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Abstract. This paper examines two-phase flow in porous media with heterogeneous capillary
pressure functions. This problem has received very little attention in the literature, and consti-
tutes a challenge for numerical discretization, since saturation discontinuities arise at the inter-

face between the different homogeneous regions in the domain. As a motivation we first consider
a one-dimensional model problem, for which a semi-analytical solution is known, and examine
some different finite-volume approximations. A standard scheme based on harmonic averaging
of the absolute permeability, and which possesses the important property of being pressure con-

tinuous at the discrete level, is found to converge and gives the best numerical results. In order
to investigate two-dimensional flow phenomena by a robust and accurate numerical scheme, a
recent multi point flux approximation scheme, which is also pressure continuous at the discrete
level, is then extended to account for two-phase flow, and is used to discretize the two-phase

flow pressure equation in a fractional flow formulation well suited for capillary heterogenity.
The corresponding saturation equation is discretized by a second-order central upwind scheme.
Some numerical examples are presented in order to illustrate the significance of capillary pres-
sure heterogeneity in two-dimensional two-phase flow, using both structured quadrilateral and

unstructured triangular grids.

AMS Subject Classifications: 65M60, 76S05, 35R05
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1. Introduction

The study of two-phase flow in porous media has significant applications in areas such as hydrol-
ogy and petroleum reservoir engineering. The flow pattern is mainly governed by the geometric
distribution of absolute permeability, which may be anisotropic and highly heterogeneous, the form
of the relative permeability and capillary pressure functions and gravity [4]. The corresponding
system of partial differential equations describing the flow consists of an elliptic and an essentially
hyperbolic part, usually denoted the pressure- and saturation equation, respectively. This system
is rather challenging, and quite a lot of research has been devoted to its solution during the last
decades.

In recent years several discretization methods that can treat unstructured grids in combination
with discontinuous and anisotropic permeability fields have been developed for the elliptic pressure
equation. Important examples are the flux-continuous finite volume schemes introduced in e.g.
[11, 12, 25, 13, 15, 5, 6], which have been termed multi point flux approximation methods (MPFA)
schemes, and the mixed finite element (MFE) and related schemes, e.g., [1, 2, 9, 20, 18]. The MFE
and related methods solve for both control-volume pressure and cell face velocities leading to a
globally coupled indefinite linear system (saddle point problem), while the more efficient MPFA
methods only solve for control-volume pressure and have a locally coupled algebraic system for
the fluxes that yield a consistent continuous approximation, while only requiring one third the
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number of degrees of freedom of the mixed method when compared on a structured grid (and a
quarter in three dimensions). The latter methods are clearly advantageous, particularly for time-
dependent problems, as the extra degrees of freedom required by the mixed method add further
computational complexity and a severe penalty to simulation costs. For the saturation equation
some higher order schemes have been employed, as well as various types of so called fast tracking
schemes, but the standard first order upwind scheme is still widely used in commercial simulators.

However, the main body of research literature devoted to two-phase flow in porous media
concerns flow in the absence of capillary pressure, or assumes a homogeneous capillary pressure
function in the domain. Obviously, there are a number of flow cases for which these assumptions
are valid, but this observation is nevertheless noticeable since heterogeneity in capillary pressure
may often have a significant effect on the flow pattern, and in certain cases it can be as important
as absolute permeability heterogeneity [19].

From the very sparse literature devoted to capillary pressure heterogeneity in porous media, we
would like to mention the work of Yortsos and Chang [27]. They studied analytically the capillary
effect in steady-state flow in one-dimensional (1D) porous media. They assumed a sharp, but con-
tinuous transition of permeability to connect different permeable media of constant permeabilities.
The paper by van Duijn and de Neef [26] on the other hand, provided a semi-analytical solution
for time-dependent countercurrent flow in 1D heterogeneous media with one discontinuity in per-
meability and capillary pressure. Niessner et al. [24] discuss the performance of some fully implicit
vertex-centered finite volume schemes, when implementing the appropriate interface condition for
capillary heterogeneous media. The recent paper by Hoteit and Firoozabadi [19] presents an MFE
method for discretising the pressure equation together with a discontinuous Galerkin method for
the saturation equation. They introduced a new fractional flow formulation for two-phase flow,
which is suited for applying MFE in media with heterogeneous capillary pressure. Some numerical
examples are presented, including a comparison with the 1D semi-analytical solution from [26],
demonstrating good performance of the numerical scheme.

The simulation of two-phase flow in porous media with capillary pressure heterogeneity repre-
sents a challenge for the actual numerical discretization. This is particularly due to the fact that
saturation discontinuities arise at the interface between the different homogeneous regions of the
domain, as a result of the requirement of capillary pressure continuity. Moreover, since these are
rather involved nonlinear problems, very few analytical results are known, making it more difficult
to gain confidence in the results produced by the numerical schemes. Clearly, as discussed in [26],
the capillary pressure may also actually become discontinuous at the interface in some situations.
This depends on the form of the capillary pressure curve (the entry pressure) together with the
actual type of two-phase flow in the problem. In the more usual situations where a wetting phase
is displacing a non-wetting phase, this phenomenon will not occur. Moreover, since this particular
situation does not introduce any new fundamental issues with respect to the numerical treatment
of these problems, we only consider examples with capillary pressure continuity at the interface
in this paper.

As noted in [19] MPFA methods have not yet been demonstrated to be of value for heteroge-
neous media with contrast in capillary pressure functions. This fact is a prime motivation for the
present paper. We examine a standard scheme in 1D based on harmonic averaging of the absolute
permeability as well as a more direct “naive” type of discretization and present detailed compar-
isons with the semi-analytical solutions from [26]. The scheme based on harmonic averaging of
the absolute permeability, which can be considered as a ”1D MPFA scheme”, is found to converge
and gives the best numerical results.

The ”1D MPFA scheme” moreover, naturally provides a discrete approximation with a built-in
pressure continuity. From the numerical results obtained in the 1D model problem, this property
is considered to be important for the numerical treatment of these problems. Only recently, some
multidimensional MPFA schemes with this property have been developed and tested for one-
phase elliptic problems [13, 14, 16]. In this paper we extend the schemes from [13] and [16], which
are developed for cell-centered quadrilateral and triangular grids, respectively, to two-phase flow
problems, and also present some numerical examples. We use the recent fractional flow formulation
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from [19], and moreover, solve the saturation equation by using the second-order central upwind
scheme from [23].

The paper is organised as follows. Section 2 gives a description of the two-phase flow model,
whereas Section 3 discusses two different implicit pressure explicit saturation (IMPES) formu-
lations suitable for the numerical solution of this model. In Section 4 we study a 1D model
problem using some different discretizations, and compare with semi-analytical solutions. Section
5 describes a recent discrete pressure continuous 2D MPFA scheme and its extension to two-phase
flow. Furthermore, Section 6 briefly describes the central-upwind scheme used in the discretization
of the saturation equation. Some numerical examples are presented in Section 7, that illustrate
two-phase flow behavior with and without capillary pressure heterogeneity. Finally, conclusions
follow in Section 8.

2. The two-phase flow model

In this section we present the governing equations for immiscible two-phase flow in a domain
Ω of a porous medium. The mass balance equation for each of the fluid phases reads

ϕ
∂(ρisi)

∂t
+∇ · (ρiu⃗i) = ρiqi, i = w, o, (1)

where ϕ is the porosity of the medium, i = w indicates the wetting phase (e.g. water) and i = o
indicates the nonwetting phase (e.g. oil). Moreover, ρi, si, u⃗i and qi are, respectively, the density,
saturation, velocity and external flow rate of the i-phase. The phase velocity is given by Darcy’s
law

u⃗i = −kri
µi

K∇(pi − ρigZ), i = w, o, (2)

where K is the absolute permeability tensor of the porous medium, g is the gravitational constant
and Z is the depth, i.e. the negative of the actual z-coordinate when the z-axis is in the vertical
upward direction. pi, µi and kri are, respectively the pressure, viscosity and relative permeability
of the i-phase. Moreover, the capillary pressure is given by

Pc(x⃗, sw) = po − pw, (3)

where x⃗ denotes the spatial coordinate vector, and the saturation constraint reads

sw + so = 1. (4)

It is useful to introduce the phase mobility functions

λi(x⃗, si) =
kri
µi

, i = w, o,

the total mobility

λ(x⃗, s) = λw + λo,

and the total velocity

u⃗ = u⃗w + u⃗o,

where s = sw. Finally, the so called fractional flow functions fi are defined as

fi(x⃗, s) =
λi

λ
, i = w, o.

Usual boundary conditions for this model are the no-flow boundary conditions

u⃗i · n⃗ = 0, i = w, o, (5)

where n⃗ is the outer unit normal to the boundary δΩ of Ω. Alternatively, the flow rate(s) or oil
pressure and water saturation may be prescribed at various parts of δΩ.
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3. IMPES formulations

We now reformulate the equations of Section 2 such that they become applicable for the IMPES
formulation. Assuming the the fluids are incompressible, the equations (1) and (4) give rise to the
following equation for the total velocity u⃗

∇ · u⃗ = qw + qo ≡ q. (6)

Using (6) together with equations (3) and (2) we obtain an elliptic equation for the pressure p = po,
which reads

−∇ · (λK∇p) = −∇ · (λwK∇Pc + (λwρw + λoρo)g∇Z) + q, (7)

where the corresponding total velocity is given as

u⃗ = −K(λ∇p− λw∇Pc − (λwρw + λoρo)g∇Z). (8)

Again using the assumption of incompressibility, an evolution equation for the saturation s = sw
is obtained from equations (1) and (2) which reads

ϕ
∂s

∂t
+∇ · (Kfw(s)λo(∇Pc + (ρw − ρo)g∇Z) + fw(s)u⃗) = qw. (9)

Observe that Pc ̸= 0 gives us a convection-diffusion equation for the saturation s.
The IMPES solution strategy now goes as follows. For a given initial saturation s(x⃗) = s0(x⃗),

we solve the pressure equation (7), and then solve the saturation equation (9) based on the
computed velocity field to update the saturation s. In the classical IMPES method the pressure
and saturation fields are updated with the same frequency. However, since the saturation field
usually changes more rapidly in time than the pressure field, it is natural to employ smaller time
steps when solving the saturation equation.

In the improved IMPES method proposed by Chen et al. [10] the pressure equation is updated
with a (possibly) variable time-step ∆tp, whereas the smaller variable inner time-steps ∆ts, used
for the saturation equation, is determined by the relation

∆ts =
DSmax

(∂s∂t )max

, (10)

where (∂s∂t )max denotes the maximum value of ∂s
∂t in the grid, andDSmax is the maximum variation

of the saturation to allow. The latter quantity obviously needs to be specified from the outside.
Note that the time-step determined by (10) obviously also must obey the CFL condition required
by the underlying numerical scheme for the saturation equation.

By using this approach Chen et al. [10] obtained a considerable improvement of the classical
IMPES method, and were i.a. able to solve a benchmark coning problem, previously unattain-
able for the classical IMPES formulation, 6.7 times faster than a comparative sequential solution
method. We remark that Chen et al. [10] did not study problems including capillary pressure
effects, which may seriously limit the usefulness of the IMPES formulation, due to the strict CFL
conditions enforced by the usual explicit methods, e.g., Runge-Kutta methods, employed for the
time-discretization of the saturation equation.

However, in this paper we are interested in a somewhat different fractional flow formulation,
recently introduced by [19], which is also applicable for the IMPES solution strategy. In order to
simplify the notation we first define the potentials

Ψi = pi − ρigZ, i = w, o, (11)

and also the capillary pressure potential

Ψc = Pc − (ρo − ρw)gZ. (12)

The idea in the new fractional flow formulation ([19]) is to introduce the velocities

u⃗a = −λK∇Ψw, (13)
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and
u⃗c = −λoK∇Ψc. (14)

It is now easily established that
u⃗ = u⃗a + u⃗c,

and, moreover, that
u⃗w = fw(s)u⃗a.

Equipped with this information, the pressure- and saturation equations in this new fractional flow
formulation, may be expressed as

−∇ · (λK∇Ψw) = ∇ · (λoK∇Ψc) + q, (15)

and

ϕ
∂s

∂t
+∇ · (fw(s)u⃗a) = qw. (16)

where the potential Ψw and the water saturation s are the unknown variables, and the velocity
u⃗a is given in equation (13). It should be noted that equation (16), in contrast to equation (9),
is a pure convective equation. The capillary pressure effects are then exclusively connected to the
pressure equation (15) in this formulation and does not at first sight influence the CFL condition
in equation (16). However, the velocity u⃗a (produced from the pressure equation) is obviously a
major contributor to the CFL requirement, and will thus nevertheless tighten the CFL requirement
accordingly dependent on the degree of capillarity in the problem.

In this paper we employ the new fractional flow formulation, i.e. equations (15) and (16)
above, for the simulation of two-phase flow with capillary pressure. Even though the old standard
fractional flow formulation in principle could be used as well, the new formulation has some clear
advantages. Obviously, the need for any nonlinear (Newtonian) iterations is eliminated, which is an
advantage especially from the implementation point of view. Moreover, the new formulation also
facilitates a much more straightforward implementation of the requirement of capillary pressure
continuity at the interfaces between the different regions in the domain. Using the standard
formulation, this task would have been more challenging, since it would also interact with the
nonlinear iterative solution process.

4. Discretization in a 1D medium with a discontinuous capillary pressure function

Very few analytical solutions are known in heterogeneous porous media when capillarity is the
driving force. In the paper [26], van Duijn and de Neef considered a 1D spontaneous imbibition
model problem with a single discontinuity in permeability and capillary pressure. They searched
for similarity solutions which amounts to transforming the original partial differential equation
into an ordinary differential equations. More precisely, they obtained two ordinary differential
equations (ODEs) that must fulfill two matching conditions at the discontinuity, and further
produced a semi-analytical solution by solving the ODE problem numerically. For the purpose
of testing the 1D discretizations discussed in this section, which serves as a motivation for the
2D MPFA finite-volume scheme presented in Section 5 and 6, we employ this semi-analytical
approach.

The model problem we are interested in takes the form of a nonlinear diffusion equation given
by

∂s

∂t
+

∂

∂x

(
k(x)fw(s)λo(s)

∂Pc(x, s)

∂x

)
= 0, x ∈ [−L,L]. (17)

This equation is obtained from (9) by neglecting the gravity, setting total velocity and source term
equal to zero, as well as assuming constant porosity ϕ to be 1 for the sake of simplicity only. Initial
data s0(x) = s(x, t = 0) is given as

s0(x) =

{
1, x < 0;
0, x > 0.

(18)

Furthermore, the permeability k(x) is given by

k(x) =

{
kl, x < 0;
kr, x > 0.

(19)
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Figure 1. Computed solutions on different grids at time T = 2. Top left: 25
cells. Top right: 50 cells. Bottom left: 100 cells. Bottom right: 200 cells.

and fw(s) is the water fractional flow function fw(s) =
λw(s)

λw(s)+λo(s)
with the mobilities λw and λo

defined as λi =
kri(s)
µi

for i = w, o. Moreover, the capillary pressure function Pc is given by

Pc(x, s) =
1√
k(x)

J(s), (20)

where J(s) is the Leverett function. Here we have implicitly set porosity ϕ and interfacial tension
σ to be 1, for simplicity reasons only. In the following we also assume that the viscosity is
characterized by M = µo

µw
= 1. We consider the van Genuchten model, see [26] and references

therein, where relative permeability and capillary pressure are given by

J(s) = (s−1/m − 1)1−m

krw(s) = s1/2(1− [1− s1/m]m)2 (21)

kro(s) = (1− s)1/2(1− s1/m)2m,

where 0 < m < 1 is a constant to be specified. In the numerical experiments carried out below we
have used the following values

kl = 4.2025, kr = 0.5625, m =
2

3
. (22)

Following the procedure outlined in [26] we solve for the similarity solution which we shall refer
to as the analytical solution. This solution is used to evaluate the numerical approximation.

We consider a simple finite volume discretization for the numerical solution of the initial-value
problem (17) and (18) with data as specified above. We discretize the spatial domain Ω = [−L,L]
into N non-overlapping gridblocks Ωi:

[−L,L] := Ω = ∪N
i=1Ωi, Ωi = [xi−1/2, xi+1/2], ∆xi = xi+1/2 − xi−1/2.
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Harmonic Arithmetic
∆x ∥E(s)∥1 q ∥E(s)∥1 q
0.1600 0.1463 - 0.1351 -
0.0800 0.0332 - 0.0595 -
0.0400 0.0236 0.49 0.0390 0.61
0.0200 0.0178 0.41 0.0243 0.68
0.0100 0.0106 0.75 0.0133 0.87

Table 1. Estimated L1-error, ∥E(s)∥1 = ∆x
∑

i |si − sref(xi)|, and convergence
order, q, where sref is the reference solution obtained by solving the ODE system
resulting from (17)–(19) and si refers to the numerical solution based on (23).

We assume, for simplicity, a regular grid with ∆xi = ∆x. Similarly, we consider a constant time
step size ∆t. Given the water saturation sn ≈ s(x, tn) at time tn, we must solve for the updated
saturation sn+1 at time tn+1. For that purpose we consider the discrete scheme

sn+1
i − sni

∆t
+D−

(
ki+1/2[fwλo]

n
i+1/2D+P

n
c,i

)
= 0, i = 1, . . . , N, (23)

where D+ and D− are the discrete differential operators applied on a sequence {ai} and defined
by

D+ai =
ai+1 − ai

∆x
, D−ai =

ai − ai−1

∆x
.

Note that we have used a simple forward Euler discretization in time (explicit scheme). Conse-
quently, we must also choose the time step according to the CFL condition

∆t

∆x2
max(

√
kl,

√
kr)max

i
[fw(si)λo(si)J

′(si)] ≤
1

2
.

The average [fwλo]i+1/2 is obtained by taking an arithmetic average. For the average ki+1/2 of the
permeability function at the cell interface i+1/2 we check two different approaches: (i) arithmetic
average kA; (ii) harmonic average kH .

kAi+1/2 =
ki + ki+1

2
, kHi+1/2 =

2kiki+1

ki + ki+1
. (24)

We have computed solutions at time T = 2 on three different grids corresponding to N = 25
cells, N = 50 cells, and N = 75 cells on a domain corresponding to L = 2. We refer to Fig. 1
for the results. The comparison between using kA and kH reveals that the harmonic averaging
tends to give approximate solutions that lie closer to the analytical solution. Finally, we have
also computed the solution on a finer grid of N = 200 cells by using the scheme with harmonic
averaged permeability kH demonstrating (virtually) convergence to the analytical solution. We
refer also to Table 1 for estimates of the error measured in L1-norm as the grid is refined. It seems
that the rate of convergence is approaching 1. This relatively low rate of convergence is expected
and must be understood in light of the severe discontinuity present in the solution.

It is well known (see e.g. [12]) that MPFA schemes in fact are generalizations of the scheme
with harmonic averaging of the absolute permeability in higher spatial dimensions. Thus it is clear
that the scheme which employs kH automatically fulfills the requirement of continuity in capillary
pressure at x = 0. However, for the sake of completeness of the paper, we present the arguments
for this fact. For simplicity, we first consider the standard prototype pressure equation

d

dx
(k

dp

dx
) = 0, (25)

where p is the pressure. We are now interested in the discrete flux approximation produced by the
one-dimensional MPFA scheme at xi+1/2. The MPFA approach assumes piecewise linear pressure
approximations i.e. such that

p = pL(x) = pi + aL(x− xi), ∀x ∈ [xi, xi+1/2], (26)
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and

p = pR(x) = pi+1 + aR(xi+1 − x), ∀x ∈ [xi+1/2, xi+1]. (27)

Invoking the requirements of flux and pressure continuity at xi+1/2 i.e.

ki
dpL
dx

(xi+1/2) = ki+1
dpR
dx

(xi+1/2), pL(xi+1/2) = pR(xi+1/2), (28)

it is easily found that aL = 2ki+1

ki+1+ki
(pi+1−pi

∆xi
) and aR = 2ki

ki+1+ki
(pi−pi+1

∆xi
). The discrete flux at xi+1/2

may thus be expressed as 2kiki+1

ki+1+ki
(pi+1−pi

∆xi
), clearly showing the appearence of the harmonic average

of the permeability kHi+1/2 as claimed above. Now looking at the term ∂
∂x

(
k(x)fw(s)λo(s)

∂Pc(x,s)
∂x

)
in (17). When this term is treated explicitly with respect to the saturation as in equation (23),
it is clear that we can employ the same arguments with respect to the MPFA approximation as
for the prototype pressure equation (25). Thus we can conclude that the capillary pressure is
continuous at x = 0, when using the above scheme with kH . Note that the fact that [fwλo]i+1/2

is approximated by an arithmetic average, obviously does not alter this conclusion.
Certainly, the more “naive” type of scheme which employs kA, does not fulfill the requirement

of continuity in capillary pressure at x = 0, and it is reasonable to expect that this fact explains
the difference in the quality of the approximations revealed in Fig. 1. Even though the difference
between these two approximations is relatively small, particularly for the fine grid with 100 cells,
it is nevertheless important, since the only difference between these two numerical schemes in this
particular example, is the flux approximation at x = 0. Realistic multidimensional examples on the
other hand, requires reasonably coarse grids and can have numerous regions of capillary pressure
heterogeneities throughout the domain, as well as significantly larger discontinuities than used
in the present example, further emphasizing the importance of using numerical approximations
fulfilling the requirement of capillary pressure continuity given by the continuous model.

However, standard multidimensional MPFA schemes are only pointwise pressure continuous
at the discrete level. Only recently, some multidimensional MPFA schemes which are pressure
continuous at the discrete level, have been developed and tested for one-phase elliptic problems
[13, 14, 16]. These schemes are clearly favorable in cases with capillary pressure discontinuitues,
and will thus be extended to two-phase flow in this paper.

5. A MPFA finite-volume discretization of the pressure equation

Two MPFA schemes fulfulling the property of being pressure continuous at the discrete level,
henceforth denoted MPFA full pressure support (FPS) schemes, were recently presented in [13, 14]
and [16] for cell-centered quardilateral and triangular grids, respectively. For completeness of
presentation we present the MPFA FPS scheme for the one-phase pressure equation in case of
cell-centered unstructured triangular grids. More details can be found in [16]. We then briefly
comment on the extension of the scheme to two-phase flow.

5.1. Notation. We now introduce appropriate notation for describing the family of unstructured
cell-centred flux-continuous MPFA schemes employed in the paper.

5.1.1. Grid Cell. The grid (i.e. the collection of control-volumes or cells) is defined by the trian-
gulation of the vertices (or corner points) j. Each grid cell is assigned a grid point (nodal point)
xi, which here is equal to the cell centroid (see Figure 2(a)). In the cell-centered formulation
presented here flow variables and rock properties are distributed to the grid cells and are therefore
control-volume distributed (CVD). The value of the numerical solution in the cell is denoted by
Φi = ϕi(xi). Two adjacent grid cells are termed neighbours if they share the same cell interface
or cell edge. The permeability (conductivity) tensor K is assumed to be piecewise constant, with
respect to cell values (see Figure 2(c)). The control-volume is denoted Ωi for i = 1, ..., NE , where
NE is the number of control-volumes (or cells) in the grid, and its corresponding boundary is δΩi.
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5.1.2. Cluster. In the cell centered formulation continuous flux and pressure constraints are im-
posed locally with respect to each cluster cj of cells that are attached to a common grid vertex
j. The degree of the cluster cj is defined as the number of cell interfaces that meet at the vertex

and is denoted by N j
d . For each interior vertex the number of cells in the cluster is also equal

to N j
d . An example of a cell cluster with three cells and corresponding dual grid cell is shown in

Figure 2(b).

5.1.3. Dual-Cell. For each cell cluster cj , a dual-cell is defined as follows: For each cell edge
attached to the vertex of the cluster, connect the edge mid-point ek to the grid points (i.e. cell
centres) of the two neighboring cells within the cluster that share the common edge (one cell centre
if the edge is a boundary). It is not generally necessary to choose ek as the mid-point, but in this
paper other possibilities are not considered. The dual-cell will then be defined by the resulting
polygon comprised of the contour segments connecting the N j

d cell mid-points as indicated by the
dashed lines in Figure 2(b).

5.1.4. Sub-Cell. Subcells result when the dual-cells overlay the primal triangular grid. Each tri-
angle (control-volume) is then comprised of three quadrilateral sub-cells. Each sub-cell is defined
by the anti-clockwise loop joining the parent triangle cell-centre, triangle right-edge mid-point,
central cluster vertex, triangle left-edge mid-point and back to the triangle centre as illustrated
in Figure 2(d). The volume of the dual-cell is seen to be comprised of N j

d sub-cells, where each
sub-cell of a parent triangle is attached to the same distinct vertex and thus cluster cj .

5.1.5. Sub-Interface. The edge point ek divides a cell interface into two segments, the term sub-
interface will be used to distinguish each of the two segments from the total cell interface.

5.1.6. Local Interface Pressures. In the MPFA methods, the following two continuity conditions
should be fulfilled for every sub-interface: flux continuity and pressure continuity. One of the
main advantages of the this type of formulation is that it involves only a single degree of freedom
per control-volume, in this case the primal grid cell pressure Φi, while maintaining continuity
in pressure and normal flux across the control-volume faces. This is achieved by introducing
local interface pressures that are expressed in terms of the global pressure field via local algebraic
flux continuity conditions imposed across control-volume faces. In the MPFA FPS scheme full
pressure continuity along each sub-interface in the grid is ensured by introducing an auxiliary
interface pressure at the common grid vertex of the cluster as well as on each sub-interface (at

point ek) belonging to the dual-cell, thus yielding N
j
d+1 interface pressures per dual-cell. Referring

to Figure 3, the interface pressures are denoted ΦA,ΦB , ΦC and ΦD, respectively. We remark that
in the previous so called triangle pressure support formulations (TPS) (see e.g. [15]), the local
interface pressures at the vertices were not employed, and the pressure is thus only point-wise
continuous.

5.2. Formulation in transform space. We express the pressure equation in terms of a general
curvilinear coordinate system with respect to dimensionless transform space coordinates (ξ, η)
following [11]. Choosing Ω to represent an arbitrary control volume comprised of surfaces that are
tangential to constant (ξ, η) respectively, the integral form of the pressure equation is written as

−
∫
Ω

∇̃ · (T∇̃ϕ)dτ̃ = 0, (29)

where ∇̃ = ( ∂
∂ξ ,

∂
∂η ) and the general tensor T is defined via the Piola transform (see e.g. [7])

T =| J | J−1KJ−T , (30)

where J is the Jacobian of the curvilinear coordinate transformation and | J |= xξyη − yξxη is the
determinant of the Jacobian. T is thus a function of both the geometry- and cartesian permeability
tensors, respectively, and its components are given by

T11 = (K11y
2
η +K22x

2
η − 2K12xηyη)/| J |

T22 = (K11y
2
ξ +Kyyx

2
ξ − 2K12xξyξ)/| J |

T12 = (K12(xξyη + xηyξ)− (K11yηyξ +K22xηxξ))/| J |
(31)
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Figure 2. (a) Triangular control-volume with cell-centered nodal point. (b)
Dual-cell (dashed lines) defined for cell cluster containing 3 sub-cells at vertex
j. (c) Piecewise constant permeability over triangular control volumes. (d) The
sub-cells in a dual-cell. Shade indicates sub-cell.
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Equation (29) can also be written as

−
∫
Ω

(
∂F1

∂ξ1
+

∂F2

∂ξ2
)dτ̃ = 0, (32)

where the local flux is given by

Fi = −
∫ 2∑

j=1

Ti,jϕξjdΓi, (33)

where Ti,j are defined in Eq. (31), ξj used as a subscript denotes partial differentiation in the
ξj-direction, ξ1 = ξ and ξ2 = η.
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Figure 4. Left: The direction of the fluxes indicated by arrows at the sub-
interfaces. Right: Quadrature parametrization indicating point-wise flux evalua-
tion for a given value of the parameter q.

We now introduce a local right-handed (ξ, η)-coordinate system in each sub-cell, and the problem
is then to solve the following integrated pressure equation for a triangular grid

−
3∑

s=1

(

∫
δΩ̃s

i

(T s∇̃ϕ) · n⃗s
tdΓ) = 0, (34)

where the superscript s is connected to a given (quadrilateral) sub-cell within the triangle (see

Figure 2(d)), n⃗s
t is the transform space sub-cell normal vector and δΩ̃s

i denotes the outer boundary
of the sub-cell in transform space.

In general the sub-cell tensor can be defined via the isoparametric mapping

r⃗ = (1− ξ)(1− η)r⃗1 + ξ(1− η)r⃗2 + ξηr⃗3 + (1− ξ)ηr⃗4 (35)

where r⃗ = (x, y), r⃗i, i = 1, ...4 are the subcell corner position vectors and 0 ≤ ξ, η ≤ 1, with r⃗1 and
r⃗3 corresponding to the cell-centre and dual-cell centre respectively and r⃗2 and r⃗4 correspond to the
mid-points of the triangle edges connected to the dual-cell centre. As a result each quadrilateral
subcell is transformed into a unit quadrant in transform space. The tensor is then approximated
in a local coordinate system aligned with the two faces of the dual-cell connected to the given
sub-cell.

5.3. The MPFA FPS approximation. Assuming a bi-linear approximation within each sub-cell
(Figure 3), the pressures in the three sub-cells may be written in the local (ξ, η)-coordinate-system
as

ϕ1 = Φ1 + (ΦA − Φ1)ξ + (ΦC − Φ1)η + (ΦD +Φ1 − ΦA − ΦC)ξη, (36)

ϕ2 = Φ2 + (ΦB − Φ2)ξ + (ΦA − Φ2)η + (ΦD +Φ2 − ΦB − ΦA)ξη, (37)

and

ϕ3 = Φ3 + (ΦC − Φ3)ξ + (ΦB − Φ3)η + (ΦD +Φ3 − ΦC − ΦB)ξη. (38)

Physical space flux continuity conditions are defined with respect to each cell cluster. We define
the fluxes in a counter-clock wise manner with respect to the sub-interfaces of each cluster. Now
let D denote the cluster vertex in the illustrative cluster shown in Figure 4(left). We let FA

be the flux out of cell 1 through the sub-interface at AD, FB be the flux out of cell 2 through
the sub-interface at BD and FC be the flux out of cell 3 through the sub interface at CD (see
Figure 4(left)).

Introducing a quadrature parametrization q such that 0 ≤ q ≤ 1 (see Figure 4(right)), the
point-wise flux continuity is accommodated along each of the lines AD, BD and CD, respectively.
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Utilizing equation (33), the three flux continuity equations then read

FAD = −(T11|1AD(q)(ΦA − Φ1) + (ηT11)|1AD(q)(ΦD +Φ1 − ΦA − ΦC)

+ T12|1AD(q)(ΦC − Φ1) + T12|1AD(q)(ΦD +Φ1 − ΦA − ΦC))

= T12|2AD(q)(ΦB − Φ2) + T12|2AD(q)(ΦD +Φ2 − ΦB − ΦA)

+ T22|2AD(q)(ΦA − Φ2) + (ξT22)|2AD(q)(ΦD +Φ2 − ΦB − ΦA),

(39)

FBD = −(T11|2BD(q)(ΦB − Φ2) + (ηT11)
2
BD(q)(ΦD +Φ2 − ΦB − ΦA)

+ T12|2BD(q)(ΦA − Φ2) + T12|2BD(q)(ΦD +Φ2 − ΦB − ΦA))

= T12|3BD(q)(ΦC − Φ3) + T12|3BD(q)(ΦD +Φ3 − ΦC − ΦB)

+ T22|3BD(q)(ΦB − Φ3) + (ξT22)
3
BD(q)(ΦD +Φ3 − ΦC − ΦB),

(40)

and

FCD = −(T11|3CD(q)(ΦC − Φ3) + (ηT11)
3
CD(q)(ΦD +Φ3 − ΦC − ΦB)

+ T12|3CD(q)(ΦB − Φ3) + T12|3CD(q)(ΦD +Φ3 − ΦC − ΦB))

= T12|1CD(q)(ΦA − Φ1) + T12|1CD(q)(ΦD +Φ1 − ΦA − ΦC)

+ T22|1CD(q)(ΦC − Φ1) + (ξT22)
1
CD(q)(ΦD +Φ1 − ΦA − ΦC).

(41)

Note that the notation AD(q) etc. serves to indicate the dependence of the flux continuity
point on the quadrature parametrization. Note that AD(0) = A and AD(1) = D, while 0 < q < 1

extracts points P⃗ along the line AD such that P⃗ = A⃗+ q(D⃗− A⃗) (and of course analogously along
the lines BD and CD).

However, in order to close the above equation system (39), (40) and (41) an additional equation
is needed. For that purpose we utilize the integral form of the partial differential equation over an
auxillary dual-cell (see Figure 5(left)) i.e.

−
∮
δΩ̃d

jAUX

(T∇̃ϕ) · n⃗tdΓ = 0, (42)

where Ω̃d
jAUX

denotes the (transform space) auxillary dual-cell connected to a vertex with index j.
The actual size of the auxillary dual cell control-volume is a further degree of freedom to be chosen
within the scheme, and is parameterized by the variable c where 0 ≤ c ≤ 1. Note that for c = 0 we
obtain the usual dual-cell, while the auxillary control-volume tends to zero as c → 1. Yet another
free parameter is needed to specify this scheme. We let p be the quadrature parametrization
needed for the point-wise flux evaluation needed at the sub-interfaces in the auxillary dual-cell in
equation (42). p should be chosen such that c ≤ p < 1. Discretisizing equation (42) following the
above sub-cell approach, we then obtain a dual-cell equation which reads

T11|1C1(c,p)(ΦA − Φ1) + (ηT11)
1
C1(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T12|1C1(c,p)(ΦC − Φ1) + (ξT12)
1
C1(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T12|11A(c,p)(ΦA − Φ1) + (ηT12)
1
1A(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T22|11A(c,p)(ΦC − Φ1) + (ξT22)
1
1A(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T11|2A2(c,p)(ΦB − Φ2) + (ηT11)
2
A2(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T12|2A2(c,p)(ΦA − Φ2) + (ξT12)
2
A2(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T12|22B(c,p)(ΦB − Φ2) + (ηT12)
2
2B(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T22|22B(c,p)(ΦA − Φ2) + (ξT22)
2
2B(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T11|3B3(c,p)(ΦC − Φ3) + (ηT11)
3
B3(c,p)(ΦD +Φ3 − ΦC − ΦB)

+ T12|3B3(c,p)(ΦB − Φ3) + (ξT12)
3
B3(c,p)(ΦD +Φ3 − ΦC − ΦB)

+ T12|33C(c,p)(ΦC − Φ3) + (ηT12)
3
3C(c,p)(ΦD +Φ3 − ΦC − ΦB)

+ T22|33C(c,p)(ΦB − Φ3) + (ξT22)
3
3C(c,p)(ΦD +Φ3 − ΦC − ΦB)

= 0,

(43)

where the notation C1(c, p), 1A(c, p) etc serves to indicate the dependence of the parameters c
and p on the position of the discrete flux evaluation on the half edges in the auxillary dual cell,
which are parallel with the lines C1, 1A (see Figure 5(right)) etc. in transform space. Note that
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Figure 5. Left: Example range of auxillary control volumes (dashed) centered
around the vertex D and depending on the parameter c. Right: Fluxes out
of auxillary dual cell and quadrature parametrization indicating point-wise flux
evaluation for a given value of the parameter p at the sub-interfaces in the auxillary
dual-cell.

C1(0, 0) = C, 1A(0, 0) = 1 (where 1 in this last equation obviously means the triangle centroid of
cell 1 in Figure 5(right)).

The equations (39), (40), (41) and (43) now define a linear system of equations in terms of
dual-interface pressures and the primal cell-centered pressures for all cells connected to the cluster
vertex. This system may generally be written as follows

MfΦf = McΦc, (44)

whereMf andMc are matrices. In this particular case of a three cell clusterΦf = (ΦA,ΦB ,ΦC ,ΦD)T

and Φc = (Φ1,Φ2,Φ3)
T . Obviously this may be done analogously for an arbitrary cell cluster.

Thus the interface pressures can be expressed in terms of the primal cell-centered pressures via
equation (44), which is performed in a preprocessing step thus eliminating them from the discrete
system.

5.4. Flux and finite volume approximation. Utilizing the above local algebraic flux contiuity
conditions, the discrete flux F across a cell sub-interface in the grid may be written as a linear
combination of grid cell centre values Φi in the dual grid:

F = −
∑
i∈Nj

F

tiΦi, (45)

where N j
F is the index set of grid points involved in the flux approximation and N j

F contains a

maximum ofN j
d cells. The coefficients ti resemble conductances and are called the transmissibilities

associated with the flux interface. Since the flux must be zero when Φi is constant for all i ∈ N j
F ,

all consistent discretizations must satisfy the condition
∑

i∈Nj
F
ti = 0. The net flux across each

cell-interface (triangle-edge) is comprised of two sub-interface fluxes, calculated by assembling
contributions from the two dual grid cells corresponding to the two triangle-edge vertices.

Finally the discrete divergence over the primal triangle cells is then comprised of assembled
fluxes that are algebraically linear functions of the primal cell-centered pressures. This defines the
so called MPFA FPS scheme recently presented in [16], for elliptic problems.

5.5. Extensions to account for two-phase flow. Untill now we have presented the discretiza-
tion methodology for the one-phase flow pressure equation. However, the extension needed to
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treat the present two-phase flow flux term i.e.

−
∮
δΩi

(λ(s)K∇Ψw) · n⃗dS

is indeed very limited. Let λv represent the total mobility at the vertex v in the grid, which can
be found by the interpolation procedure i.e. equation (56), described in Section 6 below. Since
the mobility λ is a scalar quantity, a two-phase flow sub-interface flux Ftf can then be written as

Ftf = λvF, (46)

where F is the flux given in equation (45), which obviously is supposed to belong to the cluster
with vertex v. Alternatively, from an implemenation point of view, it is sufficient to multiply the
transmissibilities in equation (45) with λv.

5.6. Approximating the capillary pressure flux. The capillary pressure flux, which is a right
hand side contribution in the integrated form of the pressure equation, reads∮

δΩi

(λoK∇Ψc) · n⃗dS.

It can be approximated by the MPFA FPS scheme as follows. Assume that a saturation field is
given in the control-volume cell centers such that we know the cell centered capillary pressures, and
consider the scheme described in Section 5.3 (except that the transmissibilites must be multiplied
with λov, where v again is an index identifying the vertex). Due to the construction of the MPFA
FPS algorithm the capillary pressure field will be continuous (which is physically correct) and the
capillary pressure flux over a given sub-interface Ftcp simply reads

Ftcp = λovF, (47)

where the flux F (given in equation (45)) now can be computed explicitly from known cell-centered
capillary pressure potentials Ψc.

Remark 1. As noted in the introdution, there are in fact cases i.a. depending on the entry
pressure and the type of flow, where the capillary pressure may be discontinuous at interfaces
between different rock types (even if continuity in capillary pressure is the usual situation). See
[26] for a more detailed discussion. In such cases the MPFA FPS scheme will have to be modified,
by introducing a double set of auxillary pressures in the formulation. Additional equations will
then be needed to close the local equation system. Such equations may be found from knowledge of
the saturation values in some parts of the domain. However, we emphasize that this situation can
not occur in the cases considered in this paper where water is displacing oil, and, moreover, do not
introduce any new fundamental issues with respect to the numerical treatment of these problems,

5.7. Computing the velocity v⃗a. When Ψw is found by solving the pressure equation (15) using
the MPFA FPS scheme, the velocity v⃗a = −λK∇Ψw, or more precisely the flux of v⃗a over a given
interface in the grid, must be computed in order to be used as input in the saturation equation
(16). This can be done by computing each of the sub-interface fluxes, which in this case can be
computed explicitly from equation (46).

6. Discretization of the saturation equation

The relatively recent so called central-upwind schemes for hyperbolic conservation laws were
introduced in [22]. These schemes extend the central schemes developed by Kurganov and Tadmor
in [21], and in fact coincide for a scalar PDE such as the saturation equation. The central-upwind
schemes belong to the class of Godunov-type central schemes, and their construction is based on
the exact evolution of picewise polynomial reconstructions of the approximate solution, achieved
by integrating over Riemann fans. Their resolution is comparable to the upwind schemes, but
in contrast to the latter, they do not employ Riemann solvers and characterisitic decomposition,
which makes them both simple and efficient for a variety of multidimensional PDE systems.
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Figure 6. Notation in a triangular grid.

For the case of unstructured triangular grids a (second-order) central-upwind scheme was re-
cently presented in [23]. In this paper we employ the scheme from [23] for the spatial semi-
discretization of the saturation equation. In the following we present some details pertaining to
this discretization.

Consider as an example the scalar conservation law

∂s

∂t
+

∂f(s)

∂x
+

∂g(s)

∂y
= 0. (48)

In order to introduce some necessary notation, let us denote the control volumes in the triangula-
tion by Vj , with corresponding areas ∆Vj . For a given index j, the neighbouring control volumes
of Vj are termed Vjk, k = 1, 2, 3. Moreover, the joint edge between Vj and Vjk is denoted by Ejk

and is assumed to be of length hjk. Finally, the outward unit normal to Vj on the kth edge is njk,
and the midpoint of Ejk is Mjk (see Figure 6).

Now let

s̄nj ≈ 1

∆Vj

∫
vj

s(x⃗, tn)dV (49)

be the cell average on all the cells {Vj}, which are assumed to be known at the time tn, and let

s̃n(x, y) =
∑
j

snj (x, y)χj(x, y) (50)

be a reconstructed piecewise polynomial, where χj(x, y) is the characteristic function of the control
volume Vj , s

n
j (x, y) is a two-dimensional polynomial yet to be determined and, finally, snjk(x, y)

denotes the corresponding polynomial that is reconstructed in the control volume Vjk.
Discontinuities in the interpolant sj along the edges of Vj (where we for simplicity omit time

dependence n and spatial dependence (x, y)) propagate with a maximal inward velocity and a
maximal outward velocity ainjk and aoutjk , respectively. For convex fluxes in the scalar case these
fluxes can be estimated as

ainjk(Mjk) = −min{∇F (sj(Mjk)) · njk,∇F (sjk(Mjk)) · njk, 0},

aoutjk (Mjk) = max{∇F (sj(Mjk)) · njk,∇F (sjk(Mjk)) · njk, 0},
where F = (f, g).

Now the algorithmic development of the central-upwind scheme goes as follows. The above local
speeds of propagation are used to determine evolution points that are away from the propagating
discontinuities. An exact evolution of the reconstruction at these evolution points is followed by
an intermediate piecewise polynomial reconstruction and finally projected back onto the original
control volumes, providing the cell averages at the next time step s̄n+1

j .
A semi-discrete scheme is then obtained at the limit

d

dt
s̄n = lim

∆t→0

s̄n+1 − s̄n

∆t
. (51)
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Fortunately most of the terms on the right-hand side of (51) vanish in the limit as ∆t → 0, leaving
only the integrals of the flux functions over the edges of the cells, which must be determined by
an appropriate quadrature. We follow [23] and use a simple midpoint quadrature, which leads to
the following semi-discrete scheme

d

dt
s̄n = − 1

∆Vj

3∑
k=1

hjk

ainjk + aoutjk

[(ainjkF
out
jk + aoutjk F in

jk ) · njk − ainjka
out
jk (soutjk − sinjk)], (52)

where we have employed the notation soutjk = sjk(Mjk), s
in
jk = sj(Mjk), F

in
jk = F (sinjk) and F out

jk =

F (soutjk ). We refer to [23] for more details about this scheme, which can be applied to systems of
conservation laws in an analogous manner.

The particular second-order reconstruction used in this paper is taken from [8]. The first step
is to compute a least-squares estimate of the gradient of a scalar field f on the triangle Vj , which

is denoted by ∇̃jf . ∇̃jf is computed by following the algorithm reported in [3]. The gradient
Djf are then limited component by component as

Djf = MM(∇̃jf, ∇̃j1f, ∇̃j2f, ∇̃j3f), (53)

where ∇̃jkf is the least-squares gradient estimate on Vjk and MM is the common multivariable
MinMod limiter function defined by

MinMod(x1, x2, . . .) :=

 minj{xj} if xj > 0 ∀j,
maxj{xj} if xj < 0 ∀j,
0 otherwise.

(54)

Furthermore, the gradients Djf is used to construct a piecewise linear reconstruction for the point
values of each triangle edge Ejk as follows

uj(x⃗) = ūj +MM(Dju · (x⃗− x⃗j),Djku · (x⃗− x⃗j)), (55)

where Djku is the limited gradient estimate on Vjk, x⃗j is the center of Vj and x⃗ ∈ Ejk. As noted
in [8], this double use of the MinMod limiter minimizes spurious oscillations while preserving the
second-order accuracy of the reconstruction.

6.1. Interpolation of the mobility. In Sections 5.5 and 5.6 an interpolation of the mobility (λ
or λ0, respectively) from the cell-centered values is needed at the vertices in the grid. This is done
by the following formula

λv =

∑
i:Vi∈Vvi

(λi∆Vi)∑
i:Vi∈Vvi

(∆Vi)
, (56)

where λv is the mobility at the vertex v and Vvi denotes the set of triangles neighbouring this
same vertex.

7. Computational examples

In the following we present two examples demonstrating effects of capillary pressure hetero-
geneity in two-phase flow using a structured cartesian grid and an unstructured triangulation,
respectively. Here we consider a capillary pressure function of the form

Pc(s) = − ϕ√
k
ln(s), (57)

where k is the absolute permeability and the capillary pressure curves are truncated to a finite
large value at s = 0, in order to avoid infinity values at that point. Further we use quadratic
Corey-type relative permeability curves i.e.

krw(s) = s2, kro(s) = (1− s)2. (58)

Moreover for simplicity reasons only, we put ϕ = 1, µw = µo = 1, L∗ = 1 and k∗ = 1, where
L∗ and k∗, respectively, are chosen as the characteristic length and absolute permeability in the
problems below. We would like to emphasize that these examples are totally synthetic, their
purpose being only to illustrate some flow phenomena connected to the presence of capillary
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Figure 7. Left: The domain in example 1. The middle layer is least permeable.
Right: The domain in example 2. The circular inclusion is least permeable.

Figure 8. The unstructured triangulation used in example 2.

pressure heterogeneity in two spatial dimensions. Computations using real reservoirs are outside
the scope of this paper.

The computations on triangular grids in Example 2 below are performed by using the MPFA
FPS scheme presented above, while the computations on the structured grid in Example 1 employs
the corresponding scheme for quadrilaterals [13]. The application of these recent MPFA FPS
schemes in the following two-phase flow computations are particularly important for two reasons.
Firstly, it was found in a recent study [17], that the previous classes of MPFA schemes, which
are only pointwise continuous in pressure and flux, do not exhibit convergent behavior for time-
dependent diffusion problems on triangular grids. Secondly, as thoroughly discussed in Section
4, a full pressure continuity at the discrete level is important in order to mimic the important
requirement of capillary pressure continuity at the continuous level in problems with capillary
pressure heterogeneity.

7.1. Example 1. We consider displacement of oil by water in the 0.5 × 1
3 layered rectangular

domain, initially filled with oil, which is shown in Figure 7 (left). The isotropic permeability is
equal to 0.01 in the middle layer and 1 otherwise. Water is injected uniformly through the left
vertical boundary, and the boundary conditions are as follows. The two horizontal boundaries are
closed, and the oil pressure difference between the right and left vertical boundaries is put to 1.
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Figure 9. Example of solution fields from example 1. Top row: Homogeneous
capillary pressure. Bottom row: Heterogeneous capillary pressure. Left column:
t = 0.03. Right column: t = 0.07.

Moreover, we impose a saturation equal to 1 at the left vertical boundary, whereas the saturation
is put to 0 at the right vertical boundary.

Numerical computations (with a 50× 75 structured rectangular grid) are performed using both
a capillary homogeneous (k is put to 1 in equation (57)) and capillary heterogeneous domain.
Results are presented in Figure 9 for two different simulation times. The flow behavior with
homogeneous capillary pressure is as expected essentially governed by the permeability field such
that the displacement process is very much delayed in the middle low permeability layer, and,
moreover exhibits a smooth behavior typical of standard diffusion problems.

The simulation results in the case of capillary pressure heterogeneity on the other hand, demon-
strates a substantially more complex flow behavior. In particular, we observe saturation disconti-
nuites that have arosen at the two boundaries of the middle low permeability layer. Furthermore,
it is clearly seen that water has penetrated the low permeable domain to a much wider extent
than in the case with homogeneous capillary pressure.

7.2. Example 2. The 2×2 quadratic domain with a circular inclusion as well as the unstructured
grid with 3738 triangles is shown in Figure 7 (right) and Figure 8, respectively. The isotropic
permeability is equal to 0.01 in the circular inclusion and 1 otherwise. The four boundaries are
closed in this example. Water is injected at the lower left corner in the domain (source strength
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Figure 10. Example of solution fields from example 2. Top row: Homogeneous
capillary pressure. Bottom row: Heterogeneous capillary pressure. Left column:
t = 1.0. Right column: t = 2.0.

equal to 1), which is otherwise filled with oil. A corresponding sink (with source strength equal
to −1) is placed at the upper right corner.

Numerical computations (with the triangulation shown in 7 (right)) are again performed using
both a capillary homogeneous (k is put to 1 in equation (57)) and capillary heterogeneous domain.
Results are presented in Figure 10 for two different simulation times.

Again we observe the significant difference in flow behavior between the two cases. The case
with homogeneous capillary pressure displays a smooth solution field very much influenced by the
low permeable circular inclusion, and in particular obtain an earlier water breakthrough than the
case with heterogeneous capillary pressure. In the latter case saturation discontinuites are formed
at the boundaries of the circular inclusion, and moreover, the circular inclusion is again much
more penetrated by water, thus leading to a later water breakthrough. Obviously, such effects can
be even more important when simulating complex real reservoirs.

8. Conclusions

The present paper concerns two-phase flow in porous media with heterogeneous capillary pres-
sure functions. This problem has received very little attention in the literature, despite its im-
portance in real flow situations. Moreover, the problem also constitutes a challenge for numerical
discretizations, since saturation discontinuities arise at the interface between the different homo-
geneous regions in the domain.
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Examining a one-dimensional model problem, for which a semi-analytical solution is known, it
is found that a standard scheme based on harmonic averaging of the absolute permeability, and
which possesses the important property of being pressure continuous at the discrete level, gives the
best numerical results. A recent two-dimensional multi point flux approximation scheme, which
is also pressure continuous at the discrete level, is then extended to account for two-phase flow,
such that we obtain a robust an accurate discretization of the two-phase flow pressure equation.
We solve the two-phase flow model in an implicit pressure explicit saturation setting, using a
recent fractional flow formulation, which is well suited for capillary pressure heterogeneity. The
corresponding saturation equation is discretizized by a second-order central upwind scheme.

We present a few numerical examples in order to illustrate the significance of capillary pressure
heterogeneity in two-dimensional two-phase flow, using both structured quadrilateral and unstruc-
tured triangular grids. It is i.a. found that capillary heterogeneity can have a significant effect on
water breakthrough. Thus it should be reasonable to expect that capillary pressure heterogeneities
can have an even more pronounced effect in complex real reservoirs, which further emphasizes the
importance of an accurate and reliable numerical treatment of these rather involved nonlinear
problems.
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