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Abstract. The flow of oil and water in naturally fractured reservoirs (NFR) can be highly

complex and a simplified model is presented to illustrate some main features of this flow sys-
tem. NFRs typically consist of low-permeable matrix rock containing a high-permeable fracture
network. The effect of this network is that the advective flow bypasses the main portions of the
reservoir where the oil is contained. Instead capillary forces and gravity forces are important

for recovering the oil from these sections. We consider a linear fracture which is symmetrically
surrounded by porous matrix. Advective flow occurs only along the fracture, while capillary
driven flow occurs only along the axis of the matrix normal to the fracture. For a given set of
relative permeability and capillary pressure curves the behavior of the system is completely de-

termined by the choice of two dimensionless parameters: (i) the ratio of time scales for advective
flow in fracture to capillary flow in matrix α = τf/τm; (ii) the ratio of pore volumes in matrix
and fracture β = V m/V f . A characteristic property of the flow in the coupled fracture-matrix
medium is the linear recovery curve (before water breakthrough) which has been referred to as

the ”filling fracture” regime [45], followed by a non-linear period, referred to as the ”instantly
filled” regime, where the rate is approximately linear with the square root of time. We derive
an analytical solution for the limiting case where the time scale τm of the matrix imbibition

becomes small relative to the time scale τf of the fracture flow (i.e., α → ∞), and verify by
numerical experiments that the model will converge to this limit as α becomes large. The model
provides insight into the role played by parameters like saturation functions, injection rate, vol-
ume of fractures vs. volume of matrix, different viscosity relations, and strength of capillary

forces vs. injection rate. Especially, a scaling number ω is suggested that seems to incorporate
variations in these parameters. An interesting observation is that at ω = 1 there is little to gain
in efficiency by reducing the injection rate. The model can be used as a tool for interpretation
of laboratory experiments involving fracture-matrix flow as well as a tool for testing different

transfer functions that have been suggested to use in reservoir simulators.

1. Introduction

Water flooding can be an efficient method for oil recovery in many reservoirs, as it provides
pressure support and oil displacement. However, the efficiency depends on the ability of the water
front to access all parts of the reservoir and displace the oil uniformly towards the producing wells.
The injected water will typically be more mobile than the oil and concentrate into a ”path of least
resistance”, where the pressure loss is minimal. In a uniform reservoir this path will be a straight
line between injector and producer, while heterogeneities will move the path towards areas with
higher permeability. In this paper our motivation is reservoirs that are naturally fractured: even
on a local scale we can then distinguish such flow paths. The reservoir is divided into a dense
network of connected highly permeable tunnels that only makes a small portion of the bulk, while
the rest of the rock is low permeable, but is storage for much of the oil. As an example, consider
the chalk reservoir Ekofisk in the North Sea: an unfractured section (i.e. a core sample) can
have porosity around 30% and permeability of a few mD. However, from well tests the effective
permeability (also considering fractures) is determined to be in the range of a 100 mD [23]. Because
of this local heterogeneity the advective flow of water and oil will be concentrated to the fractures
and oil contained in the matrix is not displaced efficiently by this mechanism. Capillary forces,
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Figure 1. System geometry (left): reservoir is seen from above where a fracture
of width 2b goes from injector to producer with length Ly. Matrix surrounds
the fracture with total length 2Lx. Spontaneous imbibition drives oil into the
fracture, while water injection drives the mixture towards the producer along the
fracture (right).

depressurization or gravity may play a greater role in mobilizing the oil where advective transport
is low. Flooding the reservoir will efficiently displace oil in the channels and they become highly
water-saturated. Capillary forces will draw water into the less permeable medium and return oil
to the fractures, thus, lead to a redistribution of oil and water. This mechanism is referred to
as spontaneous imbibition (SI). See Fig. 1 for an illustration of the fracture-matrix geometry and
displacement of water along fracture due to viscous forces in combination with countercurrent
imbibition in matrix due to capillary forces.

In works such as [19, 22, 24, 25] experimental observations from lab scale flooding through blocks
or cores of porous material with and without layers of thin permeable fractures were presented.
Using MRI techniques the authors obtained 3D images of phases and pores. Especially they
illustrated how wettability and capillary forces are important for the distribution of phases in
a fracture-matrix system. In [20] the authors considered a combined water-oil fracture-matrix
model with special focus on the problem of formulating an appropriate boundary condition at the
fracture-matrix interface.

The importance of fracture-matrix flow where imbibition is the driving mechanism for flow in
matrix, has motivated for many works dealing with spontaneous imbibition. Analytical solutions
of models describing spontaneous imbibition represent one aspect of this. For some recent works
which contain a complete overview of various results in that direction, we refer to [54, 55]. By
means of an analytical solution of the nonlinear diffusion equation representing SI [38], a general
scaling group was proposed, which contains previously proposed groups as special cases, and used
that to demonstrate a nice fit with many imbibition lab experiments for a wide range of viscosity
ratios, different materials, different initial water saturations, and different length scales.

Research dealing with models for fracture-matrix flow seems essentially to be along two main
lines: One approach is based on using an explicit discretization of both fracture and matrix, a
so-called discrete fracture/discrete matrix (DFDM) approach [14, 27, 29, 48, 37, 53, 57]. Another
commonly used approach is based on the dual-porosity idea where the geometry of fracture and
matrix are represented by averaged properties [60]. The communication between fracture and
matrix is taken care of through a transfer term. We refer to [12] for a nice overview and demon-
stration of this approach. In this setting, typically, the impact from matrix is taken into account
in the fracture flow model by including a source/sink term of the following linear form [31, 12, 60]

T = ϕmβr(s
m
eq − sm), (1)
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where βr is a rate constant, ϕm is the porosity, sm is the average saturation, and smeq is the maximal
saturation in the matrix. However, this form seems more appropriate when it can be assumed that
the fracture is instantly filled with water and takes a constant saturation. Various modifications
have been introduced to account for different flow regimes and more general rate terms [12]. In
[21] the authors develop a multi-rate mass transfer model for two-phase flow. The fracture model
contains a non-local (in time) source/sink term that accounts for the interaction with the matrix
region. Their approach allows to simulate a wide range of transfer rates.

We construct a combined fracture-matrix 1D+1D model in order to investigate the role of
spontaneous imbibition as a recovery mechanism in an idealized geometry for different fracture-
matrix flow regimes. More precisely, we consider flow along a single fracture from injector to
producer well with porous matrix along the fracture being drained for oil, as illustrated in Fig. 1
(left). The system is solved numerically by an operator splitting approach. The description is
similar to the dual-porosity formulation in that the fracture is considered as 1-dimensional with
a source term relating to the transfer with matrix and that advection is neglected in matrix.
Unlike the dual-porosity formulation, we solve the transport equation for the matrix locally and
do not assume instantly filled fractures. In that sense our approach bears similarities to works
like [14, 21]. A similar geometry was also studied in [58]. The authors discretized the fracture
and implemented matrix imbibition using source terms with memory functions. They obtained a
simplified 1D model for the 2D system which could account for the diffusive nature of capillary
flow and non-equilibrium effects by using an appropriate memory function.

The proposed model allows a qualitative discussion of some questions of practical importance:
(i) How does the fracture network affect the oil recovery? (ii) What is the role of the wetting
state of the matrix? (iii) What is the role of capillary forces versus injection rate? (iv) What
is the role played by volume of fractures compared to volume of matrix? (v) What is the role
of different fluid properties like, e.g., viscosity? To answer some of these questions we derive
relevant dimensionless parameters and investigate the related sensitivity on oil recovery and phase
distribution. In particular, the model allows for a systematic study of the two flow regimes, the
so-called ”filling fracture” and the ”instantly filled” regime reported and discussed in works like
[45, 46]. A scaling number is suggested for characterizing flow in the considered fracture-matrix
system. Numerical simulations are used to support this assumption. Also, analytical solutions are
presented for the situation when the time scale of imbibition becomes small compared to the time
scale of fracture flow. We demonstrate through numerical experiments that the 1D+1D model
converges towards this analytical solution. The analytical solution describes the fracture-matrix
flow when the ”fracture filling” regime is dominating. This represents so-to-say the opposite
situation of what has been studied in works like [12, 31] where analytical solutions have been
derived when fracture is instantly filled with water and takes a constant saturation. A possible
application of the model is to use it for interpretation of lab experiments in simpler fracture-matrix
geometries [45, 46, 24, 19] as well as to test possibilities and limitations of various transfer rate
functions of the form (1).

The rest of the paper is organized as follows: In Section 2 the reduced 1D+1D model is derived
from basic laws well known in petroleum literature. The model is scaled with respect to some
representative parameters to derive dimensionless numbers characterizing the system. In Section
3 we apply the model by varying key parameters, one at a time, to demonstrate their effect on
the distribution of phases and resulting oil recovery. We also demonstrate the validity of the
assumptions made by comparing the 1D+1D model with a discretization of the full 2D model.
The sensitivity study is summarized in a scaling number that characterizes the flow behavior. We
also verify the numerical solution of the model by comparing it with analytical solutions.
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2. System description and modeling

2.1. Transport equations. The transport equations for incompressible, immiscible oil-water flow
in porous rock reads

∂t(ϕso) = −∇ · (ϕvo),

∂t(ϕsw) = −∇ · (ϕvw),
(2)

where ϕ is porosity, si saturation (i = w, o) and it has been assumed that there are no external
source terms. The phase velocities are given by Darcy’s law:

ϕvi = −Kλi[∇pi − ρig∇z], λi =
kri
µi

(i = w, o), (3)

where vi is pore velocity, pi pressure, ρi density, λi mobility, kri relative permeability and µi

viscosity of oil (i = o) or water (i = w). K is absolute permeability tensor, z is positive direc-
tion upwards (opposite the direction of gravity) and g the gravity acceleration constant. The
saturations and pressures are constrained by the following conditions:

sw + so = 1, po − pw = pc(sw), (4)

where pc is capillary pressure, which is a known function. Summing the equations for oil and
water,

∂t(ϕ(so + sw)) = −∇ · (ϕ(vo + vw)) = −∇ · (ϕvT ) = 0, (5)

shows that the total Darcy velocity ϕvT = ϕ(vo + vw) has zero divergence, i.e. there is no
source/sink. We introduce the so called fractional flow function defined as

fw =
λw

λw + λo
=

(
1 +

µw

µo

kro
krw

)−1

. (6)

Also define ∆ρ ≡ ρw − ρo. Using equations (4)-(6) we remove the variables pw, po, so and replace
them by pc(sw),vT , fw(sw). The system (2) can then be written into (7) where the change in
storage is affected by an advective/gravitational term and a capillary diffusion term.

∂t(ϕsw) +∇ ·
(
ϕvT fw(sw) +Kg[λofw](sw)∆ρ∇z

)
= −∇ ·

(
K[λofw](sw)∇pc(sw)

)
. (7)

The velocity field vT and sw (denoted s in the following) are the variables that must be calculated.

2.2. Geometry of fracture-matrix system. In this paper we consider a system in the x-y-plane
consisting of a single fracture, surrounded by matrix on both sides in a symmetrical rectangular
geometry, as illustrated in Fig. 1. The fracture is located along the y-axis, has length Ly and
width 2b, while the depth into matrix is Lx. For simplicity flow in z-direction (including gravity)
is discarded. The fracture and matrix domains are given by

Ωf = {(x, y) : −2b < x < 0; 0 < y < Ly},
Ωm = {(x, y) : −2b− Lx < x < −2b, 0 < x < Lx; 0 < y < Ly}.

(8)

The two domains have different properties in terms of permeability, porosity and flow functions.
The outer boundaries of Ωm are closed and the boundary condition for the model is then described
by the no-flow boundary condition: vi · n = 0, where i = w, o, and n is the outer normal to the
boundary of Ωm. The fracture has an injector side and a producer side

Γinj = {(x, y) : −2b < x < 0; y = 0}, Γprod = {(x, y) : −2b < x < 0; y = Lx} (9)

where appropriate boundary conditions are assigned.
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2.3. A simplified fracture-matrix model. We seek a simplified model that can represent im-
portant aspects of the full 2D model (4)–(7) combined with the fracture-matrix domain, as de-
scribed by (8). The model we consider represents a simplification of real reservoirs in different
aspects:

• A single fracture drains oil from surrounding matrix.
• Rock properties (porosity, permeability) are homogeneous within matrix and fracture.
• Advective motion in the matrix is ignored and matrix oil is recovered by spontaneous
imbibition only.

• Average properties of the fracture are sufficient to describe the state near the fracture-
matrix interface and can be used for modeling fluid transfer.

• Capillary motion occurs only perpendicular to the fracture.
• Relative permeability and capillary pressure curves are given respectively for the fracture
and matrix region. Continuity in the capillary pressure at the fracture-matrix interface is
assumed.

We note that real NFRs are described by complex networks of fractures intertangled between ma-
trix blocks of highly varying dimensions and connectivity, as illustrated in [21]: a multi-rate dual
porosity model was used to capture the different time scales of recovery resulting from the block
size distribution. Aside from spontaneous imbibition, the matrix oil can be recovered by gravity
drainage, advective displacement, depressurization and others, see a brief discussion in [17]. Ex-
cluding advection in matrix is a common assumption in NFR modeling (i.e. dual porosity) as the
fracture network usually is much more permeable than the matrix. Depending on permeability
contrast, fracture density and orientation this is not always a good assumption. Neglecting capil-
lary flow parallel with the fracture direction is based on a scaling argument, see Section 2.4, and is
reasonable if the water moves much faster inside the fracture by advection than inside the matrix
by capillary motion. The flow of oil and water at the matrix-fracture interface is characterized by
droplets forming and detaching [20, 19]. Also, if the fracture width is low a liquid bridge can form
across and support capillary continuity from one matrix block to another, see [16] for a discussion.

2.3.1. Matrix region. Consider the matrix domain, Ωm. Advective transport effects are ignored,
i.e., terms associated with the total velocity vm

T = 0 are neglected. The model (7) is then reduced
to the following diffusion equation:

∂t(ϕ
ms) =− ∂x

(
Km[λm

o fm
w ](s)∂xp

m
c (s)

)
− ∂y

(
Km[λm

o fm
w ](s)∂yp

m
c (s)

)
. (10)

2.3.2. Fracture region. Next, consider the fracture domain, Ωf . It is assumed that advection
occurs only in y-direction. From (7) we then obtain the following equation:

∂t(ϕ
fs) =− ∂y

(
ϕfvfT f

f
w(s)

)
− ∂y

(
Kf [λf

of
f
w](s)∂yp

f
c (s)

)
− ∂x

(
Kf [λf

of
f
w](s)∂xp

f
c (s)

)
. (11)

We now consider the fracture as a 1-dimensional line of constant width 2b. The mass transfer with
the matrix is accounted for using a source term qw that is positive when water enters the fracture.
The model takes the form

∂t(2bϕ
fs) =− ∂y

(
2bϕfvfT f

f
w(s)

)
− ∂y

(
2bKf [λf

of
f
w](s)∂yp

f
c (s)

)
+ qw. (12)

In (12) we implicitly assume that the flow within the fracture is sufficiently strong to ensure
a perfect mixing across the fracture width 2b. The source term is defined such that the flux
entering the fracture corresponds to the diffusive flux leaving the matrix region from both sides,
symmetrically. That is,

qw = 2(−ϕvw)|x=0 = 2
(
−K[λofw](s)∂xpc(s)

)
|x=0. (13)

Note that the transfer term is based purely on capillary motion due to a gradient in capillary
pressure between matrix and fracture. The term is evaluated at the interface and must account
for properties of both regions. Combining (12) and (13) we get the following 1D version of (11)

∂t(ϕ
fs) =− ∂y

(
ϕfvfT f

f
w(s)

)
− ∂y

(
Kf [λf

of
f
w](s)∂yp

f
c (s)

)
− 1

b

(
K[λofw](s)∂xpc(s)

)
|x=0. (14)
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Remark 1. The model we formulate represents a combination of ideas employed in works like
[35, 20, 59, 30, 43]. The model boils down to a Buckley-Leverett model for the fracture flow equipped
with a transfer term accounting for mass transfer with the adjacent matrix. The water-oil trans-
port mechanism of the matrix region is described by the nonlinear diffusion equation representing
spontaneous imbibition similar to the one employed in [43, 30, 20]. At the current stage we do
not include modelling of finer mechanisms on the fracture-matrix interface in terms of any droplet
detachment model as discussed in [20] for a laboratory scale model. It is assumed that the coupling
between fracture and matrix can be accounted for through the continuity in capillary pressure at
the interface between fracture and matrix.

2.4. Scaling and a reduced 1D+1D model. We now scale the transport system by introducing
the following dimensionless variables:

x′ =
x

Lx
, x′

f = x′ ϕ
f

ϕm
, y′ =

y

Ly
, t′ =

t

τf
, (15)

where the choice of τf corresponds to the time of injecting 1 fracture volume of water (see below).
The dimensionless parameters and functions we use are

µ′ =
µ

µo
, p′c(s) =

pc(s)

Pc,max
= J(s), b′ =

bϕf

Lxϕm
, λ′

i(s) = λi(s)µo. (16)

We introduce the following reference times:

(i) Advective flow in the fracture, τf =
Ly

vf
T

(s);

(ii) Capillary flow in the matrix, τ c,m =
ϕmL2

xµo

KmPc,maxDm
av

(s);

(iii) Capillary flow in the fracture, τ c,f =
ϕfL2

yµo

KfPc,maxD
f
av

(s).

Note that Dav is a dimensionless average of the scaled capillary diffusion coefficient λofwJ
′(s)

taken over the saturation range where water will flow:

Dav =
1

seq − s0

∫ seq

s0

λo(s)fw(s)
dJ(s)

ds
ds, (17)

seq corresponds to the endpoint for imbibition, s0 is initial saturation. Dav is used to account for
the shape and magnitude of the scaled flow curves by scaling with their average. Note that by
this measure D−1

av λofwJ
′(s) ∼ O(1) for a representative range of saturations.

After scaling, the coupled system (10) and (14) can be expressed in the following form (skipping
prime notation):

∂ts =− α∂x([D
m
av]

−1λm
o fm

w ∂xJ
m)− α

L2
x

L2
y

∂y

(
[Dm

av]
−1λm

o fm
w ∂yJ

m
)

(0 < x < 1; 0 < y < 1)

(18)

∂ts =− ∂yf
f
w − γ∂y

(
[Df

av]
−1[λf

of
f
w](s)∂yJ

f (s)
)
− αβ

(
[Dm

av]
−1λm

o fm
w ∂xJ

m
)
|x=0+

(−2/β < x < 0; 0 < y < 1),
(19)

where we have introduced the following dimensionless numbers:

α =
τf

τ c,m
=

Ly

vfT

KmPc,maxD
m
av

ϕmL2
xµo

, β =
1

b′
=

Lxϕ
m

bϕf
, γ =

τf

τ c,f
=

KfDf
avPc,max

µov
f
TLyϕf

. (20)

It will be assumed that αL2
x/L

2
y << 1 such that matrix capillary flow in y-direction is negligible

(2nd term on RHS of (18) is removed). This is relevant if the water travels faster by advection in
the fracture than by imbibition in the matrix in y-direction.

Also, we assume γ << 1 such that any capillary gradient in the fracture is negligible (this

removes the 2nd term on RHS of (19)). Note that the velocity in the fracture vfT ∝ Kf and
the capillary pressure as included in Df

avPc,max varies with permeability according to Leverett’s

scaling: Pc = σ cos(θ)(
√
K/ϕ)−1J̃ , where σ is oil-water interfacial tension, θ contact angle and J̃
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a scaled capillary pressure function. It then follows that γ ∝ 1

Ly

√
Kf

and will become negligible

for large Kf or Ly, as will be assumed. The resulting system of equations can then be described
as:

∂ts =− α∂x([D
m
av]

−1λm
o fm

w ∂xJ
m), (0 < x < 1; 0 < y < 1), (21)

∂ts =− ∂yf
f
w − αβ

(
[Dm

av]
−1λm

o fm
w ∂xJ

m
)
|x=0+ , (−2/β < x < 0; 0 < y < 1). (22)

Remark 2. The time scale for imbibition τ c,m is most reasonable when the capillary diffusion
coefficient behaves close to its average value. In different works this average value has been used
instead of the full coefficient to simplify the matrix modelling: In [45] this assumption was used
to derive analytical solutions for combined fracture-matrix flow. We solve using the nonlinear
coefficient, but are interested in the average value to account for the effect on the time scale.
Analytical solution for co- and countercurrent imbibition have been developed [38]. In [55, 56]
the authors considered these analytical solutions to scale a variety of lab imbibition experiments.
However, these solutions were constructed for constant saturation boundaries and may not account
for the changing boundary conditions at the interface observed during matrix-fracture flow.

Remark 3. The relevance of the reduced 1D+1D model composed of (21) and (22) will be eval-
uated in Section 3 by comparing with a discretization of the full 2D model. Then the simplified
model will be used to carry out a study of the role played by different parameters like α and β. We
also demonstrate how to obtain an analytical solution of the model (21) and (22) for the limiting
case when α → ∞ (i.e., capillary forces in matrix become dominating) and use this analytical
solution to check the validity of the numerical solution of the 1D+1D model.

2.5. Relative permeability and capillary pressure functions. Introduce the normalized
water saturation s∗ = s−swr

1−sor−swr
, where swr and sor are residual saturation values at which the

phase does not flow during advective displacement. The relative permeabilities are modeled using
Corey type correlations [9] given as

krw(s) = k∗w(s
∗)Nw , kro(s) = k∗o(1− s∗)No , swr ≤ s ≤ 1− sor. (23)

Nw and No are the Corey exponents and k∗w and k∗o are end point values. In the fracture the
relative permeabilities are assumed to be linear:

krw = s, kro = (1− s). (24)

The oil-water capillary pressure curves are defined through a dimensionless function J of the form
pc(s) = Pc,maxJ(s

∗). As a model for mixed-wet media (see Remark 4) we let the imbibition curves
Jm(s) for the matrix be given by the following correlation:

Jm(s) =
a1

1 + k1s∗
− a2

1 + k2(1− s∗)
+ b. (25)

Curves are specified by the parameters ai, b, ki. A brief discussion of this correlation and numerical
parameters are given in Appendix A, see also Remark 5. In accordance with other works [59, 24, 16]
we assume the capillary pressure in the fracture is zero:

Jf (s) = 0. (26)

Zero fracture capillary pressure has been widely employed in the numerical simulation of fractured
reservoirs, however, this remains to be a controversial topic. Different works have been carried
out that involves formulation of the formation, growth, and detachment of liquid bridges causing
capillary continuity between matrix blocks [22, 24, 16, 19]. This may imply that other choices for
fracture capillary pressure are more realistic. In [44, 24] historymatching experiments indicated
more advanced curves.

Remark 4. Mixed wettability means that a rock has a heterogeneous distribution of oil-wet and
water-wet sites at the porescale [50]. A mixed-wet rock has positive values of capillary pressure at
low saturations and negative values at high saturations [8, 56]. The saturation where the capillary
pressure vanishes corresponds to where the rock cannot draw in more water by capillary forces. Rock
wettability is important since higher affinity for water is characterized by imbibition to higher water
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saturations. Relative permeability and capillary pressure are both affected by wettability [6, 7].
Pore scale models can produce saturation curves by specifying pore space geometry and wetting
conditions at the surfaces, see [65, 13, 61, 8]. Using 3D pore network models it was shown [8]
that mixed-wet media with a high fraction of oil-wet sites could have relative permeabilities two
orders of magnitude lower than strongly water-wet media. The authors showed that the different
time scales of imbibition observed in the experimental work [64] could be attributed greatly to this
variation in relative permeability for the different wettability states.

Remark 5. The selected capillary pressure correlation (25) is not a limitation of the model. The
correlation is appropriate for mixed-wet data and does not require any regularization (in the sense
that the function and its derivative are bounded). Known correlations from the literature can also
be applied such as Brooks-Corey [9] and van Genuchten [62] for water-wet media or Skjaeveland
[51] and Masalmeh [36] for mixed-wet media, but they require some type of regularization since
they diverge near the residual saturations. This is easily implemented by modifying the Pc-curves
to have a fixed gradient near the residual saturations such that both the function and its derivative
are continuous. See also [34] for an example of a bounded correlation.

2.6. Initial, boundary and interface conditions. In addition to the transport equations the
system is equipped with initial conditions of the following form:

s(x, y, t = 0) = s0(x, y). (27)

Boundary conditions for the fracture at the injector is given by the composition of the injected
fluid:

s(Γinj , t) = sinj . (28)

The boundary at the producer is treated as a point on a semi-infinite axis, i. e. we can write

s(−2/β < x < 0,∞, t) = s∞. (29)

The boundary at the exterior of the matrix can be assumed to be closed or symmetric. In either
case there is no flow

(λm
o fm

w ∂xJ
m)|x=1 = 0. (30)

At the interface between fracture and matrix we assume continuity in capillary pressure, i.e.,

Jm|x=0 = Jf |x=0. (31)

3. Numerical investigations

The numerical solution procedure that is employed to solve the scaled system is described in
Appendix B. In this section we explore the behavior of the model by considering its sensitivity to
different input parameters.

3.1. Model input. Necessary constant input parameters are given in Table 1. We also require
curves for capillary pressure given by J(s) and relative permeability kri(s) for both the fracture
and the porous matrix, see plots in Fig. 2. Parameters used as input for the matrix functions
are given in Table 2 in Appendix A. The saturation curves of the matrix have been considered
for two cases that we term preferentially water-wet (POW) or preferentially oil-wet (PWW),
note Remark 6. This is represented by 2 different sets of curves: (km,pow

ro , km,pow
rw , Jm,pow) and

(km,pww
ro , km,pww

rw , Jm,pww). The PWW curve set, accompanied by the parameters in Table 1, will
be our reference case. Based on this we calculate the following parameters:

Dav,0 = 0.0120, τf0 = 10d, τm0 = 804d, α0 = 0.0124, β0 = 20,
µw

µo
= 1. (32)

The index ’0’ corresponds to these base input data. α and β are given by (20). Interpretation of
these values will be explained in later sections.

The fracture saturation curves are given by (24) and (26). With µo = µw and linear relative
permeabilities it follows by definition (6) that the flow function of the fracture is a straight line.
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Well spacing, Ly 100m Fracture pore velocity, vfT 10m/d
Fracture aperture, 2b 0.001m Matrix permeability, Km 5mD
Fracture porosity, ϕf 1.0 Oil viscosity, µo 1cP
Matrix porosity, ϕm 0.20 Water viscosity, µw 1cP
Fracture spacing, 2Lx 0.10m Initial capillary pressure, Pc,max 120Pa

Table 1. Constant parameters used for reference case simulations. In addition,
a set of relative permeability and capillary pressure curves must be specified for
matrix and fracture.
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Figure 2. Input curves for capillary pressure (left) and relative permeability
(right). Green curves represent fracture. Two curve sets are considered for the

matrix: preferentially oil-wet (red) and preferentially water-wet (blue). Jf
0 and

Jm
0 denote initial states.

The matrix has been assigned an initial saturation sm0 = 0.10 at which the capillary pressure
takes its highest value, i.e. Jm(sm0 ) = 1. As the fracture has zero capillary pressure, Jf = 0, we

set sf0 = 0.0, since any initial water would spontaneously imbibe into the matrix.
For the numerical examples that follow the model was discretized using Nx = 40 cells along

the matrix and Ny = 120 cells along the fracture. The splitting step was set to 1/100 of the time
it takes to inject 1 fracture volume. This ensures that the advancing water in fracture interacts
frequently with the matrix. See also Section 3.2.9 where we study the effect of these numerical
parameters.

Remark 6. The matrix saturation curves used in the examples (see Fig. 2) are qualitative in
nature and may not give an exact representation of wettability since they are not based on exper-
imental measurements or derived from pore scale simulations. The capillary pressure curves for
the preferentially water-wet set was defined by the ability to imbibe more water than the set termed
preferentially oil-wet. Also, it was assumed that the relative permeability of a phase would be lower
in the set where it was more wetting. This was reported for fractionally wetted media [7] since the
wetting phase would tend to flow through more of the narrow, low-permeable pores.

3.2. Investigations of basic features of the 1D+1D model.

3.2.1. Role of saturation curves. We will compare the base case (having PWW curves) to a case
where the flow curves are given by the POW state as depicted in Fig. 2. As seen from the capillary
pressure curves in Fig. 2, the PWW matrix can spontaneously imbibe water until s = 0.7 while
imbibition in the POW matrix stops when s = 0.2. The characteristics of each set (krw, kro, J) can
be summarized by the capillary diffusion coefficientDm

av and the imbibition potential ∆s = seq−s0:

Dm,pww
av = 0.0120 ∆sm,pww = 0.6, Dm,pow

av = 0.0152, ∆sm,pow = 0.1. (33)
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Figure 3. Role of saturation curves. Left: Water saturation profile in fracture
(after having injected 1 FV) is more retained by imbibition for PWW matrix
than POW matrix. Right: Recovery profile depends strongly on the imbibition
potential ∆s which is greater for the PWW matrix.
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Figure 4. Water saturation (top) and capillary pressure (bottom) along matrix
at y = 0 for POW (left) and PWW (right) matrix. Matrix profiles at y = 0 of
capillary pressure J and water saturation after injecting 0.1, 0.5 and 1.0 RPV of
water (middle). POW matrix imbibes less water than PWW matrix.

Dav is similar in both cases, but more water can imbibe in the PWW case.
Injection of 1 fracture volume (FV) of water is illustrated in Fig. 3 (left). If there is no imbibition

the water front (represented by water saturation in the fracture) will have reached the producer
position. When water imbibes, the water front along the fracture is delayed. Since more water is
retained in the PWW matrix we observe a greater delay of the water front for this case.

The behavior along the matrix (x-axis) at y = 0 is shown in Fig. 4: Due to the high capillary
pressure in the matrix water will imbibe and expel oil back to the fracture. The increasing matrix
water saturation reduces the matrix capillary pressure and imbibition proceeds until it equals that
of the fracture. Because of the decreasing capillary pressure the force drawing water into the
fracture is reduced making the imbibition rate decrease. At a given point the rate of imbibition
depends also on the supply of water and removal of expelled oil as dictated by the transport in
the fracture. Especially, imbibition cannot begin somewhere before the water front has arrived.
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Figure 5. Distributions of water saturation s (up) and capillary pressure J (be-
low) for base case after flooding 0.1 (left), 0.3 (middle) and 0.5 (right) RPV.

For the POW rock a small amount of water is necessary to reach equilibrium in capillary
pressure compared to the PWW rock. This is also reflected in the oil recovery profiles in Fig. 3
(right) after injecting a full reservoir pore volume (1 RPV). This demonstrates a key influence the
capillary pressure has on the oil recovery of the system.

The influence of saturation functions will also be discussed in following sections through the
magnitude of the capillary pressures, the role of viscosity ratio (appearing in f) and the Corey
exponents, which all affect the time scale of imbibition through Dm

av.

3.2.2. Distributions. To illustrate the combined effect of advection and imbibition we present
distributions of saturation and capillary pressure at different times in Fig. 5. Initially the water
spreads into the reservoir in a bellshape. As the front travels further into the matrix the capillary
pressure gradient at the fracture-matrix interface weakens and the imbibition rate goes down.
Thus further down the fracture new imbibition fronts seemingly catch up with the old and a more
uniform imbibition around the fracture develops. It is interesting to compare this model behavior
with experimental results reported in [45] where CT images show a similar type of behavior for
flow in, respectively, a gas-water and oil-water fracture-matrix system.

3.2.3. Validation against full numerical model. Before exploring the model further we want to
check its validity by assessing the following two simplifications that have been made in the 1D+1D
model:

A) Ignore terms related to viscous forces in the matrix (vm
T = 0 in model (7))

B) Ignore capillary pressure gradients in y-direction in the matrix (second term on RHS of
(18))

We compare solutions from the 1D+1D model with solutions from the commercial simulator
Eclipse 100 which solves the full 2D model. The same discretization was used (Nx = 40, Ny = 120).
Eclipse solves the equations for saturations and pressures fully implicitly. Injector and producer
wells are located in respectively the first and last fracture cell.

First, we check assumption A using the base case with POW curves. This set of curves allows
low recovery by imbibition, but high recovery if the matrix is flooded efficiently by viscous forces.
The permeability contrast Kf/Km was adjusted by varying Kf in Eclipse. See Fig. 6.

Secondly, we check assumption B using the base case with PWW curves. We make variations

in the factor (Lx/Ly)
2 appearing in (18) by reducing Ly and vfT (to keep the ratio τf = Ly/v

f
T
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Figure 6. Left to right: Comparison of water distributions after 63 days
(0.3RPV) from 1D+1D model, Eclipse with Kf/Km = 1e6 and Eclipse with
Kf/Km = 1e3. Finally, recovery profiles from Eclipse with different Kf/Km and
the 1D+1D model. Base case with POW curve set was used. Eclipse uses slightly
different colors than the 1D+1D model.

constant). The solution of the 1D+1D model is then invariant since all scaled input parameters
are the same. Results are presented in Fig. 7.

• For appropriate values of Kf/Km and (Lx/Ly)
2 the 1D+1D model and full 2D model

give similar results as seen by water distribution (Pics. 1 and 2) and recovery (Pic. 4),
respectively in Figs. 6 and 7.

• Viscous forces are significant in the matrix and lead to increased recovery as long as the
permeability contrast Kf/Km is low, see Pic. 4 in Fig. 6. At Kf/Km ≥ 1e4 (in this case)
the recovery from the matrix relies solely on imbibition and less oil is produced. In Pic. 3
of Fig. 6 both mechanisms are visible: the near-injector area is swept by viscous forces,
while the area further downstream is produced by imbibition.

• If there is significant capillary flow parallel to the fracture the water can spread faster
in the matrix than in the fracture: As illustrated in Pic. 3 of Fig. 7 the fracture water
front lies well behind the water in the matrix. With less water positioned next to the
saturated fracture (than if such flow was negligible) there is a stronger imbibition rate.
This causes delayed breakthrough as seen in Fig. 7 by a longer linear profile in recovery
(Pic. 4) and a shorter front length (Pic. 3) compared to the case where parallel flow is
negligible (Pic. 1 and 2). The final recovery is however unaffected since it is limited by
the imbibition potential.

• Only when Ly is very close to Lx does capillary flow parallel to the fracture become
significant. That is attributed to the fact that the term in (18) is proportional to the
square of (Lx/Ly). Note also that if α was larger this term would be more significant.

3.2.4. Parameter α: Imbibition vs advection. It was illustrated how capillary forces are important
in terms of the saturation at which the capillary pressure vanishes. However, the magnitude of
the capillary forces is also crucial for the efficiency of the imbibition process.

In order to demonstrate this the time scale of imbibition was varied in the base case by adjusting
the parameter Pc,max to produce different values of α (while keeping β fixed), see (20). From Fig. 8
and 9 we observe:

• If the capillary forces are weak (small α), the water will flow through the fracture while
only the nearest matrix region is affected (left in Fig. 9). This is characterized by early
water breakthrough as seen by the water front in the fracture (left in Fig. 8) and a low
rate of oil production (middle in Fig. 8).

• If the capillary forces are strong (large α), then the injected water is rapidly adsorbed
into the matrix rather than flowing ahead along the fracture (middle and right in Fig. 9).
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Figure 8. Impact of α: The water front in the fracture (left) is more delayed
with greater α. The recovery profile is preferably linear vs time (middle) for large
α and linear vs square root of time (right) for small α corresponding to the ’filling
fracture’ and ’instantly filled’ regimes introduced in [45].

Figure 9. Distributions of water saturation at 0.3 RPV for low (left), reference
(middle) and high (right) values of α. If α is high, imbibition dominates over
fracture flow and the water effectively displaces oil. For low α most of the water
flows through the fracture without entering the matrix.
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Figure 10. Sensitivity of β in the base case. Left: Increased β (at fixed α)
provides more efficient recovery. Right: Impact of fracture width 2b when rate is
constant (α · β fixed).

Strong imbibition therefore implies delayed breakthrough and a longer period of linear-
profile recovery.

• The oil recovery curves in Fig. 8 (middle) are clearly composed of a linear part (vs. time
#FV), and a nonlinear part. These two periods correspond to what is characterized as the
”filling fracture” regime and the ”instantly filled” regime in the work by Rangel-German
and Kovscek [45]. We have plotted the oil recovery curves versus τ0.5f (right in Fig. 8) and
we observe that the ”nonlinear” part, the ”instantly filled” regime, becomes approximately
linear, as reported in [45]. The same authors also observed experimentally a more or less
absent ”filling fracture” regime for the water-oil system which can be explained by a small
value of α in our model corresponding to weak capillary forces.

• In [52] a numerical sensitivity study was performed to describe vertically fractured reser-
voirs. A Peclet number (ratio of time scales for capillary diffusion and residence time)
similar to α was found to be critical for evaluating the recovery efficiency.

• Reducing the rate will give the imbibition process more time per injected volume of water.

In our model we note that a lower rate (given by vfT ) increases α, (see (20)). At a given
amount of injected water (#τf ) this results in higher recovery as seen in Fig. 8. Although
in absolute time a low injection rate may take longer to achieve a given volume of water
imbibed as compared to the high rate case, it represents a more efficient uptake of water
by the matrix. We will later show (Section 3.2.7) that there is a minimum rate at which
there is no benefit of further reduction.

• The rate-recovery phenomenon has also been reported in several experimental studies
[32, 15, 45, 46]. Kleppe and Morse [32] observed in experiments that for a low and high
rate case (differing by a factor of 10), that the low rate case was more efficient on a
pore volume injected basis. Dutra and Aziz [15] later matched their experiments using a
diffusion-type theory to model recovery by capillary imbibition.

3.2.5. Parameter β: Adjusting the fracture width. In this section we discuss the role of β. We can
alter β whereas α is kept fixed (see (20)) by altering the pore volume of the fracture. We keep the
porosity at ϕf = 1, but vary the width 2b. If the matrix and fluid properties are fixed a constant

α implies that vfT remains constant. Then, assume we inject a certain volume of water into the
reservoir. The speed is the same, but if the width has changed also the rate will differ. In the case
of high β (narrow fracture) the reservoir receives less water at a time and imbibition can work
more efficiently. This is demonstrated in the recovery profiles for different β in Fig. 10 (left). The
time is measured in RPV (reservoir pore volumes) since 1 FV (fracture volume) is different in each
case. For larger β recovery is higher at a given injected volume. This behavior is also apparent
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Figure 11. The effect of viscosity ratio µw/µo on the base case (all other param-
eters are fixed): Fractional flow functions in matrix (top left) and fracture (top
middle), the coefficient λm

o fm
w dJ/ds in matrix (down left) and the flow function

derivative for the fracture (down middle). Low water viscosity (compared to oil
viscosity) gives a more efficient oil recovery (right) due to improved imbibition.

from the the system (22) since β relates to how much mass is transferred between the 2 systems.
If β is large we should expect the imbibition source term to be more important.

In Fig. 10 (right) results are shown for an example where the injection rate is kept constant
whereas the width 2b of the fracture is varied with a factor 1/4 and 2, respectively, relative to
the base case. Clearly, a wider aperture gives a higher oil recovery. This was also observed
experimentally in [45]. However, the difference between the three curves is not so large (as in

the case where only β was varied) due to the fact that a constant injection rate implies that bvfT
should be constant. Hence, a wider aperture b implies that β is reduced whereas α is increased as

a consequence of a lower vfT .

3.2.6. Viscosity ratio: adjusting water viscosity. We want to determine the effect of viscosity ratio
on the fracture-matrix flow. The oil viscosity is involved proportionally in the α parameter so we
alter the water viscosity of the system. This only affects the flow functions in matrix and fracture,
fm
w and ff

w. We compare our reference example (with µw/µo = 1) to that of high and low viscosity
ratio (µw/µo= 5 and 1/5).

• As seen from (6) and Fig. 11, decreasing the viscosity ratio µw/µo generally increases the
value of fm

w , ff
w. This correlation has primarily two consequences:

– For low µw/µo the water becomes more mobile compared to the oil and does not
displace oil in the fracture as efficiently. In particular, low saturations will gain speed
(as given by higher f ′(s)).

– The capillary diffusion coefficient λofwJ
′ increases (due to fw) when lowering µw/µo.

Reducing the viscosity of the imbibing water makes the imbibition process more
efficient since the water flows easier.

In an unfractured reservoir a high mobility ratio has a positive effect on recovery in the
sense that water pushes the oil towards the producer in a piston-like manner resulting in
late water breakthrough. In a fractured reservoir, one must also consider that increasing
the water viscosity gives more resistance to spontaneous imbibition as given by a reduction
in the capillary coefficient λofwJ

′.
• As seen from Fig. 12 (upper row) the saturation front in the fracture sharpens with higher
viscosity ratio (µw/µo = 5) and smears more with lower ratio (µw/µo = 1/5). The front
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Figure 12. Sensitivity to viscosity ratio on the base case, while other parameters
are kept fixed. The plots show water saturation in fracture after 0.5FV (left) and
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0.2, 1, 5) when there is imbibition (top) and when not (below). The figures on the
right show the distribution of water after 0.3 RPV for high viscosity ratio (top)
and low (below).

is also smeared by the imbibition process: In the base case with neutral viscosity ratio
µw/µo = 1 the smearing of the front is purely attributed to capillary imbibition (the case
where imbibition is not included has a straight profile, see Fig. 12, lower row).

• It appears beneficial to use a low water viscosity: Although a low mobility ratio gives
the water front in the fracture a high speed compared to the total velocity, the low front
saturations are also the first to imbibe and this reduces the front speed considerably.
Additionally, more of the water has imbibed in the case of lower viscosity ratios (Fig. 12,
upper row). As a result, the front position in all 3 cases is approximately the same. This
is a contrast to the situation without imbibition where oil is displaced more efficiently at
high viscosity ratios and low saturations gain higher speeds when the viscosity ratio is
reduced, see Fig. 12 (lower row).

• Also the recovery profiles in Fig. 11 (right) show that low water viscosity seems to be
a good choice. In Fig. 12 (right) we illustrate saturation distributions after flooding 0.3
RPV of water. As seen, water imbibes faster into the matrix when the water viscosity is
low.

3.2.7. Characterizing numbers. We have observed how recovery depends on some key parameters,
like α, β, capillary pressure and viscosities. To summarize we want to evaluate one number that
can describe the overall behavior, a scaling number. Very simplified, water flows through the
fracture with time scale τf and water imbibes into a matrix section with time scale τm. There
is β∆s times as much volume of water that can imbibe into the matrix compared to the fracture
volume. The ratio of time, denoted ω, required to fill the matrix compared to the fracture should
roughly be given as:

ω = τf/
( τm

β∆s

)
= αβ∆s. (34)

In the following we test the hypothesis that ω = αβ∆s is a useful number to characterize the state
of the system. We make a number of variations of the base case to obtain 5 different values of
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Figure 13. Obtainable recovery vs. water accessible pore volumes. Comparative
test where ω = αβ∆s is constant for 5 values: ωi=0.025, 0.06, 0.15 (base), 0.4
and 1 (i=1,..,5). O and W denote POW and PWW sets. Parameters α, β, ∆s are
varied in 20 tests. ω seems to characterize the flow regime of the fracture-matrix
system. Unspecified parameters are given by reference case.

omega: ω1, ω2, ..., ω5. For each fixed ωi we vary parameters like α, β, and saturation flow functions
(POW, PWW) to take into account different flow scenarios. The values of ω differ roughly by
a factor of 2.5 between adjacent groups. The results are shown in Fig. 13. For comparison
the results are plotted as fraction of obtainable recovery, R/R∞ (where obtainable recovery is

R∞ = 1+β∆s
1+β(1−sm0 ) ) vs injected water-accessible reservoir pore volumes (WARPVs) (τf/(1+β∆s)).

The reason for this visualization is that if no water leaves until all possible imbibition has occurred
and the fracture is full, the recovery will be R/R∞ = 1 after 1 WARPV has been injected. This
allows for direct comparison between different wetting states and volume ratios.

• The different simulations were performed with variations in fracture width, Pc,max, satu-
ration curves (POW vs PWW), viscosity ratio and Corey exponents, resulting in different
α, β and ∆s. Curves with a given value of ω seem to overlap closely with little scattering.

• ω can be used quantitatively to describe the flow regime. The tests show that when
ω ≥ 0.4 water imbibes very efficiently and breakthrough occurs after a large part of the
obtainable oil has been produced. This corresponds to a dominant ’filling fracture’ regime.
When ω < 0.15 the water spends much more time to imbibe than to fill the fracture.
Water breakthrough occurs rapidly and a uniform imbibition occurs as described by the
’instantly filled’ regime where most of the recovery profile follows a square root of time
profile. For 0.15 < ω < 0.4 (roughly) a significant portion of water will imbibe before
water breakthrough and a significant amount of recovery will be made after breakthrough
(a mixture of the two regimes).

• It is not α alone that determines the flow regime. Cases 8, 16 and 17 have similar values
of α, but very different profiles. Also, considering cases 17-20 the profiles are similar, but
the values of α very different.
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• Varying viscosity ratio and Corey exponents affects the time scale for imbibition. As a
nice illustration of how this is captured by Dav consider first test 19 where a high Pc,max

in the reference case results in a high α (and ω = ω5 = 1). Keeping this Pc,max and
increasing the water viscosity and Corey exponents until the calculated ω = ω3 = 0.15
(base value) results in case 13 which fits well with the base case.

• The volume ratio affects the recovery regime. As seen by cases 4 vs. 5 and cases 15
vs. 20 where only the volume ratio is changed, the profiles end up in different regimes
corresponding to the variation in ω.

• The imbibition potential ∆s has a strong impact on the recovery regime. Given test 4 we
changed curve set from POW to PWW to obtain test 10. Note that since Dpww

av ≈ Dpow
av

(see (33)) we can consider both α and β fixed. The change corresponds to a change in
∆s from 0.1 to 0.6 (and a factor of 6 ≈ 2.52 in ω). As seen, the curves fell into different
groups.

• At ω = 1 most of the recovery profile is linear and further increasing ω would not offer sig-
nificant improvement. Lower ω on the other hand quickly results in less efficient recovery.
This result makes sense because if the time to imbibe the matrix takes longer than to fill
the fracture (ω < 1) it is more efficient to reduce the rate. If the time to imbibe is lower
(ω > 1), the matrix will be filled first, before the water breaks through. Using ω = 1 can
therefore be considered as an approximate criteria for the optimal injection rate in terms
of efficiency. For the base case this could be achieved by lowering the rate by a factor of
ω5/ω3 ≈ 7 until 1.4m/d.

• In conclusion, ω seems to be a valid scaling number which incorporates time scales, volumes
and imbibition potential. Note that we have only tested this numerically. Also, the
scattering increased in cases where the diffusion coefficient was more nonlinear, which
indicates that a more general scaling for τm could improve the match. Experimental
validation should also be performed before drawing conclusions.

3.2.8. An analytical fracture-matrix solution. It is possible to draw some conclusions on the be-
havior of the system (21) and (22) as α → ∞. This means that the time scale for imbibition is
much shorter than for advection. Let us denote this limit solution as (sf∞, sm∞) and let y∗(t) be
the position of the water-front in fracture at time t > 0.

Consider the transport equation for the matrix, (21). Divide by α and let α → ∞. Then we
get

∂x([λ
m
o fm](s)∂xJ

m(s)) = 0, (0 < x < 1; 0 < y < 1). (35)

For flowing saturations λm
o fm

w > 0, the conditions (35) and (30) imply a uniform capillary pressure
along the x-axis for a given value of y, i.e. Jm(s) = constant (with respect to space). Similarly,
for the fracture model (22) we get the following condition on the fracture-matrix interaction

([λof ](s)∂xJ(s))|x=0+ = 0, (−(2/β) < xf < 0; 0 < y < 1). (36)

Now, let us consider a position y along the fracture behind the water front, i.e., y < y∗(t). Then,
[λofw](s) > 0 and this implies in view of (35) and (36) that Jf (s) = Jm(s) = constant = 0. Thus,

s = smeq. For y ≥ y∗(t), obviously, sf∞(y, t) = sf0 and sm∞(x, y, t) = sm0 where sf0 and sm0 are the
initial saturations in fracture and matrix. This suggests the following matrix solution sm∞ after a
time t > 0:

sm∞(x, y, t) =

{
smeq, y ∈ [0, y∗(t));
sm0 , y ≥ y∗(t),

x ∈ [0, 1], (37)

where smeq is characterized by Jm(smeq) = 0.

What remains is to determine the fracture saturation sf∞ behind the front position y∗(t) as well
as the front position itself. In the construction of the solution we assume that the frontal fracture
water (low saturations) is adsorbed by imbibition such that the matrix region is saturated behind
the front. The solution can then be described by the Buckley-Leverett solution behind the front.

In the construction of the classical Buckley-Leverett solution the position should be placed such
that mass conservation for the coupled fracture-matrix system is ensured. This gives the following
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mass balance equations (f = ff ):

M inj =

∫ 1−sfor

sfwr

f ′(ξ)t dξ = [f(1− sfor)− f(sfwr)]t. (38)

In light of (37) the mass in the matrix region is given by

Mmatrix = βy∗(t)(smeq − sm0 ), (39)

whereas the mass in the fracture region is given by (when it is constructed as a Buckley-Leverett
solution where s∗ is a front at position ys)

M frac =

∫ 1−sfor

sfwr

y(s) ds = y∗(s∗ − sfwr) +

∫ 1−sfor

s∗
f ′(s)t ds

= f ′(s∗)t(s∗ − sfwr) + [f(1− sfor)− f(s∗)]t,

(40)

where s∗(t) is the front height in the fracture. Then, the mass balance M inj = Mmatrix +M frac

gives the following relations for s∗:

f ′(s∗) =
f(s∗)− f(sfwr)

(s∗ − sfwr) + β(smeq − sm0 )
(41)

and y∗(t) = f ′(s∗)t. Hence, the water saturation sf∞ in the fracture is given by

sf∞(y, t) =

{
s(y, t), y ∈ [0, y∗(t));

sf0 , y ≥ y∗(t),
x ∈ [0, 1], (42)

where s ∈ [s∗, 1− sfor] satisfies f
′(s)t = y. Now we want to compare the numerical solution of the

1D+1D model for large values of α against the analytical solution given by (37) and (42).

• In the first example (left of Fig. 14) we consider the base case. Recall, we have used

sfwr = sfor = 0, sf0 = 0, sm0 = 0.1, smeq = 0.7.

The flow function ff = s describes plug displacement and is given by a front over s ∈ [0, 1].
Imbibition causes the front to be smoothed out and retained, but increased values of α
makes the solution converge to a new front as predicted by the analytical solution. The
front speed becomes 1

1+β(smeq−sm0 ) (fracture lengths per injected FV) corresponding to a

frontal displacement through the area water can displace and not just the fracture.
• In the second example we reduce β to 4 (less volume for imbibition) and let µw/µo = 1/5
corresponding to a mobile water phase. See right plots in Fig. 14. This choice of parameters
implies that the imbibition is less pronounced giving rise to an analytical solution which
is composed of a front characterized by (41) and a rarefaction wave as in the classical
Buckley-Leverett solution.

In both cases the 1D+1D solution seems to converge towards the predicted analytical solution as
α becomes large. Especially, the correct front speeds and front saturations are reproduced. These
two examples also verify that the numerical discretization of the 1D+1D model (21) and (22) as
described in appendix C produce the correct solution.

Remark 7. The problem for which we have constructed the analytical solution corresponds to a
situation where the ”filling fracture” regime is strongly dominating. An experimental observation
of this regime is given in [25] where fractured blocks were flooded and the recovery profile was
essentially linear. It is interesting to note that information about matrix properties are included
in terms of two parameters: β which characterizes the matrix pore volume divided by the fracture
volume and the saturation smeq which represents the zero point of the matrix capillary pressure Pm

c ,
which in turn reflects information about the wetting state of the matrix. One should note that com-
pared to the full system (18) large values of α also suggest more pronounced capillary flow parallel
to the fracture (y-direction). The analytical solution is a good approximation if α(Lx/Ly)

2 << 1
(to ensure negligible capillary flow in y-direction) at the same time as α >> 1 (to ensure fracture
filling regime).
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Figure 14. Comparison of numerical 1D+1D solution when α takes large values
against analytical solution for α → ∞ and Buckley-Leverett. Left: base case
with increased α after 8FV. Right: base case where β = 4 and µw/µo = 1/5 for
increased α after 2FV.
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Figure 15. The effect of spatial discretization (Nx, Ny) (where Nx is number of
blocks along positive x-axis and Ny blocks along the y-axis) seen on the water
front along fracture (left) and along matrix (right) at the center of the reservoir
after 5FV. Base case was used.

3.2.9. Sensitivity of numerical convergence. Different discretizations of the grid were tested to
evaluate the numerical accuracy. The reference case was tested where we compared dividing the
x- and positive y-axis into (Nx, Ny) = (5, 15), (10, 30), (20, 60), (40, 120) and (80, 240) (both block
dimensions are halved between every test). The results are compared in terms of the water front
along the fracture and the imbibition front at the center of the reservoir after 5FV of water have
been injected. Results in Fig. 15 show that the model behavior is sensitive to the spatial discretiza-
tion: On a coarse grid the imbibition front goes deeper into the matrix, i.e. imbibition occurs
on a shorter time scale. This numerically enhanced imbibition results in delayed front movement
and delayed water breakthrough. The numerical error is negligible when using a discretization of
(20, 60) or finer. We have used (40, 120) throughout.

We also consider the frequency of operator splitting. The base setting was 100 splitting steps
per injected FV. This was checked by running the base case with splitting 100, 50, 25, 10 and 5
times per injected FV. Results are shown in Fig. 16. Notably, the numerical solutions seem very
robust with respect to this numerical parameter. Even in the case of 5 splitting steps per FV the
fracture solution seems to focus around the correct curve and the matrix imbibition profiles are
undistinguishable. The profile along the fracture does however obtain a more step-like profile due
to the less frequent interaction.
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Figure 16. The effect of operator splitting frequency (# steps per injected FV)
on the base case seen from water saturation profile along fracture (left) and along
matrix (right) at the center of the reservoir after 5 FV.

4. Discussion and concluding remarks

A relatively simple and transparent 1D+1D fracture-matrix model has been formulated. The
model was then used to demonstrate the role played by parameters like saturation functions, injec-
tion rate, volume of fractures vs. pore volume of matrix, different viscosity relations, and strength
of capillary forces versus injection rate for flow in a fracture-matrix system. Two dimensionless
variables, α and β, have been identified that clearly demonstrate the role played by the different
physical parameters. A scaling number ω was suggested based on the parameters of the model
that seems to correlate well with the regime of oil recovery. It is instructive to try to relate the
model to previous works relevant for fracture-matrix flow. For example, an analytical solution
for spontaneous imbibition has been discussed in the recent works [54, 55, 56]. A main feature
of this solution is that it depends on a situation where the boundary condition is given in terms
of a constant saturation, similar to a laboratory situation where the core plug is surrounded by
a constant saturation. However, this is not the case in the 1D+1D model we consider. A key
assumption in the construction of the 1D+1D model is that the fracture flow implies a varying
fracture water saturation depending on the water injection rate and how much water that has
been lost to the matrix through imbibition. Consequently, as remarked in [56] it is not so clear to
what extent the results (the formulation of the analytical solution, the scaling, and the derivation
of a transfer function) is directly relevant to a setting where the fracture saturation varies.

On the other hand, the 1D+1D model seems more relevant for a discussion of various fracture
flow regimes (the ”filling fracture” and ”instantly filled” flow regime) as discussed in [47, 45, 19,
24, 16]. In particular, we also demonstrate (by numerical experiments) that the 1D+1D model will
converge to a limit solution, which can be found analytically, when the time scale of the matrix
imbibition becomes small, i.e., the ”filling fracture” regime becomes dominating. This represents
the opposite situation of that considered in [31] and also discussed in works like [12, 60], where
analytical solutions are derived when it is assumed that the fracture is quickly filled with water
(the instantly filled regime).

In [12] the authors investigate a dual-porosity model formulation based on using streamlines.
The fracture dominated advective flow is described by 1-D transport along streamlines whereas
fracture-matrix transfer is represented by a source or sink term. The matrix model is given in
terms of an ODE equation which involve a representative saturation (similarly for a concentration
of the reactive agent) for the matrix region. Linear transfer functions similar to (1) were derived
based relying on ideas used in [31]. Analytical solutions valid at early times and late times
respectively, are then derived and compared to the numerical solutions based on a discretization
of the fracture-matrix model. A main difference between this approach and the 1D+1D model we
discuss is that we consider a PDE to represent the imbibition from the matrix region instead of
a transfer term generated from an ODE equation. The main motivation is to ensure that more
details about the imbibition process (how it develops in space and time) are taken into account.
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However, one might envision that we could employ the reduced 1D+1D model and test different
transfer functions like those that have been developed in [12, 31].

In the work [21] the authors develop a multi-rate mass transfer model for two-phase fracture-
matrix flow in a complex geometry. The fracture model includes viscous forces and gravity whereas
the flow in matrix is assumed to be controlled by capillary forces only. It is assumed that fluid
transfer between fracture and matrix and flow in the matrix is due to capillary diffusion only. In
that sense the 1D+1D model we discuss is similar. However, in [21] the diffusion model is based
on a constant diffusion equation (obtained by an averaging of the nonlinear capillary diffusion
coefficient). Hence, the matrix behavior is given in terms of a semi-analytical solution which
allows the authors to simulate a wide range of transfer rates, early time as well as late time
behavior. However, one might expect that some effects are ignored due to the use of a constant
diffusivity constant.

As a final remark we mention that the 1D+1D model could be a possible tool to evaluate
laboratory experiments in simpler geometries where focus is on a more detailed description of the
fracture-matrix interaction [19, 24, 45, 46]. The model is simple enough to allow for more qual-
itative understanding, as reflected by the construction of the analytical solution for the limiting
case when α → ∞. The formulation of the fracture-matrix model and the approach used to solve
it allow us to, in a next phase, take into account effects from fluid-rock chemistry. Preliminary
versions of such models have been developed for interpretation of brine-dependent spontaneous
imbibition experiments on core plugs [4, 18, 26, 63, 66]. However, these models are rather compli-
cated as they involve a coupling between the water-oil transport model and a transport-reaction
model which is able to describe fluid-rock chemistry for seawater-like brines in chalk. In particu-
lar, a number of different ions and minerals must possibly be taken into account. The proposed
fracture-matrix model studied in this work represents a possible framework for systematic studies
of certain aspects of such coupled systems, at least for idealized fracture-matrix systems.

Appendix A. Matrix capillary pressure

A.1. A family of capillary pressure curves. Mixed-wet capillary pressure data is typically
asymmetric around the s-axis and the crossing point depends on the wettability of the system. As
a representation, consider the function

Jm(s∗) =
a1

1 + k1s∗
− a2

1 + k2(1− s∗)
+ b, s∗ =

s− swr

1− sor − swr
. (43)

J is monotonously decreasing and bounded (in function and derivative) if the parameters a1, a2, k1, k2
are nonnegative. Let the endpoints be given such that Jm(0) = A and Jm(1) = B, where A > B
since J is decreasing. Then the parameters a1, a2 are given as

a1 = (A− b) + (A− b)
1

((1 + k2)(1 + k1)− 1)
+ (b−B)

(1 + k1)

((1 + k2)(1 + k1)− 1)
, (44)

a2 = (A− b)
1 + k2

((1 + k2)(1 + k1)− 1)
+ (b−B)

(1 + k2)(1 + k1)

((1 + k2)(1 + k1)− 1)
. (45)

We see that a1, a2 ≥ 0 if A ≥ b ≥ B. The 5 parameters A,B, k1, k2, b can be used to match
experimental capillary pressure data. A,B represent the endpoints at residual saturations. There
are then 3 free shape parameters to fit the remaining data. Especially, k1 and k2 control the
gradient at low and high saturations respectively while b has more effect on the level of the
intermediate part of the curve.

A.2. Parameters for capillary pressure and relative permeability. Different curves are
represented by different choices of function parameters. We assume that J is normalized to the
maximum capillary pressure in the system so that J does not exceed ±1. These extremes are set
at the critical saturations. Therefore A = −B = 1. The chosen set of parameters for PWW and
POW matrix are given in Table 2.
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A B k1 k2 b k∗w Nw k∗o No swr sor
Pref. oil-wet 1 -1 30 40 -0.22 0.7 2.0 0.75 3.0 0.10 0.15

Pref. water-wet 1 -1 30 50 0.20 0.4 3.0 0.9 2.0 0.10 0.25

Table 2. Input parameters for matrix scaled capillary pressure function Jm and
for relative permeability curves krw, kro. A set of parameters is defined for each
wetting state: preferentially oil-wet or preferentially water-wet.

Appendix B. Operator splitting

We will rely on a numerical approach in order to resolve the coupled system (21)-(22). More
precisely, we shall employ an operator splitting approach where the scaled transport system (21)-
(22) is split into the following two subsystems accounting respectively for viscous transport and
capillary driven mass distribution:

• System 1: Flow in the y-direction

∂tsw = 0, (0 < x < 1; 0 < y < 1);

∂tsw + ∂yf
f
w = 0, (−(2/β) < xf < 0; 0 < y < 1).

(46)

When capillary forces are neglected it follows that changes are related to advective flow in
the y-direction only. Hence, the state of the matrix is kept fixed, while the fracture state
changes.

• System 2: Flow in the x-direction

∂tsw = −α∂x(λ
m
o fm

w ∂xJ
m), (0 < x < 1; 0 < y < 1);

∂tsw = −αβ
(
λm
o fm

w ∂xJ
m
)m

|x=0+ (−(2/β) < xf < 0; 0 < y < 1).
(47)

For this case all changes are driven by capillary forces. The entire system changes in time,
but only by flow in x-direction.

For a fully discrete scheme where we solve (46) and (47) in separate steps, we refer to Appendix C.
Note that the above splitting approach corresponds to the so-called dimensional splitting method
commonly used to solve a multi-dimensional problem as a series of one-dimensional problems [33].

Appendix C. Numerical discretization and stability analysis

In the following we describe the discrete schemes used to solve numerically the two subsystems
(46) and (47).

C.1. System 1: fracture flow given by (46). The fracture flow system below

∂tsw + ∂yf
f
w = 0, (−2/β < xf < 0; 0 < y < 1) (48)

is discretized (skipping the ’w’ and ’f’ indices) in the following manner

sn+1
i − sni

∆t
+

fi+1/2 − fi−1/2

∆y
= 0 (i = 1, ..., Ny). (49)

We will use a similar approach as described in [66] to evaluate the fluxes at the cell boundaries.
Define the terms

f+(si) := f(si) + ν1/2si, f−(si) := f(si)− ν1/2si. (50)

Then we get a first order approximation in ∆x by letting

fi+1/2 := 1/2[f+(si) + f−(si+1)]. (51)

By backsubstitution we see that this choice corresponds to a combination of a central discretization
of f and a diffusive term where ν1/2 plays the role of a numerical viscosity.

sn+1
i − sni = −∆t

∆y

[f(si) + f(si+1)

2
− f(si−1) + f(si)

2

]
+ ν1/2

∆t

∆y

[si+1 − 2si + si−1

2

]
. (52)
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The diffusive part has the role of smoothing out fronts and thus limits the gradients, but for fixed
∆t
∆y the diffusion goes to zero with refinement such that the scheme is consistent.

Second order approximation in ∆y is found using the MUSCL scheme. That is incorporated
by adjusting the term fi+1/2 as follows

fi+1/2 :=
1

2

[
f+(si) +

∆y

2
σ+
i

]
+

1

2

[
f−(si+1)−

∆y

2
σ−
i+1

]
(53)

where σ± represent a gradient in f . They are evaluated such that σ+
i = σ(δf+

i−1/2, δf
+
i+1/2) and

σ−
i+1 = σ(δf−

i+1/2, δf
−
i+3/2) where

δf+
i+1/2 =

1

∆y
(f+(si+1)− f+(si)), δf−

i+1/2 =
1

∆y
(f−(si+1)− f−(si)) (54)

and σ is chosen to be the Superbee slope limiter function:

σ(u, v) =
sgn(u) + sgn(v)

2
·max

(
min(2|u|, |v|),min(|u|, 2|v|)

)
. (55)

C.1.1. Stability. For a stable discretization of the given scheme(s) we must have sufficient numer-
ical diffusion and small enough time step. Then we choose ν such that ν − f ′(s)2 ≥ 0 for any
relevant s (see [66] for details). Choosing ν too large will however smear out the solution so the
optimal choice is to set ν = sups(f

′(s))2 for the relevant range of s. Regarding the time step
we use the following CFL-condition: sups |f ′|∆t

∆y < 0.5 associated with a standard forward Euler

discretization in time.

C.1.2. Boundaries. At the injector boundary of cell 1 we use the information of the injected fluid
as given by sinj . We therefore set f1/2 = f(sinj). At the producer boundary we assume the flux
out is given by the last cell only such that fNy+1/2 = f(sNy).

C.2. System 2: Capillary flow in the matrix given by (47). We recall the scaled form of
the system with exclusively capillary flow:

∂ts = −α∂x(λ
m
o fm

w ∂xJ
m), (0 < x < 1; 0 < y < 1);

∂ts = −αβ
(
λm
o fm

w ∂xJ
m
)
|x=0+ , (−2/β < xf < 0; 0 < y < 1).

(56)

This system is convenient to consider relatively the dimensionless time t∗ = t
τm , i.e. t∗

t′ = α where
t′ is given in (15). Consequently, the model (56) relatively t∗ (where we skip the ∗ superscript)
takes the form

∂ts = −∂x(λ
m
o fm

w ∂xJ
m), (0 < x < 1; 0 < y < 1);

∂ts = −β
(
λm
o fm

w ∂xJ
m
)
|x=0+ , (−2/β < xf < 0; 0 < y < 1).

(57)

The fracture is connected with the matrix by letting the fracture be cell 1 in the grid we con-
sider and then let cells 2, ..., Nx + 1 cover the Nx cells of the matrix with the lowest numbers
corresponding to cells closest to the fracture.

At first, we consider the discretization of the first equation of (57) in the interior domain of the
matrix (first equation):

sn+1
i − sni

∆t
= −

(λm
o fm

w )i+1/2
Jm
i+1−Jm

i

∆x − (λm
o fm

w )i−1/2
Jm
i −Jm

i−1

∆x

∆x
(i = 3, ..., Nx). (58)

We need to evaluate the coefficients at the boundaries by means of an appropriate averaging. It
can be seen by inspecting the equations that a cell receives water from another if it has higher
capillary pressure (since the coefficients are nonnegative). We want to shape the coefficients so
that water does not move from a cell with residual water saturation and does not enter a cell
(thus displacing oil) with residual oil saturation. This is accomplished by the choice of an upwind
formulation, in the sense that the coefficients depend on the direction of which the flow of water
is going:

(λof)i+1/2 = [(λo)i+1fi]max{0, sign(Ji+1 − Ji)}+ [(λo)ifi+1]max{0,−sign(Ji+1 − Ji)}. (59)
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Consequently, the following features are ensured to hold:

• If Ji+1 > Ji: In this case (λof)i+1/2 = (λo)i+1fi and so water leaves from cell i to i+ 1 if
i has more than residual water and i+ 1 has more than residual oil.

• If Ji+1 < Ji: In this case (λof)i+1/2 = (λo)ifi+1 and water leaves i + 1 to i if i + 1 has
more than residual water and i has more than residual oil.

At the first cell in matrix region we have the following scheme:

sn+1
2 − sn2

∆t
= −

(λm
o fm)5/2

Jm
3 −Jm

2

∆x − (λof)3/2
Jm
2 −Jf

1

∆x/2

∆x
, i = 2, (60)

where we have used that ∂xJ
m|x=0+ ≈ Jm

2 −Jf
1

∆x/2 . At the last cell we can assume a closed boundary

such that (λof)Nx+3/2 = 0 or we can assume a symmetric system beyond this point. In that case
JNx+2−JNx+1

∆x = 0 and the result is the same: a zero flux across the boundary.

sn+1
Nx+1 − snNx+1

∆t
= −

0− (λm
o fm)Nx+1/2

Jm
Nx+1−Jm

Nx

∆x

∆x
, (i = Nx + 1). (61)

Regarding the discretization of the fracture cell represented by the second equation of (57) we
have

sn+1
1 − sn1

∆t
= −β(λof)3/2

Jm
2 − Jf

1

∆x/2
, (i = 1). (62)

This is consistent with the discretization in (60) of the flux at the interface between fracture and
matrix.

C.2.1. Stability. For simplicity reasons we employ a forward Euler discretization in time. For
stability we require that the capillary pressure does not oscillate as it is supposed to behave in a
diffusive manner and drive the changes in saturations. Water will flow towards higher capillary
pressure and decrease the capillary pressure as a consequence. But if so much water is transported
during a time step that the capillary gradient changes, then water will flow back where it came
from and this is observed as oscillations in both saturation and capillary pressure.

Consider 3 adjacent cells i − 1, i, i + 1 in the matrix. The capillary pressure in cell i should
not change more from one time step to the next than half of the maximum difference in capillary
pressure between i and the neighbor cells. Then no adjacent points will ever pass each other in
terms of capillary pressure.

|J(sn+1
i )− J(sni )| ≤ |J ′(s)|max|sn+1

i − sni |

= |J ′(s)|max
∆t

∆x
|(λof∂xJ)i+1/2 − (λof∂xJ)i−1/2|

≤ |J ′(s)|max
∆t

∆x2
2max(λof)max(|Ji+1 − Ji|, |Ji − Ji−1|)

≤ 1

2
max(|Ji+1 − Ji|, |Ji − Ji−1|).

In conclusion this leads to ∆t ≤ ∆x2

4(λof)max|(Jm)′(s)|max
. A similar derivation at the matrix-fracture

transition yields a stability criterion of the form: ∆t ≤ min ( 2
β ,∆x)∆x

2

4(λof)max(|(Jf )′|,|(Jm)′|)max
.
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