ρl ∼ 0.001, and therefore plays the dominating role in the mixture
momentum conservation equation, as long as the amount of gas does not become
too high. We justify this simplification by performing two different numerical ex-
periments demonstrating that the simplified model for many flow cases can give a
good approximation to the original two-phase model. To sum up, we consider the
model

∂tn+ ∂x[nug] = 0

∂tm+ ∂x[mul] = 0

∂t[mul] + ∂x[mu2
l + P (n,m)] = −Ff,l − Fg,l + ∂x[ε(m)∂xul]

(14)

together with the constitutive relations

αl + αg = 1, f(αg, ul, ug, ρg, ρl) = 0, ρl = ρl(p), ρg = ρg(p), (15)

and where

Ff,l =
32(αlul)(αlµl)

d2
, Fg,l = g(αlρl) sin θ.

Below we compute the solutions produced by the model (11) and (14) respectively,
for two different flow cases. The purpose is to demonstrate the difference between
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the simplified model and the original two-phase model. For both cases we consider
the inviscid case where ε = 0 and horizontal flow where gravity has no impact.

A shock tube example. We have assumed that the liquid and gas density models
are given by (5) and (7) with γ = 1. Moreover, for this example we consider a slip
relation of the form (9) where c1 = 1.07 and c2 = 0.216. This example was also
considered in [5]. The purpose of this test is to compare the full drift-flux model
with the simplified model for a Riemann test problem. We consider the initial data

(αg,L, αg,R) = (0.55, 0.55), (ul,L, ul,R) = (10.37, 0.561), (pL, pR) = (80450, 24282).

We have neglected frictional forces, and the pipe we consider is of length 100 m.
Results are presented in Fig. 1 demonstrating that the two models produce results
whose difference is almost indiscernible.
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Figure 1. Snapshot of αg, ug (top) and ul, p (bottom) at time
t = 1.0. We have used 800 nodes.

A mass flow example. We compare the difference between the full model and the
simplified model for a typical mass flow example taken from [7]. The slip relation
for this example is given by (9) where

c0 = 1, c1 = 0.5(1 − αg)
1/2.

The results of this comparison is demonstrated in Fig. 2 and reflect that the differ-
ence is mild. Both examples serve as a justification of studying the model (14) as a
reasonable approximation to the more complete model (11) for many flow scenarios.
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Figure 2. Snapshot of αg, ug (top) and ul, p (bottom), at time
t = 175 [s] with 200 nodes.

3. A global existence result for a simplified viscous two-phase model. In
the following we shall work with one specific version of the model (14) and (15)
where we assume that fluid velocities are equal, ul = ug = u, and where external
force terms (friction and gravity) are neglected. In particular, we shall focus on the
case where the liquid is assumed to be incompressible which implies that we use the
pressure law (13). More precisely, we focus on the compressible gas-incompressible
liquid two-phase model

∂tn+ ∂x[nu] = 0

∂tm+ ∂x[mu] = 0

∂t[mu] + ∂x[mu2] + ∂xP (n,m) = ∂x[ε(m)∂xu],

(16)

where

P (n,m) = k1

( n

ρl −m

)γ

, γ > 1,

ε(m) = k2
mβ

(ρl −m)β+1
=
k2

ρl

αβ
l

(1 − αl)β+1
, β ∈ (0, 1/3), (17)

where k1 and k2 are appropriate constants. One special feature of the above two-
phase model (16)–(17) is that the pressure law becomes singular for pure liquid
flow, that is, when m = ρlαl = ρl. To compensate for this, it is assumed that
the viscosity coefficient ε(m) reflects a similar behavior such that a proper balance
between pressure and viscous forces takes place. Here it is in order to emphasize
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that as far as the viscous coefficient ε(m) (17) is concerned, we currently do not
directly motivate our choice from physical considerations (as is done for the single-
phase Navier-Stokes equations [17]). Rather our choice is motivated by the desire
for obtaining pointwise upper and lower control of the liquid mass m. In particular,
other choices than the one given in (17) would also be of interest to consider.

3.1. Main idea. The idea of this paper is to study the model (16)–(17) in a setting
where sufficient pointwise control on the massesm and n can be ensured. Motivated
by previous studies of the single-phase Navier-Stokes model [24, 17, 19, 27, 25, 16],
we propose to study (16) in a free-boundary setting where the gas and liquid masses
m and n are of compact support initially and connect to the vacuum regions (where
n = m = 0) discontinuously. Then, a main result is that by assuming that the gas
and liquid mass n and m initially do not disappear or blow up on [0, 1], that is,

C−1 ≤ n ≤ C, 0 < µ ≤ αl ≤ 1 − µ < 1,

for a suitable constant C > 0 and µ > 0, then the same will be true for the masses
n and m for all t ∈ [0, T ] for any time T > 0. This allows us to obtain various
estimates which provide an existence result for a class of weak solutions.

We now give some more details relevant for the model (16) we shall deal with in
the rest of this paper. We study the Cauchy problem (16) with initial data

(n,m,mu)(x, 0) =

{

(n0,m0,m0u0) x ∈ [a, b],

(0, 0, 0) otherwise,

where minx∈[a,b] n0 > 0, minx∈[a,b]m0 > 0, and n0(x),m0(x) are in H1. In other
words, we study the two-phase model in a setting where an initial true two-phase
mixture region (a, b) is surrounded by vacuums states n = m = 0 on both sides.
For a moment let us focus on the discontinuities of n0,m0 at the boundary points
x = a, b. By Rankine-Hugoniot condition it follows that

S[n] = [nu]

S[m] = [mu]

S[mu] = [mu2 + P (n,m) − ε(m)ux],

(18)

where [·] represents the jump across a discontinuity line x(t) where S = x′(t). Thus,
across any discontinuity at which u is continuous, i.e. [u] = 0, (18) is reduced to

[P (n,m)] = [ε(m)ux], [u] = 0, S = u. (19)

Letting a(t) and b(t) denote the particle paths initiating from (a, 0) and (b, 0),
respectively, in the x-t coordinate system, these paths represent free boundaries,
i.e., the interface of the gas-liquid mixture and the vacuum. In view of (19), using
that m = n = 0 to the left of a(t) and to the right of b(t), they are determined by
the equations

d

dt
a(t) = u(a(t), t),

d

dt
b(t) = u(b(t), t),

(−P (n,m) + ε(m)ux) (a(t)+, t) = 0, (−P (n,m) + ε(m)ux) (b(t)−, t) = 0.
(20)

Following along the line of previous studies for the single-phase Navier-Stokes equa-
tions [24, 17], it is convenient to replace the free boundaries a(t) and b(t) (which
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are unknown in Eulerian coordinates) by fixed boundaries by using Lagrangian co-
ordinates. First, we introduce a new set of variables (ξ, τ) by using the coordinate
transformation

ξ =

∫ x

a(t)

m(y, t) dy, τ = t. (21)

Thus, ξ represents a convenient rescaling of x. In particular, the free boundaries
x = a(t) and x = b(t), in terms of the new variables ξ and τ , take the form

ã(τ) = 0, b̃(τ) =

∫ b(t)

a(t)

m(y, t) dy =

∫ b

a

m0(y) dy = const,

where
∫ b

a
m0(y) dy is the total liquid mass initially, which we normalize to 1. In

other words, the interval [a, b] in the x-t system appears as the interval [0, 1] in the
ξ-τ system.

Next, we rewrite the model itself (16) in the new variables (ξ, τ). First, in view
of the particle paths Xτ (x) given by

dXτ (x)

dτ
= u(Xτ (x), τ), X0(x) = x,

the system (16) now takes the form

dn

dτ
+ nux = 0

dm

dτ
+mux = 0

m
du

dτ
+ P (n,m)x = (ε(m)ux)x.

Applying (21) to shift from (x, t) to (ξ, τ) we get

nτ + (nm)uξ = 0

mτ + (m2)uξ = 0

uτ + P (n,m)ξ = (ε(m)muξ)ξ, ξ ∈ I := (0, 1), τ ≥ 0,

with boundary conditions, in view of (20), given by

P (n,m) = ε(m)muξ, at ξ = 0, 1, τ ≥ 0.

In addition, we have the initial data

n(ξ, 0) = n0(ξ), m(ξ, 0) = m0(ξ), u(ξ, 0) = u0(ξ), ξ ∈ Ī := [0, 1].

In the following we replace the coordinates (ξ, τ) by (x, t) such that the model now
takes the form

∂tn+ (nm)∂xu = 0

∂tm+m2∂xu = 0

∂tu+ ∂xP (n,m) = ∂x(E(m)∂xu), x ∈ (0, 1),

(22)

with

P (n,m) = k1

( n

ρl −m

)γ

, γ > 1, (23)

and

E(m) = k2

( m

ρl −m

)β+1

, 0 < β < 1/3. (24)
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Moreover, boundary conditions are given by

P (n,m) = E(m)ux, at x = 0, 1, t ≥ 0, (25)

whereas initial data are

n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x = Ī . (26)

3.2. Main result. Before we state the main result for the model (22)–(26), we
describe the notation we apply throughout the paper. W 1,2(I) = H1(I) represents
the usual Sobolev space defined over I = (0, 1) with norm ‖ · ‖W 1,2 . Moreover,
Lp(K,B) with norm ‖ · ‖Lp(K,B) denotes the space of all strongly measurable, pth-
power integrable functions from K to B where K typically is subset of R and B
is a Banach space. In addition, let Cα[0, 1] for α ∈ (0, 1) denotes the Banach
space of functions on [0, 1] which are uniformly Hölder continuous with exponent
α. Similarly, let Cα,α/2(DT ) represent the Banach space of functions on DT =
[0, 1]× [0, T ] which are uniformly Hölder continuous with exponent α in x and α/2
in t.

Theorem 3.1 (Main Result). Assume that γ > 1 and β ∈ (0, 1/3) respectively in
(23) and (24), and that the initial data (n0,m0, u0) satisfy

(i) inf
[0,1]

n0 > 0, sup
[0,1]

n0 <∞, inf
[0,1]

m0 > 0, and sup
[0,1]

m0 < ρl;

(ii) n0,m0 ∈ W 1,2(I);
(iii) u0 ∈ L2k(I), for k ∈ N.

Then the initial-boundary problem (22)–(26) possesses a global weak solution (n,m, u)
in the sense that for any T > 0,

(A) we have the following estimates:

n,m ∈ L∞([0, T ],W 1,2(I)), nt,mt ∈ L2([0, T ], L2(I)),

u ∈ L∞([0, T ], L2k(I)) ∩ L2([0, T ], H1(I)),

µ inf
[0,1]

(c0) ≤ n(x, t) ≤ (ρl − µ) sup
[0,1]

(c0), c0 :=
n0

m0
,

0 < µ ≤ m(x, t) ≤ ρl − µ < ρl, ∀(x, t) ∈ [0, 1]× [0, T ],

for µ = µ(‖c0‖W 1,2(I), ‖Qβ
0‖W 1,2(I), ‖u0‖L2k(I), sup[0,1] c0, inf [0,1]Q0,

sup[0,1]Q0, T ) > 0 where Q0 = m0/(ρl −m0).

(B) Moreover, the following equations hold,

nt + nmux = 0, mt +m2ux = 0,

(n,m)(x, 0) = (n0(x),m0(x)), for a.e. x ∈ (0, 1) and any t ≥ 0,
∫

∞

0

∫ 1

0

[

uφt + (P (n,m) − E(m)ux)φx

]

dx dt+

∫ 1

0

u0(x)φ(x, 0) dx = 0

(27)

for any test function φ(x, t) ∈ C∞

0 (D), with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.
The proof of Theorem 3.1 is based on a priori estimates for the approximate

solutions of (22)–(26) and a corresponding limit procedure. As a part of this process
it will be crucial to obtain pointwise upper and lower limits for m in order to control

the quantities
∫ 1

0 (mx)2 dx and
∫ 1

0 (nx)2 dx, see Corollary 2. The main idea in the
following analysis is to focus, not on the mass m but instead the related quantity
Q(m) = m/(ρl−m) which connects pressure P (n,m) and viscosity coefficient E(m).
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It turns out that we naturally can reformulate the model (22) in terms of the
variables (c,Q, u) instead of (n,m, u) where c = n/m. Together with higher order
regularity of u and (Qβ)x, and energy-conservation obtained by adopting techniques
used in [24, 17, 19, 27, 25, 16] for single-phase Navier-Stokes equations, pointwise
upper and lower limits for Q(m) can be derived. This, in turn, gives the required
boundedness on m from below and above together with the L2 estimate of mx and
nx. From these estimates, which are derived in the coming section, we can rely on
standard compactness arguments to prove Theorem 3.1. This is done in Section 5.

4. Basic estimates. Below we derive a priori estimates for (n,m, u) which are
assumed to be a smooth solution of (22)–(26). We then construct the approximate
solutions of (22) in Section 5 by mollifying the initial data n0,m0, u0 and obtain
global existence by taking the limit.

More precisely, similar to [16] we first assume that (n,m, u) is a solution of
(22)–(26) on [0, T ] satisfying

n, nt, nx, ntx,m,mx,mt,mtx, u, ux, ut, uxx ∈ Cα,α/2(DT ) for some α ∈ (0, 1),

n(x, t) > 0, m(x, t) > 0, m(x, t) < ρl on DT = [0, 1]× [0, T ].
(28)

In the following we will frequently take advantage of the fact that the model (22)
can be rewritten in a form more amenable for deriving various useful estimates. We
first describe this reformulation, and then present a number of a priori estimates.

4.1. A reformulation of the model (22). We introduce the variable

c =
n

m
, (29)

and see from the first two equations of (22) that

∂tc =
1

m
nt −

n

m2
mt = −nm

m
ux +

nm2

m2
ux = 0.

Consequently, the model (22)–(26) then can be written in terms of the variables
(c,m, u) in the form

∂tc = 0

∂tm+m2∂xu = 0

∂tu+ ∂xP (c,m) = ∂x(E(m)∂xu),

(30)

with

P (c,m) = k1

( mc

ρl −m

)γ

, γ > 1,

and

E(m) = k2

( m

ρl −m

)β+1

, 0 < β < 1/3.

Moreover, boundary conditions are given by

P (c,m) = E(m)ux, at x = 0, 1, t ≥ 0,

whereas initial data are

c(x, 0) = c0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x = Ī .

Furthermore, we introduce the variable

Q(m) =
m

ρl −m
=

αl

1 − αl
> 0, (31)
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since m > 0 and m < ρl, and observe that

Q(m)t =
( m

ρl −m

)

t
=

( 1

ρl −m
+

m

(ρl −m)2

)

mt

=
ρl

(ρl −m)2
mt = −ρl

m2

(ρl −m)2
ux = −ρlQ(m)2ux,

in view of the second equation of (30). Consequently, we rewrite the model (30) in
the form

∂tc = 0

∂tQ(m) + ρlQ(m)2ux = 0

∂tu+ ∂xP (c,m) = ∂x(E(m)∂xu),

(32)

with

P (c,m) = k1c
γQ(m)γ , γ > 1,

and

E(m) = k2Q(m)β+1, 0 < β < 1/3.

This model is then subject to the boundary conditions

P (c,m) = E(m)ux, at x = 0, 1, t ≥ 0. (33)

In addition, we have the initial data

c(x, 0) = c0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x = [0, 1]. (34)

In particular, the first equation of (32) gives that

c(x, t) = c0(x) =
n0

m0
(x) > 0, t > 0, (35)

for initial data as prescribed in Theorem 3.1.

4.2. A priori estimates. Now we derive a priori estimates for (n,m, u) by making
use of the reformulated model (32)–(34).

Lemma 4.1 (Energy estimate). We have the basic energy estimate
∫ 1

0

(1

2
u2 +

k1c
γ
0

ρl(γ − 1)
Q(m)γ−1

)

(t, x) dx + k2

∫ t

0

∫ 1

0

Q(m)β+1(ux)2 dx ds

=

∫ 1

0

(1

2
u2

0 +
k1c

γ
0

ρl(γ − 1)
Q(m0)

γ−1
)

dx, ∀t ∈ [0, T ].

(36)

Moreover,

Q(m)(x, t) ≤ C1, ∀(x, t) ∈ [0, 1] × [0, T ], (37)

where C1 = C1(sup[0,1]Q0, ‖u0‖L2(I), ‖c0‖Lγ(I)). Note that |Q(m0)| is pointwise
bounded since sup[0,1]m0 < ρl and inf [0,1]m0 > 0. Moreover, for any positive
integer k,

∫ 1

0

u2k(x, t) dx + k(2k − 1)k2

∫ t

0

∫ 1

0

u2k−2Q(m)1+β(ux)2 dx dt ≤ C2, (38)

where C2 = C2(sup[0,1] c0, ‖u0‖L2k(I), T, k, C1).
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Proof. We multiply the third equation of (32) by u and integrate over [0, 1] in space.
Applying the boundary condition (33) and the equation

k1c
γ

ρl(γ − 1)
(Qγ−1)t + k1c

γQγux = 0,

obtained from the second equation of (32) by multiplying with k1c
γQγ−2, we get

d

dt

∫ 1

0

(1

2
u2 +

k1c
γ

ρl(γ − 1)
Qγ−1

)

(t, x) dx +

∫ 1

0

E(m)(ux)2 dx = 0.

From this, (36) follows.
Next, we focus on (37). From the second equation of (32) we deduce the equation

1

ρl
(Qβ)t + βQβ+1ux = 0. (39)

Integrating over [0, t], we get

Qβ(x, t) = Qβ(x, 0) − βρl

∫ t

0

Qβ+1ux ds. (40)

Then, we integrate the third equation of (32) over [0, x] and get

∫ x

0

ut(y, t) dy + P (c,m) − P (c(0, t),m(0, t)) + (E(m)ux)(0, t) = E(m)ux

= k2Q(m)β+1ux.

Using the boundary condition (33) and inserting the above relation into the right
hand side of (40), we get

Qβ(x, t) = Qβ(x, 0) − βρl

k2

∫ t

0

(

∫ x

0

ut(y, t) dy + P (c,m)
)

ds

= Qβ(x, 0) − βρl

k2

∫ x

0

(u(y, t) − u0(y)) dy −
βρl

k2

∫ t

0

P (c,m) ds

Consequently, since P (c,m) ≥ 0

Qβ(x, t) ≤ Qβ(x, 0) +
βρl

k2

∫ 1

0

|u(y, t)| dy +
βρl

k2

∫ 1

0

|u0(y)| dy.

Applying Hölder’s inequality and (36) we can bound
∫ 1

0
|u| dy, hence the upper

bound (37) follows.
Finally, we focus on estimate (38). Multiplying the third equation of (32) by

2ku2k−1, integrating over [0, 1]× [0, t] and integration by parts together with appli-
cation of the boundary conditions (33), we get

∫ 1

0

u2k dx+ 2k(2k − 1)k2

∫ t

0

∫ 1

0

Q(m)β+1(ux)2u2k−2 dx ds

=

∫ 1

0

u2k
0 dx+ 2k(2k − 1)k1

∫ t

0

∫ 1

0

cγ0Q(m)γu2k−2ux dx ds.

(41)
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For the last term we apply Cauchy’s inequality with ε, ab ≤ (1/4ε)a2 + εb2, and get

∫ t

0

∫ 1

0

cγ0Q(m)γu2k−2ux dx ds

≤ 1

4ε

∫ t

0

∫ 1

0

c2γ
0 Q(m)2γ−β−1u(2k−2) dx ds+ ε

∫ t

0

∫ 1

0

Q(m)β+1u(2k−2)(ux)2 dx ds

≤ 1

4ε
sup
[0,1]

(c2γ
0 )

∫ t

0

∫ 1

0

Q(m)2γ−β−1u(2k−2) dx ds

+ ε

∫ t

0

∫ 1

0

Q(m)β+1u(2k−2)(ux)2 dx ds.

The last term clearly can be absorbed in the second term of the left-hand side
of (41) by the choice ε = k2/2k1. Finally, let us see how we can bound the

term
∫ t

0

∫ 1

0 u
(2k−2)Q(m)2γ−1−β dx ds. In view of Young’s inequality ab ≤ (1/p)ap +

(1/q)bq where 1/p+ 1/q = 1, we get for the choice p = k and q = k/(k − 1)

∫ t

0

∫ 1

0

u(2k−2)Q(m)2γ−1−β dx ds

≤ 1

k

∫ t

0

∫ 1

0

Q(m)(2γ−1−β)k dx ds+
k − 1

k

∫ t

0

∫ 1

0

u2k dx ds

≤ C
(2γ−1−β)k
1

k
t+

k − 1

k

∫ t

0

∫ 1

0

u2k dx ds,

by using (37). To sum up, we get

∫ 1

0

u2k dx+ k(2k − 1)k2

∫ t

0

∫ 1

0

Q(m)β+1(ux)2u2k−2 dx ds

≤
∫ 1

0

u2k
0 dx+ 2k(2k − 1)k1

1

4ε
sup
[0,1]

(c2γ
0 )

[C2γ−1−β
1

k
t+

k − 1

k

∫ t

0

∫ 1

0

u2k dx ds
]

=

∫ 1

0

u2k
0 dx+ (2k − 1)

k2
1

k2
sup
[0,1]

(c2γ
0 )

[

C2γ−1−β
1 t+ (k − 1)

∫ t

0

∫ 1

0

u2k dx ds
]

.

(42)

In view of (42), an application of Gronwall’s inequality then gives the estimate
(38).

Lemma 4.2 (Additional regularity). We have the estimate

∫ 1

0

(∂xQ
β(m))2(x, t) dx ≤ C3, (43)

for a constant C3 = C3(‖Qβ
0‖W 1,2(I), ‖c0‖W 1,2(I), ‖u0‖L2(I), C1, C2, sup[0,1] c0, T ).

Proof. Using (39) in the third equation of (32) and integrating in time over [0, t]
we arrive at

u(x, t) − u0(x) +

∫ t

0

∂xP (c,m)(x, s) ds = − k2

βρl
(∂xQ

β(x, t) − ∂xQ
β(x, 0)). (44)
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Multiplying (44) by βρl

k2
(∂xQ

β) and integrating over [0, 1] in x, we get
∫ 1

0

(∂xQ
β)2 dx

=

∫ 1

0

(∂xQ
β)∂xQ

β
0 dx− βρl

k2

∫ 1

0

(∂xQ
β)

[

(u− u0) +

∫ t

0

∂xP (c,m) ds
]

dx

≤
(

∫ 1

0

(∂xQ
β)2 dx

)1/2(

‖∂xQ
β
0‖L2(I) +

βρl

k2
‖u− u0‖L2(I) +

βρl

k2

∥

∥

∥

∫ t

0

∂xP ds
∥

∥

∥

L2(I)

)

:= ab,

where we have used Hölder’s inequality. Cauchy’s inequality ab ≤ a2/2 + b2/2 then
gives
∫ 1

0

(∂xQ
β)2 dx

≤ 1

2

∫ 1

0

(∂xQ
β)2 dx+

1

2

(

‖∂xQ
β
0‖L2(I) +

βρl

k2
‖u− u0‖L2(I) +

βρl

k2

∥

∥

∥

∫ t

0

∂xP ds
∥

∥

∥

L2(I)

)2

≤ 1

2

∫ 1

0

(∂xQ
β)2 dx+ C(‖Qβ

0‖W 1,2(I), ‖u0‖L2(I), C2) +
βρlT

k2

∫ t

0

∫ 1

0

(∂xP )2 dx ds,

(45)

by using Jensen’s inequality and (38) with k = 1. Moreover,
∫ t

0

∫ 1

0

(∂xP )2 dx ds = k2
1

∫ t

0

∫ 1

0

(

Qγ(cγ)x + cγ(Qγ)x

)2

dx ds

≤ 2k2
1

(

∫ t

0

∫ 1

0

Q2γ(cγ)2x dx ds+

∫ t

0

∫ 1

0

c2γ(Qγ)2x dx ds
)

≤ 2k2
1(sup

[0,1]

Q)2γ

∫ t

0

∫ 1

0

(cγ)2x dx ds+ 2k2
1(sup

[0,1]

c)2γ

∫ t

0

∫ 1

0

(Qγ)2x dx ds

≤ 2k2
1C

2γ
1

∫ t

0

∫ 1

0

(cγ)2x dx ds+ 2k2
1(sup

[0,1]

c0)
2γ

∫ t

0

∫ 1

0

(Qγ)2x dx ds,

(46)

in view of estimate (37) and the initial pointwise bound on initial data c0. Moreover,
∫ t

0

∫ 1

0

(Qγ)2x dx ds =

(

γ

β

)2 ∫ t

0

∫ 1

0

Q2(γ−β)(Qβ)2x dx ds

≤
(

γ

β

)2

C
2(γ−β)
1

∫ t

0

∫ 1

0

(Qβ)2x dx ds

and
∫ t

0

∫ 1

0

(cγ)2x dx ds = γ2

∫ t

0

∫ 1

0

c2(γ−1)(cx)2 dx ds

≤ γ2(sup
[0,1]

c)2(γ−1)

∫ t

0

∫ 1

0

(cx)2 dx ds ≤ γ2(sup
[0,1]

c0)
2(γ−1)t‖c0‖W 1,2(I).

(47)

Consequently, we see that we must require that c = c0 ∈W 1,2(I) in order to bound
the right hand side of (47). In light of (46)–(47), we conclude from (45) that

∫ 1

0

(∂xQ
β)2 dx ≤ C + C

∫ t

0

∫ 1

0

(∂xQ
β)2 dx ds.
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Thus, application of Gronwall’s inequality gives the estimate (43).

Lemma 4.3 (Pointwise lower limit). Let 0 < β < 1/3. Then we have a pointwise
lower limit on Q(m) of the form

Q(m)(x, t) ≥ C4, ∀(x, t) ∈ [0, 1] × [0, T ], (48)

where the constant C4 = C4(C2, C3, inf [0,1]Q0, sup[0,1]Q0, T, ‖u0‖L2(I), ‖c0‖Lγ(I)).

Proof. We first define

v(x, t) =
1

Q(x, t)
, V (t) = max

[0,1]×[0,t]
v(x, s).

We calculate as follows:

v(x, t) − v(0, t) =

∫ x

0

∂xv dx ≤
∫ 1

0

|∂xQ|v2 dx

=
1

β

∫ 1

0

vβ+1|∂xQ
β| dx

≤ 1

β

(

∫ 1

0

|∂xQ
β|2 dx

)1/2(
∫ 1

0

v2(β+1) dx
)1/2

≤ C
1/2
3

β

(

∫ 1

0

v dx
)1/2(

(max
[0,1]

v(·, t))2β+1
)1/2

≤ C
1/2
3

β

(

∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

,

(49)

where we have used (43). Next, we focus on how to estimate
∫ 1

0
v dx. The starting

point is the observation that the second equation of (32) can be written as

vt − ρlux = 0.

Integrating over [0, 1]× [0, t] we get

∫ 1

0

v(x, t) dx =

∫ 1

0

v(x, 0) dx + ρl

∫ t

0

[u(1, s) − u(0, s)] ds

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

∫ t

0

max
[0,1]

|u(·, s)| ds

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

√
t
(

∫ t

0

max
[0,1]

|u(·, s)|2 ds
)1/2

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

√
t
(

∫ t

0

‖u2(s)‖L∞(I) ds
)1/2

,

(50)
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where we have used Hölder’s inequality. In light of Sobolev’s inequality ‖f‖L∞(I) ≤
C‖f‖W 1,1(I) it follows that the last term of (50) can be estimated as follows:

∫ t

0

‖u2(s)‖L∞(I) ds ≤ C

∫ t

0

‖u2(s)‖W 1,1(I) ds

= C
(

∫ t

0

∫ 1

0

u2 dx ds+

∫ t

0

∫ 1

0

|(u2)x| dx ds
)

≤ C

∫ t

0

(

∫ 1

0

u4 dx
)1/2

ds+ 2C

∫ t

0

∫ 1

0

Q
1+β
2 |u||ux|v

1+β
2 ds ds

≤ CtC
1/2
2 + 2C

(

∫ t

0

∫ 1

0

Q1+βu2
xu

2 dx ds
)1/2(

∫ t

0

∫ 1

0

v1+β dx ds
)1/2

≤ CtC
1/2
2 + 2CC

1/2
2

(

∫ t

0

∫ 1

0

v1+β dx ds
)1/2

,

(51)

where we have used (38) with k = 2 and Hölder’s inequality. Combining (50) and
(51) we get

∫ 1

0

v(x, t) dx

≤ C( inf
[0,1]

Q0) + 2ρl

√
t
[

CtC
1/2
2 + 2CC

1/2
2

(

∫ t

0

∫ 1

0

v1+β dx ds
)1/2]1/2

≤ C( inf
[0,1]

Q0, C2, T ) + C( inf
[0,1]

Q0, C2, T )
(

∫ t

0

∫ 1

0

v1+β dx ds
)1/4

= C( inf
[0,1]

Q0, C2, T ) + C( inf
[0,1]

Q0, C2, T )
(

∫ t

0

∫ 1

0

v2βv1−β dx ds
)1/4

≤ C( inf
[0,1]

Q0, C2, T ) + C( inf
[0,1]

Q0, C2, T )V (t)2β/4
(

∫ t

0

∫ 1

0

v1−β dx ds
)1/4

.

(52)

Now we focus on estimating
∫ t

0

∫ 1

0 v
1−β dx ds. For that purpose, we note that the

second equation of (32), by multiplying with Q
β−1

2
−1, can be written as

(Q
β−1

2 )t = ρl
1 − β

2
Q

β+1

2 ux.

Integrating this equation over [0, t] we get

Q
β−1

2 (x, t) = Q
β−1

2 (x, 0) + ρl
1 − β

2

∫ t

0

Q
β+1

2 ux ds.

Consequently, using the inequality (a+ b)2 ≤ 2a2 + 2b2 we get

Qβ−1(x, t) ≤ 2Qβ−1(x, 0) + 2ρ2
l

(1 − β

2

)2(
∫ t

0

Q
β+1

2 ux ds
)2

≤ 2Qβ−1(x, 0) + 2ρ2
l t

(1 − β

2

)2
∫ t

0

Qβ+1u2
x ds,
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by Jensen’s inequality. Integrating over [0, 1] in space yields
∫ 1

0

v1−β(x, t) dx ≤ 2

∫ 1

0

v1−β(x, 0) dx+ 2ρ2
l t

(1 − β

2

)2
∫ 1

0

∫ t

0

Qβ+1u2
x ds dx

≤ C( inf
[0,1]

Q0) + 2ρ2
l t

(1 − β

2

)2
∫ 1

0

∫ t

0

Qβ+1u2
x ds dx

≤ C( inf
[0,1]

Q0, ‖u0‖L2(I), sup
[0,1]

Q0, ‖c0‖Lγ(I), T ),

(53)

by using (36). Thus, (52) and (53) imply that
∫ 1

0

v dx ≤ C( inf
[0,1]

Q0, C2, T ) + C( inf
[0,1]

Q0, C2, T, ‖u0‖L2(I), sup
[0,1]

Q0, ‖c0‖Lγ(I))V (t)β/2

≤ D3[1 + V (t)β/2],

for an appropriate coefficient D3 = D3(inf [0,1]Q0, sup[0,1]Q0, C2, T, ‖u0‖L2(I),

‖c0‖Lγ(I)). Substituting this into (49) we get

v(x, t) − v(0, t) ≤ C
1/2
3

β

(

∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

≤ (C3D3)
1/2

β
[1 + V (t)β/2]1/2V (t)β+1/2

≤ E3 max(V (t)(5/4)β+1/2, 21/2),

(54)

for E3 = E3(C3, D3). Here we have used the inequality (1 + xβ/4)xβ+1/2 ≤
Cx(5/4)β+1/2 which holds for x ≥ 1 and an appropriate constant C. This follows by
observing that

f(x) = Cx(5/4)β+1/2 − xβ+1/2(1 + xβ/4) = xβ+1/2((C − 1)xβ/4 − 1) ≥ 0,

for x ≥ 1 and C ≥ 2.
We must check that v(0, t) remains bounded in [0, T ]. From the boundary con-

dition (33) we have

k1c
γ
0Q

γ − k2Q
β+1ux

∣

∣

∣

x=0
= 0.

Using that uxQ
2ρl = −Qt for x = 0 we get

y′ = −Kyγ−β+1,

where

K =
ρlk1

k2
c0(0)γ , y(t) = Q(0, t), y0 = Q(0, 0).

Hence,

1

β − γ
(yβ−γ − yβ−γ

0 ) = −Kt, or yβ−γ = −K(β − γ)t+ yβ−γ
0 .

Equivalently,

(y−1)γ−β = (y−1
0 )γ−β

(

K(γ − β)yγ−β
0 t+ 1

)

.

Consequently, for t ∈ [0, T ]

v(0, t) = v(0, 0)
(

K(γ − β)Q(0, 0)γ−βt+ 1
)1/(γ−β)

≤ C(sup
[0,1]

c0, inf
[0,1]

Q0, T ).
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In conclusion, from (54) we have

V (T ) ≤ C(sup
[0,1]

c0, inf
[0,1]

Q0, T ) + E3V (T )(5/4)β+1/2.

Since β < 2/6 < 2/5 we see that (5/4)β + 1/2 < 1. Therefore, it is clear from the
general inequality x ≤ C(1 + xξ) with 0 < ξ < 1, that x ≤ C for some constant C.
Consequently, V (T ) ≤ C4 where (in view of the above estimates)

C4 = C4(C2, C3, inf
[0,1]

Q0, sup
[0,1]

Q0, T, ‖u0‖L2(I), ‖c0‖Lγ(I)).

Thus, the result (48) follows.

We have the following estimate which ensures that no transition to single-phase
flow occurs.

Corollary 1. There is a constant µ = µ(C1, C4) > 0 such that

µ ≤αl ≤ 1 − µ (equivalently, µρl ≤ m ≤ ρl − µρl),

ρlµ inf
[0,1]

(c0) ≤n ≤ ρl(1 − µ) sup
[0,1]

(c0), (55)

for c0 = n0/m0.

Proof. In view of (31) and the bounds (37) and (48) it is clear that the first estimate
of (55) follows. The second follows from the first and the fact that n = c0m which
is a consequence of (29) and (35).

Corollary 2. We have the estimates
∫ 1

0

(∂xm)2 dx ≤ C5,

∫ 1

0

(∂xn)2 dx ≤ C6, (56)

for a constant C5 = C5(C3, C4) and C6 = C6(‖c0‖W 1,2(I), sup[0,1] c0, C5).

Proof. It follows that

∂xQ(m)β = βQ(m)β−1Q′(m)∂xm = βρlQ(m)β−1Q(m)2

m2
∂xm = βρl

Q(m)β+1

m2
∂xm,

since Q′(m) = (ρl/m
2)Q(m)2. In view of this calculation and the pointwise upper

and lower limits for Q(m), as well as m, given by (37), (48), and (55), it follows by
application of Lemma 4.2 that the first estimate of (56) holds. The second follows
directly from the relation

∂xn = m∂xc0 + c0∂xm, since n = c0m,

and the estimate
∫ 1

0

(∂xn)2 dx ≤ 2ρ2
l

∫ 1

0

(∂xc0)
2 + 2(sup

[0,1]

c0)
2

∫ 1

0

(∂xm)2 dx ≤ C6,

by the first estimate of (56) and the assumptions on the initial data n0 and m0.

Remark 1. Note that the estimate of Lemma 4.2 can be generalized such that
∂xQ

β(·, t) lies in L2k(I) for any integer k. As a consequence, the estimate of
Lemma 4.3 can be shown to hold under the weaker assumption β ∈ (0, 1). This
follows by a slight modification of the above calculations according to [16]. Conse-
quently, the result of Theorem 3.1 can also be shown to hold for the more general
case where β ∈ (0, 1).
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5. Proof of existence result. Now focus is on the model (22). All arguments
in this section closely follow along the line of [16], however, for completeness we
include the main steps. First, we introduce the Friedrichs mollifier jδ(x). Let
ψ(x) ∈ C∞

0 (R) satisfy ψ(x) = 1 when |x| ≤ 1/2 and ψ(x) = 0 when |x| ≥ 1, and
define ψδ := ψ(x/δ).

Mollifying. We extend n0,m0, u0 to R by using

n0(x) :=











n0(1), x ∈ (1,∞),

n0(x), x ∈ [0, 1],

n0(0), x ∈ (−∞, 0),

m0(x) :=











m0(1), x ∈ (1,∞),

m0(x), x ∈ [0, 1],

m0(0), x ∈ (−∞, 0),

whereas we extend u0(x) to R by defining it to be zero outside the interval [0, 1].
Approximate initial data (nδ

0,m
δ
0, u

δ
0) to (n0,m0, u0) are now defined as follows:

nδ
0(x) = (n0 ∗ jδ)(x), mδ

0(x) = (m0 ∗ jδ)(x),
uδ

0 = (u0 ∗ jδ)(x)[1 − ψδ(x) − ψδ(1 − x)] + (u0 ∗ jδ)(0)ψδ(x) + (u0 ∗ jδ)(1)ψδ(1 − x)

+
k1

k2
(cδ0)

γQ(mδ
0)

γ−β−1(0)

∫ x

0

ψδ(y) dy −
k1

k2
(cδ0)

γQ(mδ
0)

γ−β−1(1)

∫ 1

x

ψδ(1 − y) dy.

Then it follows that nδ
0,m

δ
0 ∈ C1+s[0, 1], uδ

0 ∈ C2+s[0, 1] for any 0 < s < 1, and
nδ

0,m
δ
0 and uδ

0 are compatible with the boundary conditions (25). Moreover, it
follows that

|(u0 ∗ jδ)(0)|2k

∫ 1

0

ψ2k
δ dx ≤ Cδ

(

∫ δ

0

u0(x)jδ(x) dx
)2k

≤ Cδ

∫ δ

0

u2k
0 dx

(

∫ δ

0

j
2k/(2k−1)
δ (x) dx

)2k−1

≤ C

∫ δ

0

u2k
0 (x) dx→ 0 as δ → 0.

Similarly, it follows that |(u0 ∗ jδ(1)|2k
∫ 1

0 ψ
2k
δ (1 − x) dx → 0. Therefore, recalling

the definition of uδ
0(x) we see that as δ → 0,

uδ
0 → u0 in L2k(I).

In addition,
nδ

0 → n0, mδ
0 → m0 uniformly in [0, 1],

as δ → 0.
Now, we consider the initial boundary value problem (22)–(26) with the initial

data (n0,m0, u0) replaced by (nδ
0,m

δ
0, u

δ
0). For this problem standard arguments

can be used (the energy estimates and the contraction mapping theorem) to obtain
the existence of a unique local solution (nδ,mδ, uδ) with nδ, nδ

t , n
δ
x, nδ

tx, mδ, mδ
x,

mδ
t , m

δ
tx, uδ, uδ

x, uδ
t , u

δ
xx ∈ Cα,α/2([0, 1]× [0, T ∗]) for some T ∗ > 0.

In view of the estimates of Section 4.2, it follows that nδ and mδ are pointwise
bounded from above and below, (uδ)k, nδ

x, and mδ
x are bounded in L∞([0, T ], L2(I))

and uδ
x is bounded in L2((0, T ), L2(I)) for any T > 0. Furthermore, we can dif-

ferentiate the equations in (22) and apply the energy method to derive bounds of
high-order derivatives of (nδ,mδ, uδ). Then the Schauder theory for linear para-
bolic equations can be applied to conclude that the Cα,α/2(DT )-norm of nδ, nδ

t ,
nδ

x, nδ
tx, mδ, mδ

x, mδ
t , m

δ
tx, uδ, uδ

x, uδ
t , u

δ
xx is a priori bounded. Therefore, we can

continue the local solution globally in time and obtain that there exists a unique
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global solution (nδ,mδ, uδ) of (22)–(26) with initial data (nδ
0,m

δ
0, u

δ
0) such that for

any T > 0, the regularity of (28) holds.

Estimates and Compactness. Clearly, in view of the estimates of Section 4.2
and the model itself (22), we have for t ∈ [0, T ], k ∈ N

∫ 1

0

(uδ)2k(x, t) dx +

∫ 1

0

(nδ
x)2(x, t) dx+

∫ 1

0

(mδ
x)2(x, t) dx ≤ C,

µ ≤ mδ(x, t) ≤ ρl − µ,

µ inf
[0,1]

c0(x) ≤ nδ(x, t) ≤ (ρl − µ) sup
[0,1]

c0(x), for (x, t) ∈ [0, 1] × [0, T ],

∫ T

0

∫ 1

0

[

(uδ
x)2 + (nδ

t )
2 + (mδ

t )
2
]

(x, s) dx ds ≤ C,

(57)

where the constants C, µ > 0 do not depend on δ. Note that the boundedness
of mδ

t (nδ
t ) in L2([0, T ], L2(I)) follows in view of the equation mδ

t + (mδ)2uδ
x = 0

(nδ
t + nδmδuδ

x = 0), the estimates of Corollary 1, and the energy estimate (36) of
Lemma 4.1. Hence, we can extract a subsequence of (nδ,mδ, uδ), still denoted by
(nδ,mδ, uδ), such that as δ → 0,

uδ ⇀ u weak-* in L∞([0, T ], L2k(I)),

nδ ⇀ n weak-* in L∞([0, T ],W 1,2(I)),

mδ ⇀m weak-* in L∞([0, T ],W 1,2(I)),

(nδ
t ,m

δ
t , u

δ
x) ⇀ (nt,mt, ux) weakly in L2([0, T ], L2(I)).

(58)

Next, we show that (n,m, u) obtained in (58) in fact is a weak solution of
(22)–(26). The classical Sobolev imbedding (Morrey’s inequality) W 1,2k(0, 1) ↪→
C1−1/(2k)[0, 1] applied with k = 1 gives that for any x1, x2 ∈ (0, 1) and t ∈ [0, T ]

|mδ(x1, t) −mδ(x2, t)| ≤ C|x1 − x2|1/2. (59)

To control continuity in time, in view of the sequence of imbeddings W 1,2(0, 1) ↪→
L∞(0, 1) ↪→ L2(0, 1), we can apply Lions-Aubin lemma (see for example [23], Section
1.3.12) for a constant ν > 0 (arbitrary small) to find a constant Cν such that

‖mδ(t1) −mδ(t2)‖L∞(I)

≤ ν‖mδ(t1) −mδ(t2)‖W 1,2(I) + Cν‖mδ(t1) −mδ(t2)‖L2(I)

≤ 2ν‖mδ(t)‖W 1,2(I) + Cν |t1 − t2|1/2‖mδ
t‖L2([0,T ],L2(I))

≤ Cν + CνC|t1 − t2|1/2,

(60)

where we have used (57) to derive the last two inequalities. Consequently, (59)
and (60) together with the triangle inequality show that {mδ} is equi-continuous
on DT = [0, 1] × [0, T ]. Hence, by Arzela-Ascoli’s theorem and a diagonal process
for t, we can extract a subsequence of {mδ}, such that

mδ(x, t) → m(x, t) strongly in C0(DT ).

The same arguments apply to n yielding

nδ(x, t) → n(x, t) strongly in C0(DT ).
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Clearly, mt is also bounded in L2([0, T ], L2(I)) and from the estimate

‖m(t1) −m(t2)‖2
L2(I) =

∫ 1

0

|m(t1) −m(t2)|2 dx =

∫ 1

0

∣

∣

∣

∫ t2

t1

mt ds
∣

∣

∣

2

dx

≤
∫ 1

0

(

∫ t2

t1

|mt| ds
)2

dx ≤ |t1 − t2|
∫ T

0

∫ 1

0

m2
t dx ds,

where we have used Hölder’s inequality, we may also conclude that

m ∈ C1/2([0, T ], L2(I)).

Similarly, the same arguments apply to n. Thus, we conclude that the limit
functions (n,m, u) from (58) satisfy the first two equations nt + nmux = 0 and
mt + m2ux = 0 of (27) for a.e. x ∈ (0, 1) and any t ≥ 0. To show that the last
integral equality holds, we multiply the third equation of (22) by φ ∈ C∞

0 (D) with
D = [0, 1]× [0,∞) and integrate over (0, T )×(0, 1), followed by integration by parts
with respect to x and t. Taking the limit as δ → 0, we see that (n,m, u) also must
satisfy weakly the third equation of (27).

6. A uniqueness result. In this section we present a uniqueness result for the
two-phase model (22) similar to the one presented in [16] for the single-phase Navier-
Stokes equations. For that purpose we need more regularity of the fluid velocity u.
More precisely, for initial data u0 ∈ H1(I) we have the following result.

Lemma 6.1. Let (n,m, u) be a weak solution of (22)–(26) in the sense of Theo-
rem 3.1. If u0 ∈ H1(I), then

u ∈ L∞([0, T ], H1(I)) ∩ L2([0, T ], H2(I)), ut ∈ L2([0, T ], L2(I)). (61)

More precisely, the following estimate holds:

‖ut‖L2(DT ) + ‖uxx‖L2(DT ) + ‖ux‖L∞([0,T ],L2(I)) ≤ C, (62)

where the constant C depends on the quantities involved in the estimates of
Lemma 4.1–4.3.

Proof. We consider the global smooth solutions (nδ,mδ, uδ) described in the pre-
vious section with initial data (nδ

0,m
δ
0, u

δ
0) which possess smoothness properties as

described by (28). It follows that (see Section 3 in [16] for more details)

∂xu
δ
0 → ∂xu0 in L2(I).

For the coming calculation the superscript δ is neglected. We multiply the third
equation of (32) by ut and integrate over [0, 1] × [0, T ]. Applying integration by
parts together with the boundary condition (33) we get

∫ t

0

∫ 1

0

u2
t dx ds−

∫ 1

0

[P (c,m)ux − E(m)u2
x] dx

+

∫ 1

0

[P (c0,m0)u0,x − E(m0)u
2
0,x] dx

+

∫ t

0

∫ 1

0

[P (c,m) − E(m)ux]tux dx ds = 0.

(63)
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For the last term we have

[P (c,m) − E(m)ux]tux

= −k1ρlγc
γQγ+1(ux)2 + k2(β + 1)ρlQ

β+2(ux)3 − k2Q
β+1(

1

2
u2

x)t,

where we have used the second equation of (32). Observing that

k2Q
β+1(

1

2
u2

x)t = (
k2

2
Qβ+1u2

x)t −
k2

2
(β + 1)QβQtu

2
x

= (
1

2
E(m)u2

x)t +
k2

2
(β + 1)ρlQ

β+2u3
x,

it follows that
∫ t

0

∫ 1

0

[P (c,m) − E(m)ux]tux dx ds

= −k1ρlγ

∫ t

0

∫ 1

0

cγQγ+1(ux)2 dx ds+
1

2
k2(β + 1)ρl

∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds

− 1

2

∫ 1

0

E(m)u2
x dx+

1

2

∫ 1

0

E(m0)u
2
0,x dx.

(64)

From (63) and (64) it follows that
∫ t

0

∫ 1

0

u2
t dx ds+

1

2

∫ 1

0

E(m)u2
x dx

=
1

2

∫ 1

0

E(m0)u
2
0,x dx+

∫ 1

0

P (c,m)ux dx−
∫ 1

0

P (c0,m0)u0,x dx

+ k1ρlγ

∫ t

0

∫ 1

0

cγQγ+1(ux)2 dx ds − 1

2
k2(β + 1)ρl

∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds.

(65)

The second term on the right hand side of (65) can be absorbed in the second term
on the left hand side by using the Cauchy inequality with ε

2ab ≤ εa2 + ε−1b2, a, b > 0, ε > 0. (66)

Together with application of the estimates of (57) and regularity of initial data, we
get an estimate of the form

∫ t

0

∫ 1

0

u2
t dx ds+

∫ 1

0

u2
x dx ≤ C + C

∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds. (67)

The last term of (67), in view of (57), can be estimated as follows.
∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds ≤ C

∫ t

0

max
[0,1]

(Q1+βux)(·, s)
(

∫ 1

0

u2
x dx

)

ds

≤ C

∫ t

0

max
[0,1]

|(E(m)ux − P (c,m))(·, s)|
(

∫ 1

0

u2
x dx

)

ds+ C

∫ t

0

∫ 1

0

u2
x dx ds

≤ C

∫ t

0

(

∫ 1

0

|(E(m)ux − P (c,m))x| dx
)(

∫ 1

0

u2
x dx

)

ds+ C

= C

∫ t

0

(

∫ 1

0

|ut| dx
)(

∫ 1

0

u2
x dx

)

ds+ C

≤ 1

2

∫ t

0

∫ 1

0

u2
t dx ds+ C

∫ t

0

(

∫ 1

0

u2
x dx

)2

ds+ C,



24 STEINAR EVJE AND KENNETH H. KARLSEN

where we again have used (66) to obtain the last inequality. Inserting this in (67)
gives

∫ t

0

∫ 1

0

u2
t dx ds+

∫ 1

0

u2
x dx ≤ C +

∫ t

0

‖ux(s)‖2
L2(I)

∫ 1

0

u2
x dx ds, ∀t ∈ [0, T ]. (68)

Since
∫ T

0
‖ux(s)‖2

L2(I) ds < ∞ (see (57)), application of Gronwall’s inequality to

(68) gives the estimate

∫ t

0

∫ 1

0

u2
t dx ds+

∫ 1

0

u2
x dx ≤ C. (69)

The last equation of (22), the estimates of (57) and the estimate (69) imply that

∫ T

0

∫ 1

0

u2
xx dx ds ≤ C.

Thus, (61) and (62) have been shown.

Taking advantage of the additional regularity of Lemma 6.1 we now derive a
stability result.

Lemma 6.2. Let (n1,m1, u1) be an arbitrary weak solution of (22)–(26), in the
sense of Theorem 3.1, which also satisfies (61). Let (n2,m2, u2) be another weak
solution subject to the same initial data. Then we have the stability estimate

‖u1 − u2‖2
L2(I) + ‖1/Q(m1) − 1/Q(m2)‖2

L2(I)

≤
∫ t

0

C(s)‖1/Q(m1) − 1/Q(m2)‖2
L2(I) ds,

(70)

where the non-negative constant C(s) satisfies
∫ T

0 C(s) ds <∞.

Proof. We consider the reformulated model as expressed by (32)–(35). In particular,
c1 = c2 := c0. In the following it will be useful to work with the quantity vi =
1/Q(mi), i = 1, 2. We then get

(Qβ
i )t + ρlβQ

β+1
i uix = 0, (vi)t = ρluix, i = 1, 2. (71)

The last equation of (32) yields

(u1 − u2)t + k1([c0(x)Q(m1)]
γ − [c0(x)Q(m2)]

γ)x

= k2(Q(m1)
β+1u1x −Q(m2)

β+1u2x)x.
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Multiplying by (u1 − u2), integrating over [0, 1] together with integration by parts
and application of boundary conditions (33) give

1

2

d

dt

∫ 1

0

(u1 − u2)
2 dx

= k1

∫ 1

0

([c0(x)Q(m1)]
γ − [c0(x)Q(m2)]

γ)(u1 − u2)x dx

− k2

∫ 1

0

(Q(m1)
β+1u1x −Q(m2)

β+1u2x)(u1 − u2)x dx

=
k1

ρl

∫ 1

0

c0(x)
γ(v−γ

1 − v−γ
2 )(v1 − v2)t dx

− k2

∫ 1

0

(v
−(β+1)
1 − v

−(β+1)
2 )(u1x − u2x)u2x dx

− k2

∫ 1

0

Q(m1)
β+1(u1x − u2x)2 dx

≤ − k1

2ρl

d

dt

∫ 1

0

c0(x)
γa(x, t)(v1 − v2)

2 dx

+
k1

2ρl

∫ 1

0

c0(x)
γat(x, t)(v1 − v2)

2 dx

+
C0

2

∫ 1

0

(u1x − u2x)2 dx+ C1

∫ 1

0

(v1 − v2)
2(u2x)2 dx

− C0

∫ 1

0

(u1x − u2x)2 dx,

(72)

where we have used that

a(x, t) =
f(v1) − f(v2)

v1 − v2

=

∫ 1

0

f ′(τ(v1 − v2) + v2) dτ = γ

∫ 1

0

1

(τ(v1 − v2) + v2)(γ+1)
dτ,

(73)

with f(v) = −v−γ , i.e. f ′(v) = γv−(γ+1) so that

∫ 1

0

c0(x)
γ(v−γ

1 − v−γ
2 )(v1 − v2)t dx

= −
∫ 1

0

c0(x)
γa(x, t)(v1 − v2)(v1 − v2)t dx

= −1

2

∫ 1

0

c0(x)
γa(x, t)((v1 − v2)

2)t dx

= −1

2

d

dt

∫ 1

0

c0(x)
γa(x, t)(v1 − v2)

2 dx+
1

2

∫ 1

0

c0(x)
γat(x, t)(v1 − v2)

2 dx.

In addition, we have used that |g(y1) − g(y1)| ≤ max |g′(y)||y1 − y2| for g(y) =
y−(β+1) together with the upper and lower limits for vi, i = 1, 2 given by (57), as
well as the inequality (66). These estimates also imply that a(x, t) given by (73)
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has a positive lower limit on DT = [0, 1] × [0, T ]. Moreover,

at(x, t) =

∫ 1

0

f ′′(τ(v1 − v2) + v2)(τ(v1t − v2t) + v2t) dτ,

so that

|at(x, t)| ≤
∫ 1

0

|f ′′(τ(v1 − v2) + v2)|(τ |v1t − v2t| + |v2t|) dτ ≤ C(|v1t − v2t| + |v2t|),

where C depends on lower and upper limits of v1 and v2. Consequently,

k1

2ρl

∫ 1

0

c0(x)
γat(x, t)(v1 − v2)

2 dx ≤ C

∫ 1

0

(|v1t − v2t| + |v2t|)(v1 − v2)
2 dx

= C

∫ 1

0

|v1t − v2t|(v1 − v2)
2 dx+ C

∫ 1

0

|v2t|(v1 − v2)
2 dx

≤ Cε

∫ 1

0

(v1t − v2t)
2(v1 − v2)

2 dx

+ Cε−1

∫ 1

0

(v1 − v2)
2 dx+ C

∫ 1

0

|v2t|(v1 − v2)
2 dx

≤ C0

4ρ2
l

∫ 1

0

(v1t − v2t)
2 dx+ C

∫ 1

0

(1 + |v2t|)(v1 − v2)
2 dx

=
C0

4

∫ 1

0

(u1x − u2x)2 dx + C

∫ 1

0

(1 + |v2t|)(v1 − v2)
2 dx,

where we have used (66) with an appropriate choice of ε > 0, the upper and lower
limits of v1 and v2, and (71). Inserting this in (72) we get

1

2

d

dt

∫ 1

0

(u1 − u2)
2 dx+

k1

2ρl

d

dt

∫ 1

0

c0(x)
γa(x, t)(v1 − v2)

2 dx+
C0

4

∫ 1

0

(u1x − u2x)2 dx

≤ C

∫ 1

0

(1 + |u2x|)(v1 − v2)
2 dx + C1

∫ 1

0

(v1 − v2)
2(u2x)2 dx

≤ C

∫ 1

0

(1 + |u2x|)2(v1 − v2)
2 dx,

for a suitable choice of the constant C. Integrating over [0, t] we get the inequality
∫ 1

0

(u1 − u2)
2 dx+

∫ 1

0

c0(x)
γa(x, t)(v1 − v2)

2 dx+

∫ t

0

∫ 1

0

(u1x − u2x)2 dx ds

≤ C

∫ t

0

∫ 1

0

(1 + |u2x|)2(v1 − v2)
2 dx ds.

Using that inf a(x, t) > 0 and inf c0(x) > 0 we get
∫ 1

0

(u1 − u2)
2(x, t) dx +

∫ 1

0

(v1 − v2)
2(x, t) dx

≤ C

∫ t

0

∫ 1

0

(1 + |u2x|)2(v1 − v2)
2(x, s) dx ds

≤ C

∫ t

0

‖(1 + |u2x|)2‖L∞(I)

∫ 1

0

(v1 − v2)
2(x, s) dx ds.
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This shows the estimate (70). Finally, it follows by Sobolev’s imbedding theorem
‖f‖L∞(I) ≤ C‖f‖W 1,1(I) that

∫ t

0

‖(1 + u2x)2‖L∞(I) ds ≤ C

∫ t

0

‖(1 + u2x)2‖W 1,1(I) ds

= C

∫ t

0

∫ 1

0

(1 + u2x)2 dxds + C

∫ t

0

∫ 1

0

|((1 + u2x)2)x| dx ds

≤ C + C

∫ t

0

∫ 1

0

|(1 + u2x)u2xx| dx ds

≤ C + C
(

∫ t

0

∫ 1

0

(1 + u2x)2 dx ds
)1/2(

∫ t

0

∫ 1

0

u2
2xx dx ds

)1/2

≤ C,

since u2 ∈ L∞([0, T ], H1(I)) ∩ L2([0, T ], H2(I)) (see Lemma 6.1).

Now, we can conclude that the following uniqueness result holds.

Theorem 6.3 (Uniqueness). Under the assumptions of Theorem 3.1 and the addi-
tional regularity assumption u0 ∈ H1(I), the weak solutions are unique.

Proof. Clearly, the results of Lemma 6.1 and Lemma 6.2 hold which lead to the in-
equality (70). Thus, application of Gronwall’s inequality to (70) yields immediately
that

Q(m1(x, t)) = Q(m2(x, t)), u1(x, t) = u2(x, t) a.e. (x, t) ∈ DT = [0, 1]× [0, T ].

The fact that Q(m) is monotone implies the desired result.
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