ASYMPTOTIC STABILITY OF THE COMPRESSIBLE GAS-LIQUID
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ABSTRACT. In this paper we are concerned with the initial-boundary value problem of the
compressible gas-liquid model with well-formation interaction and gravity. The asymptotic
behavior of solutions to steady states is established. Also the time-decay rates of perturbed
solutions in the sense of L°° norm are obtained under some suitable assumptions on the
initial date, if v > 1 (associated with pressure law of gas) and 3 € (0,3] N (0,7 — ay) N
(0, “’*%] where 3 characterizes the viscosity coefficient and a describes the mass decay
rate at the boundary. A main purpose of this work is to clarify the role played by the
well-reservoir interaction term. The analysis demonstrates that it is essential to take into
account information about sign as well as size of the interaction term in order to obtain
time-independent estimates when it operates in combination with gravity.
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1. INTRODUCTION

The compressible drift-flux gas-liquid model is often used in chemical engineering to de-
scribe the dynamics of two-phase flow, see [1, 2]. This model is different from the two-fluid
model in the sense that it has one mixture momentum equation instead of two separate
momentum equations. We refer to [10] for more on the relationship between the two-fluid
and drift-flux models. In this paper, we are concerned with a gas-liquid model where gas is
allowed to flow between a wellbore and surrounding formation governed by a given function
A(z,t). From an application point of view, A(z,t) > 0 means that there is inflow of gas
along the well and A(xz,t) < 0 means that there is outflow of gas along the well, see [4]. More
precisely, the corresponding model can be written in Eulerian coordinates as

on + Oy [nu] = nA(z,t),
Oym + Oz [mu] = 0, (1.1)
O[(m 4 n)u] + 9x[(m + n)u?] + 0, P = gm + 0y[ed,u], a(t) <z < b,
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where the free boundary function a(t) satisfies
da(t)

dt
a(0) = a.

Here, n = n(z,t) > 0, m = m(x,t) > 0 respectively are masses of the gas and liquid.
u = u(x,t) denotes velocity of the phases. Initial data is given as

m(z,0) = mo(z), n(xz,0)=mno(x), u(z,0)=muy(x), (1.2)
and the boundary conditions
n(a(t),t) =0, m(a(t),t) =0, u(b,t)=0, t>0. (1.3)
The pressure function P(-,-) and viscosity function £(-,-) depending on the masses satisfy
n v Konf
P =K =—— K, K . 1.4
(n)m) 1 <pl—m> P 5(n7m) (pl_m)ﬁJrl) 1, 2>0 ( )

Throughout this paper, we take K1 = Ko = 1, for the sake of simplicity only. Note that we
use a slightly simplified gravity term which only depends on the liquid mass. For this case,
as we shall show later, the corresponding steady equation is similar to the steady equation of
1D compressible Navier-Stokes equations with gravity, which has been studied in [3, 28, 30].

n
n+m
reformulate the two-phase model (see Section 2) becomes time-dependent.

It was Evje who first studied the model (1.1) without gravity in [4]. He proved the global
existence of the weak solutions to the initial boundary problem when the viscosity was taken
ase(n,m) = %,
of the model (1.1). In particular, it is desirable to get a more detailed understanding of how
the stability properties of the model are possibly influenced by the interaction term A(zx,t).
We give a partial answer to this by exploring the model in the framework used in [3, 28, 30]
for studies of single-phase Navier-Stokes equations. It turns out that both size and sign on

A(z,t) play a key role in the analysis to show convergence to the steady state. Moreover, a

which is used to

However, the gas mass is not conserved and the variable ¢ = ¢(z,t) =

g€ (0, %) However, it is interesting to clarify the long-time behavior

decay rate associated with A(x,t) is required to estimate convergence rates. The case with
more general choices of A(z,t) is left for future study. However, we refer to [9] for a result
with a more general interaction term A(z,t) but where the effect of gravity is not included.

Before we proceed we will briefly describe some previous works on the gas-liquid model.
There have been extensive investigations into the simplified gas-liquid model. In the 1D case,
it takes the following form,

On + Og[nug| =0,

Oym + Ox[may] = 0, (1.5)
8t [mul] + 8:1: [mu?] + axP = _fm3ul|ul‘ +gm+ agc [Eaxumix]a Umiz = Qglg + aquy,
where ay + oy = 1. For the simplified model obtained by assuming u; = v, = v and

neglecting frictional force —fm3u|w;| and gravity gm in (1.5), there has been a number of
research results where the viscosity function e(n, m) is taken different forms. First of all, Evje
and Karlsen [7] studied the existence of the global weak solutions when the initial masses
were discontinuously connected to a vacuum for the viscosity function £(n,m) taking the
following form ,
m 1

g(n,m) =e(m) = (o = m)” B e (O, 3> . (1.6)
This result was later extended to the case 8 € (0,1] by Yao and Zhu [21]. When the initial
masses were continuously connected to a vacuum, Evje, Flatten and Friis [11] also obtained
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the global existence and uniqueness of weak solutions for the viscosity e(n,m) taking the
following form

f
e(n,m) = (= m)T g e <0, ;) . (1.7)

Taking viscosity as a constant, Yao and Zhu in [23] obtained the global existence of weak
solutions where the initial masses were continuously connected to a vacuum. With regard
to asymptotic behavior, Liu and Zhu in [18] showed that the masses n and m tend to zero
as time goes to infinity, moreover, they obtained a stabilization rate estimates of the mass
functions for any § > 0. Later, by assuming u; = u, in (1.5), Friis and Evje in [8] proved
the existence of global weak solutions to the initial boundary value problem of (1.5) with
initial data (1.2) and boundary conditions [p(n,m) — e(n, m)mug](0,t) = 0, u(l,t) = 0
when the viscosity £(n,m) was taken the form (1.6). Recently, Fan, Liu and Zhu in [12]
considered the long time behavior of the weak solutions to initial boundary value problem
of (1.5) by overcoming the difficulties which came from the frictional force —fm3ulu|. For
the case ug # w;, Evje in [5] obtained the local existence by neglecting external forces like
friction and gravity. Furthermore, the model has also been studied in Eulerian coordinates
with the simplified momentum equation and constant viscosity coefficient [6]. For a similar
result where the model is studied in a 2D setting we refer to [22]. See also [24] for a result on
blow-up phenomena of the 2D gas-liquid model. We remark that the main tool in obtaining
the above results is the introduction of a suitable variable transformation by which one can
use ideas and techniques similar to those used in [25, 26, 27] on Navier-Stokes equations.

In this paper we rewrite our problem into (2.5)-(2.7) by using the transformations (2.4)
and investigate it in the framework of [3, 12, 28, 30]. Main observations we would like to
highlight from the analysis are:

e Size and sign of A(x,t) appear to be crucial to obtain the energy estimate Lemma 3.1
which allows us to control the estimate of the fluid velocity. Similarly, both size and
sign of A(z,t) are exploited in the proof of the time-independent upper and lower
bounds of ;%-@Q, see Lemma 3.2, which plays a very important role in studying the
long-time behavior of =@ and u, as expressed by Theorem 2.1.

e In order to prove an estimate of the rate at which the mass-related variable ;== @Q tends

to lf‘joo Qo and velocity u tends to zero, as expressed by Theorem 2.2, it is necessary

to give more information about the rate at which the interaction term A(zx,t) will
tend to zero in an averaged sense, see condition (2.21) for the precise statement.

Many studies have been made for the asymptotic behavior of Navier-Stokes equations with
density-dependent viscosity and vacuum. For the case without external force, Guo and Zhu
in [13, 14] gave the asymptotic behavior and decay rate of the density function p(z,t) when
the initial density was continuously connected to a vacuum. Zhu in [29] investigated the
asymptotic behavior and decay rate estimates on the density function p(z,t) by overcoming
some new difficulties which came from the appearance of boundary layers when the initial
density was discontinuously connected to a vacuum. In [13, 14, 29], the auxiliary function
w(z,t) introduced by Nagasawa in [16] was used to investigate the decay rate of p(x,t). For
the other case with gravity, under some assumptions on the initial data, Zhang and Fang
in [28] proved that the solution converges to the stationary states as time goes to infinity
provided 6 € (0,7—1)N(0, 3] and v > 1. The stabilization rates were also estimated in several
norms. Duan in [3] generalized part result in [28], and showed that the solution converges to
the stationary state in the sense of integral when v = 2, # = 1. Recently, Zhu and Zi in [30]
improved the results in [3, 28] in the sense that 6 € (0,7 — 1] N (0, 3].
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We conclude this section by stating the arrangement of the rest of this paper. In Section
2, the system is transformed into a more simple one, then we give the definition of the weak
solution and state the main results. In Section 3, we derive some crucial uniform estimates for
studying the asymptotic behavior and the decay rate estimates. In Section 4, the asymptotic
behavior of weak solution will be given. In Section 5, we will establish stabilization rate
estimates of the solution as time tends to infinity.

2. FORMULATION OF PROBLEM AND MAIN RESULTS

To solve the free boundary problems (1.1)-(1.3), it is convenient to convert the free bound-
aries to the fixed boundaries by using Lagrangian coordinates. To do this, let

fz/ m(y,t)dy, T=t.
a(t)
Then the free boundaries * = a(t) and x = b become { = 0 and & = f;(t) m(y,t)dy =

f; mo(y)dy by the conservation of mass, where f; mo(y)dy is the total liquid mass initially.

We normalize f; mo(y)dy to 1. Hence in the Lagrangian coordinates, the free boundary
problem (1.1)-(1.3) can be transformed into the following fixed boundary form,

nr + (nm)ug = nA,
mr +mug = 0, (2.1)
(m +n)ur + m(P(n,m))e = —unA + gm + m(e(n, m)maug)e.
Initial data is given as,
n(§,0) = no(§), m(§,0) =mo(§), u(§,0) =wuo(§), & €10,1], (2.2)
and boundary conditions,
n(0,7) =0, m(0,7) =0, u( 0, 7>0. (2.3)

1,7) =
In the following, we replace the coordinates (£, 7) by (z,t). Introduce the variables,
m

Q(m) =

n+m’ pL—m

n

CcC =

> 0. (2.4)

From the first two equations of (2.1) we get
Us
n+m (n+m)?

= (me +mnt) = c(1 —c)A,

and

Pl pLIm 2
T —m2 T T —mp2 ~PQ(m) s
Then we obtain
e =c(l—c)A,
2 _
Qt —i]j PlQ Uy = 07 (25)
c
(m)ut + P(Ca Q)ac = _U<1 — C>A + ax(E(Ca Q)&Cu) + 9,
with
P ¢\ 1
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and
Be - (+2) @
U —c '
The boundary conditions are given as follows,
c(0,t) =0, Q0,t)=0, wu(l,t)=0, (2.6)
and the initial data
C(ﬂj‘,O) = CO(m) >0, Q(CL’,O) = Qo(l‘) >0, U(LB,O) = UO(I‘)? S [07 1] (27>
c

Here we have used o
m
tions (2.4).
Throughout this paper, our assumptions on the flow rate function A(x,t) and the initial

1 , and ¢p, Qo are given from [ng, mg] according the transforma-
—c

data are as follows:

t
(A) / IAC, $)ll (o ds < Ceo, A(z,t) <0, |A(z, )] < C, ¥ (2,) € [0,1] x [0, +00),
0

¢
L A By + 11 8) e o) < €
(Ay) There are positive constants K1, Ko, K3 and K4 such that
Kiz® <my(z) < Koz < p; and K3£L‘% < ng(z) < K4x%, where o < %
In particular, this 1mphes that there exist positive constants C1, Cs, such that

co(x n o 1 1
I—OC((]()Z‘) = mi(; ~ xnf ) QO = Pl x-, C’l‘T’”Y é 1— C()(.I QO( ) S 021:77 and
0 < inf co(z), sup co(z) < 1;

1‘6[0,1] 336[0,1]

(A3) ug € Hl(ﬁ[O7 1]; ,
(49 ((v25)" Qb ue) e (o), o5 ((125Q0) - (v @))€ 201

Under assumptions (A1)-(A4), we will study the asymptotic behavior of 1< Q and u provided

that the global weak solution to the initial boundary value problem (2. 5) (2 7) exists. In the
Lagrangian coordinates, the definition of the weak solution to (2.5)-(2.7) can be stated as

follows:

Definition 2.1. (Weak solution) The function (c(x,t), Q(x,t),u(x,t)) is called a weak
solution to the initial boundary problem (2.5)-(2.7), if

¢, @ € L([0,1] x [0,00)) N C([0,00); L*(0,1)), (2.8)
u € L2([0,1] x [0,00)) N C2([0, 00); L2(0,1)), (2.9)
(1 i C>ﬂQ1+5ux e L>=([0,1] x [0,00)) N L2(]0, 00); H'(0,1)). (2.10)

Furthermore, the following equations hold:
g =c(l—0c)A, ae.,
Qt + pleuCE = 07 a.e.,

/ / { 2ot <<1iCQ)7 - <1C_C>BQ”%> bu +g¢} dwdt

+ /O 1 ( : f“C(J) (2)¢(x,0)dz = 0,

for any test functions ¢(x,t) € C§°(Q) with Q = {(z,t) : 0 <z <1, t > 0}.
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Remark 2.1. (Existence of the global weak solution). To our knowledge, by using the
standard line method (see [4, 17, 28] for example), it is easy to obtain the global existence of
the weak solutions to (2.5)-(2.7). The details are omitted.

As in [4], we can solve function c(z,t) from the first equation of (2.5), which will be used
frequently later. Based on the assumptions (A;) and (Asz), we can also list some properties
of ¢(x,t).

Proposition 2.1. Under the conditions of Theorem 2.1, it holds that for 0 < x <1, t >0,

1 i(iéai?t) = ioz()x) exp (/OtA(x,s)ds> . (2.11)

Based on the assumptions on A(x,t), we have the following properties

0< inf e¢(z,t), sup c(z,t) <1. (2.12)
z€[0,1] .736[0,1]

We denote co () to be the steady state of ¢(x,t). According to (2.11), coo(z) should be
defined as following,

Cool T colx “+o00
e T eXp( 0 A“”S)dS) , (2.13)

and A(z,t) <0 implies that
co(z) = ez, t) > coo(x). (2.14)

Con Qoo) (), 0) be the stationary solution of equations (2.5), and ( —— Qoo> ()

Let (7 .

is given by the following equations:

5
<1gocooo Qoo) =9,

(150500 Qoo)x(o) =0. (2.15)

Then

(12 0x) (0 = (e0)*. (2.16)

1—co

We refer to (2.13) for a characterization of coo ().

Theorem 2.1. Under the assumptions (A1)-(As), v > 1 and B € (0,%] N (0, 2522], let

((%_CQ) (x,t), u(x, t)) be the weak solution to the initial boundary value problem (2.5)-(2.7).
There exists a constant 0 < ey < 1, such that if

1
uoll%2 < eo, / 2173 (Qo — Quo)?® dz < ¢, (2.17)
0

then we have the following asymptotic behavior

i (15,@) )= (120 (@) 2.15)

uniformly in x € [0,1] and

lim sup |u(z,t)] =0, (2.19)
tﬂoome[&l]

for any 0 < § < 1. Furthermore, if we assume further § < v — «ay, then (2.19) can be
improved as

lim sup |u(zx,t)] =0. (2.20)
tHOO:L’E[O,l]
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Theorem 2.2. Under the conditions of Theorem 2.1, assuming that 3 < v — ary, and under
the additional conditions on A(x,t):

(

t
/0 (14 $)JAC, 8)l| (o, ds < C,

t

t +o0
/(; |:1 — eXp <—"}// |’A(’,T>”Loo([0’1])d7'>:| ds S C,

the following estimates hold:
B B
c Coo
((1—CQ> (I—COOQOO> >(.’t)

_1
(-, )l poe (o)) < C(1L+1)72, (2.23)

< O(1+t) 7, (2.22)
£ ([0,1])

and

for allt > 0.

Remark 2.2. Various assumptions on A(x,t) have been imposed as expressed by assumption
(A1) and (2.21). As an example of A(x,t) which satisfies all the assumptions we may consider
A(z,t) in the following form

Aw,t) = 5220,

where €y and & are small positive constants, ¢(z) € WH*°([0,1]) and ¢(x) <0
3. UNIFORM a priori ESTIMATES

In this section, we devote ourselves to some uniform-in-time a priori estimates for the
solutions to (2.5)-(2.7) by classical energy method. The basic energy estimate is carried out
by making use of size and sign of A(x,t).

Lemma 3.1. (Basic energy estimate). Under the conditions in Theorem 2.1, the follow-
ing energy estimate holds:

2, () v s (7)) ]
1 c Q v
“fo o) [ [ (5

SCGo. (31)

v
Proof. Multiplying (2.5), and (2.5); by (ﬁ) Q(m)Y~2 and wu, respectively, summing the
resulting equations and integrating it over [0,1] with respect to z, using (2.15) and the
boundary conditions (2.6), integrating by parts, one gets

d [* 1\ u? 1 c \' . 1 Coo "1

il (=) 5o ammn (7)o a (750 g
1 B

+/ <1 c c> QP uldx (3.2)
0 _

1 1 1 ) ’Y 1 e\
= 2/0 <1—c>u[CA]dx+pl(’y—1)/o <l—c> Q" Adz.




8 STEINAR EVIJE, QINGQING LIU, AND CHANGJIANG ZHU*

Here we have also used the first equation of (2.5). Note that

Ccllt/ol{pz(’yl—l) <1EC>VQ7_1+1<1—COOQ°°> é}dx
:pml_l);i/ol <1iC>WQ71_(1iozoo) Qvl}d;z
e, {(5) e () e
| {(5e) o (5) et
i o () - () T [ () [ e

and

Consequently,
d /1 L, @7 T e N (e N\,
dt \ Jo 1—¢) 2 py—1) [\1l-c¢c 1—ceo
d1 ! Qm Lroe !
M= Q% g —— ) Q'"Fuld
+dtﬁl 0 (1000) a:+/0 <1C> O
1

1 1 v 1 c Y B
“2 (u)*kﬂdﬂmw/o (7) @

o (e s [ () - () o oo

In deriving the last inequality in (3.3), we have also used the sign of A(z,t). Integrating the
above inequality with respect to t over [0, ], one gets,

M)t - () e
fa () [ [ [ () @i
gC/OtIA(s)IILooqo,m /01 {1icu2+ plg_ll) [(1;)7— <1 iozwﬂ}dgﬁ
Q
o (o) S [ () - () ]
+/01;l (1f°‘;oo)v/QO m;fggodhdx. (34)

oo
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It follows from (As2), (2.16), (2.17), and (2.13) that

Qo h — QL
/(1_%0) 7h2 dhdx
/<1f‘” ) Q2100 — Quel|Q — QL
0 Coo

C

.

/ <1 —OO > Q;OQ’Y{Y_l ’QO - Qoo‘de
0 Coo

<c /0 273 (Qy — Qo) dar < Cio,

where £ is between @y and Qo and we have used that Qs ~ . And it follows from (2.13)

and (A;) that
[t (%) - (=) T
o a(y—1) [\1—-co 1 —coo
1 3*1 co Y 400
= l—ex/ Ax,sds}dx
/0 Pl(71)<100> [ Pl (@)
1 co co 71
§C’/ ( > < Qg) ‘1—6_7060‘d$§060.
0 1—C0 l—c()

Using the above estimates, (3.4) and Gronwall inequality, we can get (3.1). This completes
the proof. 0

<C
<C

Lemma 3.2. Under the conditions in Theorem 2.1, we have,

& (12 0x) @ = (15,0) =0 (120n ) @) 35)

where (z,t) € Q= {(z,t) : 0<x <1, t >0}, C3 and Cy are two positive constants, indepen-
dent of t.

B —p
Proof. Let Y(x,t) = (EQ> (x,t) ( ) (z), then due to the first two equations of

(2.5), we have

Yt:ﬁ(lccQ)ﬂ1[<16c)tQ+<1cc>Qt] (1 Q°°>ﬁ
= n ()] (o)

Then substituting (3.7) into (3.6), we have

-8 rz
Y, =BY (r.0)A ~ if ((1 o) [(12.0) d:c)

Qoo)w - Y7,

t (3.8)

+ B (1

Claim: Y (t) < max{l,Yo} + C’(Ceo)% = Cj.
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It suffices to verify the above claim for points ¢ = t5 such that Y (¢2) > max{1,Yy}. By virtue
of the continuity of Y on R™ and the initial condition Y (0) < max{1, Yy} for each such points
(if any), there exists a point 1 € [0, t2) such that

Y (t) > max{1,Yp} for t; <t <t,
and Y (t1) = max{1,Yp}. Firstly, we notice that for any 0 < ¢; < ¢,

to Coo -8 x 1
[om((5mes) [ (an)er) o

t

o )\ TR (3.9)
<C < QOO> T2 sup / < u> dx
1-— Coo t>0 0 1—-c

<C(Cep)*?.
Here we have used (2.12) and (3.1) and the following fact,
-
( Coo Qoo) z? < C,

1—co

which follows from (2.16) and the restriction v > 24 directly. Integrating the differential
equation (3.8) over (t1,t2), and taking into account the choice of the points ¢; and to,

Y(t)) =Y(t1) 4 5 [ ¥(z.9)Alx.s)ds — pf t(( Coo Qm>_ﬂ/ox<1icu> dx) ds

t t 1—ceo

12 =8 5
+ﬂpz/t < — Qoo> [1—Y7]ds

1—cy
to
<max{1,Yo} + Bmax{1,Yy} | A(z,s)ds + C(Cey)'/?.

t1

Since A < 0, the claim holds true.

Next, we estimate the lower bound of Y (x,t). Similar to the estimate of the upper bound
of Y(x,t), one has

Y (t) > min{1, Yy} — 2C(Ceo)? := Cy.
It suffices to verify the above inequality for points ¢t = t2 such that Y (¢2) < min{1, Yy}, for
each such points (if any), there exists a point t; € [0,¢2) such that
Y(t) <min{l,Yp} for t; <t <to,
and Y (t1) = min{1, Yp}. Therefore, we have
to to Coo —p x 1
Y(ta) =Y (t1) + 08 Y (z,s)A(x, s)ds — pi8 ( Qoo> / (1 u) dr | ds
0 —C
t

t t 1—ceo

12 =8 N
+ﬂpz/ < — Qoo> [1-Y7]ds
t1

1—ceo

to
>min{1,Yp} — fmin{1, YO}/ | A(-, 8)|| e ds — C(Ceg)'/?
t1

>min{1, Yy} — 2C(Cep) /2.

Here we have used that for any t; <t < to,
to

N

to to
Y Ads > / min{1, Yp}Ads > —min{l,Yo}/ [A(; )| oo (j0,17)ds = —C(Ceo)?,
t1 t1

t1

since A <0 and fg IA(, )| oo (j0,1)ds < Cep. The proof of Lemma 3.2 is complete. O
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It is interesting to note that both the size f(f [A(, 8)|l oo (jo,17)ds < Cep and the sign of
A(z,t) are essential in the proof of the upper bound and lower bound of (ﬁ@)

Lemma 3.3. Under the conditions in Theorem 2.1, it holds that

t 1
/ / u?dzds < C, (3.10)
0o Jo

where C is a positive constant, independent of t.

Proof. Since u(1,t) = 0, we have

/|uy y,t |dy

1 3 148 c T2 148
=/ wol(12) @¥ (15) @

1 B > 1 -B 3
§</< C > Q1+ﬁu2dy) </( ¢ > Q—(1+ﬁ)dy>

. \1—c Y . \1—c

VN SRV . . (48 \ 2

§C</m (i) WW@’) (L (i2) (5:9) dy) ‘

It is easy to see from (2.16), (3.5) and Proposition 2.1 that

/ol/w1 <1ic> <150Q> o dydf“C/ / S dyda < C,

provided 8 < 2v — a7y, and

1 1 c \?
/ uldr < C/ <1c> QY Puldz. (3.11)
0 0 -

Using Lemma 3.1, we get (3.10) immediately. This completes the proof of Lemma 3.3.

O

For the next result we must make use of some regularity on A(-,t) relatively time variable.
As stated in assumption (A;) we shall assume that fg | Ae (-, s)||%oo([0 s < C.

Lemma 3.4. Under the conditions in Theorem 2.1, it holds that

1 t rl c B
/ ulda —l—/ / <) Q'Y Pl dx < C, (3.12)
0 0oJo \1—c

where C' is a positive constant, independent of t.

Proof. Differentiating (2.5)3 with respect to ¢, multiplying the resulting equation by u; and
integrating over [0, 1] with respect to =, we have

1d 1/ 1 ) ! c v
i), ()t [ ((750) ), v
3 [t c 9 L c 9 ! c
——2/0 <1_C>Autd:x—/0u<1_c>Autd:E—/Ou(l_c>Atutd:B
1 c B
+/ () QY Pu, | wda. (3.13)
0 1—C

xt
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Using the boundary conditions (2.6) and integrating by parts, we have

1 c v 1 c v
[ ((0) ) e == [ ((7520) ) o
1 c \? 1 c v
:rypl/o (1—c> Q’Hlu:cu:ctdx—'y/o (1_CQ> Augdz, (3.14)

and

1 1 c B
/ ((1 p Q”ﬁ ) wds =~ | ((1) Qwum) tard
(12 -

t

1 1 ¢
=(1+p) pl/ (1 > Q¥ Pulu, tdaj—/ (1> QU842 d
0 — C 0 — C
t c B8
-3 / <) QP Augugda.
0 1 — C

(3.15)

Substituting (3.14) and (3.15) into (3.13), and using Cauchy inequality, we get

1d 1 c
. d 1+52d
; (H) “0(1->Q

t

3 9 9 ! c

- Aujdx — A“udx — Ayupdz
2 1-c o \I—¢

+B Pl ) Q2+ﬂu2uxtd5€ - ﬁ/ (1 > Q1+ﬁAuazuxtd$
0 —C
1
—Ypi / <1 Cf’+ Ug Uzt dT + 7y / < ‘ Q) Augrdz
0 —c o \1—
! 1
< 2 3 2 2
_C/O(\A\Jr\At])(l_C) dw+C/ ] (1 > dw+C/ (1_C>udx
L e \P 8 8
+/ () QHﬁugtdx—i-C/ < > Q% 3u 4da:—|—C/ ( ) QP2 A%dx
2Jo \1—-c —c 1—-c¢

2y—p 1
+C/ (1 _C> QY- 5+1u2da;+c/ (1 ) QZ’Y*ﬁ*lA?dx, (3.16)

[\

=
e
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which implies

1d Y/ 1Y , 1Y e N\ s s
2dt J, (1—c>“td:”+2/0 <1—c) @ gy de
1 1 1 c 1 c
gc/ (Al + | A2) () ufdm+c/ AP () u2dx+c/ ( >u2dac
0 ].—C 0 1—C 0 1—C
! c 20 2v—28 c 7 148, 2 ! c o 1486, 2 2
—i—C/O (1—(:) Q7 (1—0) Q uxdx—i-C'/O (1_C> Q "Pui(Quy ) dx

. 1 c \P 541 2 Ul 1 c c 2y—p-1
+ /0<1_c> Q" uzdr + C| HLoo[o,l]/O (1—c> (1_CQ> dzx

1 1 1 8
gc/ (JA] + | A% <1> ufda:+0/ u2dm+0/ (c> QM Pu2(Quy ) dx
0 ]. — C 0 0 1 —C

1 ¢ B8
0 1—c )

where we have used (3.5). By (2.16) and Lemma 3.1, we get

3 2 -28
(Qui)? = ((1;) Q1+ﬁux> (+.0)
“(rme) (] () (529) - () }
<o) T (), )+ (750) (o))
SC(liCQ>wx/ol[1icut+<1ic>turdx+0
SC/01<1iC)2u§d:c+C.

Here we have used the fact

c —208 1 c 2
( Q> z < C, / < > A%de < C,
1-c¢ o \1—c

which follow from § < % and Lemma 3.1 respectively. Then it follows from (3.17), (3.18)

that
4 2 Yoy 148, 2
1 c B - , ) . 2
<C /0 (1_C> QP uzdz + || Al Loo(o,17) + ([ At 700 (j0,1)) /0 (1_C> wldx
C

1 c B 1

(3.18)
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According to assumption (Ay), 5 < 7-5-%’ and taking care of (2.5)3, using the following fact

o 7_1
<1_COQO>33 a ﬂ

ha CaBia ,3 B
S Cm:‘w fv 74 3fw+ ol Co Qo B QOO
1-— (&) 1-—

), (5 me

we obtain fol u?(z,0)dr < C. Then (3.19), Gronwall inequality, Lemma 3.1 and Lemma 3.3
imply (3.12). This proves Lemma 3.4. O

7

Corollary 3.1. It follows from (3.12) and (3.18) that

1Qua || Loe (0,1]x [0,007) < € (3.20)
where C' is a positive constant, independent of t.

Lemma 3.5. Assume the conditions in Theorem 2.1 hold, and let 8 be a fixed constant.
(1) if 0 > 0, then

[L((50) (20 ) ((10) - (1en) Yo

(ii) if 0 € (0, 258 then

//((1—c> <1— QOOY) ((1_ QOO>_9_<1iCQ>_6>dxds<G

where C' is a positive constant, independent of t.

Proof. We only prove (ii) here, since the proof of (i) is similar to the proof of (ii). Due to
(2.5)3, using the second equation of (2.5) and (2.16), we have

c Y Y x 1 c B 148
(t520) - (2mes) = [ () o+ (52) @
T/ 1 c p
__/0 (1_Cu>tdy_l)lﬂ<1_CQ)t
B
+1( ¢ Q) A
pr\1—c
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It follows that

// ((1—(: > —(iim%)”) <<1f°‘;ono>_9—(1fcc2>_0>dms
- 6/)1//( ) ((1?‘(’;&@%)_9—<1fCQ)_G)dms
LG () ) () s
ol ((1_% >_6—(1fccz)_9) (15.0) Ades

:Il+12+-[37

where

o [ (0) () - (10) e
pzﬁ/ ((1_(;@0) (50 >><1_ Qoo>_6dx
)0< @) (50),

=19+ Il( .
By using (As2), (2.16) and (3.5), one easily gets

1 _
)IP‘ < C/ 25 dr < C, (3.21)
0

provided 6 < 3 + 7.
(2)

Next we estimate I;

Case 1: g #6.
In this case, if § < 3 + ~, similarly to (3.21), we have

pz(ﬁl—e)/o1 <<1icQ>H - <1 fOCOQ())B_Q) de| <

by two cases.

-

Case 2: §=0.
In this case, also by (As2), (3.5) and (2.16), we have

1 1 c co
wl ((550) - (2500 ) o

Hence, if § < 3 + v, we have

1
< C'/ |InCldz < C.
0

-

L] < C. (3.22)
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Now we estimate Iy as follows:

1 Coo -0 c -0 T o1
e () () ) [
1 Coo -0 co -0 o1
+ ((1_COOQOO> (12@) ) [ s

_g o N
// ((1—600 > _<1icQ> >t</0 liCUdy>dxds
=1V + 1,
where
_9 . 0 ;o
‘I(l)’—/‘ 1—(;0o > _<1_CQ) ) /Ol_CUdy> dx
+/0 (<1COOQOO>9_<1COCOQ0>‘))/Oxllcouodydx

1 6 1 1 1 2 % 1 1 2 %
< C/ T a2 (/ < > uzdx> + (/ < ) ugdgc) dz
0 0 1—c¢ 0 1— Co

1 1
< C/ 22 5 de < C. (3.23)
0

Here, 6 < %’y, (A2), (2.16), (3.1), (3.5) and Holder inequality were used.
From (2.5); and (2.5)2, Holder inequality, we have

P (e )9-(11@9) (] ) o
t
:_’”9// (1—c) ([ 2
of ) (e) (]
o[ [(5) e (e ) ([
+/0t/01m% (1iCQ>_9A</O$<1icu>2dﬂc>édmd5
o (259 ) (L () o)
+c/0tHAyLoo([w /leé (1fCQ>6dxds

C, (3.24)

udy) dxds

udy) dxds
c

1

2 2
u) dmds)
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provided 6 < 7_5% Here we have use the assumption (4;), (2.16), (3.1), (3.5) and (3.10).
Next, we estimate I3,

-0 c —0 c B
/ / <1—cOo oo) _<1—CQ> (1—CQ> Adwds
5-0 t L ose
g/ / x 7 Adxdsg/ ||A|]Loo([0’1])/ x 7 drxds < C. (3.25)
0 Jo 0 0

Note that v > 1, a < % and § € (0,3] imply that (0,6 4 ) N (0, W] N (0,3v) =
(0, W] It follows from (3.21)-(3.25) that (é¢) holds. This completes the proof of Lemma

3.9. U

Lemma 3.6. Assume the conditions in Theorem 2.1 hold, then

/O$ﬂ<(1_cz)ﬁ (1= Qm>ﬁ>2dl~
L () () v o

where C is a positive constant, independent of t.

Proof. From (2.5) and (2.16), we get

<<1iCQ>5>m —F <<1 i cQ>ﬁA> + Bpi(E(c, Q)ug)e = 0,

T

and

”<<1—CmQ”>6)f (== Zgoo)”'

Hence, combining these with (2.5), we get

c g Coo p 1
<<1_CQ>J:_(1_600Qw>x+6pll_cu>t
=B B B
+ 0 (1CCQ> <<1CCQ> —<1 Qoo> +ﬂplllcu>
-8
¥—8 =@ B
= Bpiy ! ( . Q> u+Bpg | 1- (1 ) +B<(1C_CQ> A)

1—c\l-c ( Qoo)vﬁ

xT

(3.27)
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1 3y=B—ay B
Multiplying (3.27) by = 27 <<1CCQ> _ (130
xT
resulting equation on [0, 1] x [0,¢], we get

B
) + ﬂplllcu>, then integrating the
x

1 1 3y—B—ay C B B 1 2
2/0 P <<1CQ>1—<1 Qoo> +ﬁpllcu> dx
S R c -8 c Jé] Coo 8 1
—i—’YPz/O /0 z B (1_CQ> ((1_CQ>I—<1_COOQOO>I+ﬁp11_
1 1 3y=p-ay 1 2
:2/0 T 2y <<1—Co > < 1_COUO) dx
—l—ﬁpl’Y// R <<1—c ) <
+ﬁng// " M(<1—c > <
t 1 3v—B—ay c s Coo
+B/0 /0 T ((1_CQ>35—(1_

2
u> dxds
c

Qoo) + ﬁpl

Now we estimate J;—J4 as follows:
First, by the assumption (A44), and Cauchy-Schwarz inequality, we have

JlSC,

1 t 1 CBea y—p3 8 Jé] 1 2
JQ < ’Y,Ol/ / x3’Y 267 = ¢ Q c Q o Coo Qoo —|—ﬁp17u deds
8 l-c 1-c¢ z 1—-cxo 1—c¢
3y—B—ay 7= B 1 2 9
+C/ / <1 > <1 — c> u“dxds
2
1 3’y —ay c B Coo B 1
8’Ypl/ / <1 ) ((1_CQ>x_ (1_0006200) +ﬁpzl_cu> dxds
+C’/ / =g <1 1 ) u’dxds
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s [ (50 () 5]

of [ (e) i (=9) " Y .
()

o] [ (50) 7 ((50) - () oy

+C/0/0W(x,t)<<1icQ>7_<1f°zooQoo>7> ((1_0200(0200) 9—<1ECQ>9>d$ds,

where

It is easy to see that

B=y+20—ay

W(z,t)| <Cx > <C,

provided 6 = %7_5 In the following, we devote ourselves to deal with Jy, which contains
the function A(z,t).

3y—B—ay ﬁ ay c A A 1
J4_ﬁ// <<1_CQ>13_<1_ OOQOO)J: 1_cu>
B B
><<<1C Q) A—( Coo Qoo> A)dxds
-c /), 1—co .
3y—B—ay B ay Is s & 1
+5// ((1—CQ)33<1— QO") 1—c“)

B—y B
« (2 Q) gA+(—Q) A,|dwds=J" + P,
¥ \1—cso 1-c
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1) t 1 3v—B—ay c & g 2
< 0/ ||A||L°°([O,1])/ Tz = (1 Q> - (1 Qoo> dxds
0 0 -c’/), -
R N | c B B
+C’/ / T 2 u Q) A- Qoo A dxds
0 0 1—c¢ 1—c¢ z 1-—
t 1 3y pay & g A ’
<0 [l [ #F ((1550) - (1 Qw) duds
0 0 —-c’/), -
3y—B-ay ﬁ ay c =B c B 8\ 2
[ [ () () (s
t —B—ary B—y 2
+C’/ / :cgw?ﬁv< ¢ Q) ( 1 u> A%dxds
o Jo 1—c¢ 1-c¢
t 1 3y—B—ay c 6 B 2
< C+C/ HA||L°°([0,1])/ x 2 (1 Q) — < QOO> dxds
0 0 —C z 1-—
3y—B—ay g ay c y—03 c 8 8 2
T3 W)l/ / (1—CQ> <1—CQ) B <1—c QOO) dzds,

3y=B—ay c p B 1 2
/HAHLOO [01]/ 2y <<1_CQ>$—<1_ Qoo> —I—ﬁpll_cu> dxds
ﬂ ay c 26-2v
e / Al oepo1 / (12=n)  dss
2
L u> dx
—c

1 Ll syp-an [ ¢ v=h c A A
— 2 —
+87pz/0 /0 Tz (1—(;@) (1—CQ)x (1_ Qoo) +Bpiy
t 1 3v—B—ay c ﬂ_’y c 2ﬂ
2
+C/0 HA:EHLoo[OJ] /0 x 2y (1 — CQ) <1 — CQ> dxds
s s 2
3y—B—ay B ay c Coo 1
<C+C/ ”AHLoo(m)/ <<1 Q> — < Qoo) + Bpi u) dxds
—c - 1—ceo . 1—c¢
2
1 ol sy poay c V=B c p Coo s 1
- 2 - dz.
+8fypz/0 /0 r (1—(;@) ((1—CQ)x (1_cooQoo)x+ﬁpzl_cu z
Here we have used the assumption (A;), (2.16) and (3.5). Taking 6 = %7_’6 in Lemma 3.5
(i), substituting J;-.Jy into (3.28), we obtain (3.26) immediately by using Gronwall inequality.
This completes the proof of Lemma 3.6. O

4. ASYMPTOTIC BEHAVIOR

To apply the uniform estimates obtained above to study the asymptotic behavior of
(ﬁ@) (x,t) and u(x,t), we introduce the following lemma (cf. [3, 28, 20]), and omit the
details of the proof.

Lemma 4.1. Suppose that y € WE(RY) satisfies

loc

y =1+ 2,
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and
n n
ly2| < Zai, || < Zﬁi, on RT,
i=1 i=1

loc

1,---,n. Then

where y1 € WEH(RH), liril y1(s) = 0 and o, B; € LPI(RY) for some p; €
S—100

lim y(s) =0.

s——+00

Proof of Theorem 2.1.

21

Y 1=

At first, we consider the convergence of u(x,t). To this end, motivated by [19], we introduce

a function of t as follows:

B
f(t) = /0 1 (1 f“;oo) Qi Puzdz,

Then by Lemma 2.1 and Lemma 3.1, we get

[Cisena= [ [ (5 fim)ﬁczéjﬁuidxdt
SIWAC
<C

N

It follows from Lemma 4.1 that

1 c B
lim <Oo> QL Putdr = 0.
0

t—o0 1— Coo

Therefore, by Holder inequality, we have for = € [4,1] with 0 < d < 1,

1
/ uy(z,t)dz

‘u(x7t)| =

1 c B %
<C / <°°> QU M2(z, t)dx | — 0,
0 1 — Coo

as t — oo, i.e.,

lim sup wu(z,t) =0.
£—=00 2e5,1]

Furthermore, when ¢ = 0,

1 -B 1
/ < Coo > ng(1+’6)d.”l} < / l‘%_al‘_#d:ﬂ < C,
0 1-— Coo 0

provided 8 < v — . Thus, when 8 < v — a7y, we have

lim sup u(z,t) =0.
£—00 1c0,1]

_c_ c B
T—c 148, 2

— Q TPusdxdt
) () e
Furthermore, by Lemmas 2.1, 3.1, 3.2, 3.4 and Cauchy inequality, we have

//< > 1+52dmdt+/ /< ) 642, dadt < C.
1—cy 1—cwo

SIS

1 Coo % # Coo a
[ () e wen (7=)
1 c B 2 1 c -8

o0 6+1, 2 o0 —

([ o) ([ 52

N

(4.1)

(4.2)

(4.3)
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1—c

Next we consider the convergence of (LQ> (z,t). Firstly, we shall show that (%_CQ) (z,1)

tends to the stationary state (130500 Qoo> (z) in the sense of integral as t — oo. The similar

conclusion for Navier-Stokes equation was obtained in [3, 28, 30] before.
Taking 6 = v in Lemma 3.5 (i), we have

1 c vy Coo A\ 2
/0 ((1—CQ) _(1—COOQ°°> ) dx € L'(RY). (4.4)
On the other hand, it is easy to see that
d [t ¢ v Coo T 2
i) ((70) - (0] ) o
1 c ol Coo vy ¢ ¥ )
/0 <(1 _CQ> - <1—cooQ°°> > (1 _C> O uyda
1 C v Coo 2 c Y
f(=0) - (es) ) (5e) e
1 2v—-p % 1 38 %
C (/0 <1 i C> Q2’Y+116d;[‘> (/0 <1 i CQ) Q1+ﬂu§dm> + C”A(S)HLOO([O71])

C /1 © Q Ql UQdCC % —‘FCHA(S)H oo
0 1 c T L= (]0,1])"

Let y3 = 0 and yy be defined by (4.4) in Lemma 4.1. Clearly, the first term on the right side
of (4.5) is in L?([0, +00)) and the second term in L'(]0, +oc0)). Then Lemma 4.1 yields

‘ 1 c o Co T 2
i [ ((520) - () Yo

<C

+C

IN

IN

Consequently,

| () (e )

e N\ oo 7\ 2 1—c 1—ceo
(=0 (o))
< Q> — (1_00 Qoo> ) dr — 0, as t— oo. (4.7)

Coo
For ¢ € (0,27), we have from (4.7) and Holder inequality that

1 q 1 c Coo 2y %
/ o[ (o rm0) a) ~0 o

c Coo
1—cQ 1—c¢

Qoo
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On the other hand, for ¢ € (27, 00), we have from (2.16) and (3.5) that
q

Loe Coo

|- = o

0 —c 1—c ) )

Le Coo =y c Coo v
_/0 1—CQ_1_CQOQOO (1_CQ_1_COOQOO> dx

1 c Coo 2
< — . .
_c/o <1_CQ 1_%0@00) dz — 0 (4.9)

Hence, by (4.8) and (4.9), we get

(0 oo oo

We are now in a position to show the uniform convergence of (ﬁQ) (z,t). To this end,

— 0, as t — 00, qe€ (0,00). (4.10)
La([0,1])

choosing a positive number k large enough, which is to be determined later, applying Holder
inequality, (2.16) and (3.5), we have by ( Q) (0,t) = <1fc ) (0) =0,

k

0<

(1) ) - (220x) (@)
(0) - (=0 | |((G59) - () ).
(50) (e[ )
(o) () - (e ))
<o([|(59) - (o)
() () - (=e))) .

where n = 3= ﬁ SI=E=%T . Note that

k—1

dy

(=) (e sl (o™ o
1-c¢ 1-— - 1-c 1-—
Now letting 2k — 2 — 4 > 0, we deduce from (4.10), (4.11) and Lemma 3.6 that
N g |k
i [(15.0) @ - (1=-0x) @) =0, (4.13)

uniformly in = € [0,1], and (2.18) follows. This completes the proof of Theorem 2.1.

5. STABILIZATION RATE ESTIMATES

In this section, using the method in [28], we will give the stabilization rate estimates of the
weak solution ((ﬁ@) (x,t), u(x, t)) under the condition 8 € (0,7 —ay) N (0, ] N (0, 5221
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Compared with the corresponding results in [28, 30], the only difference is that we must deal
with the terms involving function A(x,t).

Lemma 5.1. Assume the conditions in Theorem 2.2 hold, we have

1
/0 (uZ—I—xlf?’a (Q—QOO)Z) de < ——, Vt>0, (5.1)

[e) 1 c B
/ / (1+1) (1 C) QY Puldxdt < C. (5.2)
0 0 -

Proof. Multiplying (3.3) by (14 t) and taking integration over [0, ], we get
o [ () at e () - () e
+(1+t)/01;(1f°°%o) /i m_Qv ——>dhdx +/ / (1+5s) (1_> QY Puldxds
s/ot 1Al o (jo,17) (1 + ) /01 {; (1;) u? + plg_ln [(1 _C> - <1 f";mﬂ}dms
1
o (o) [ () - () T
+/011 <1i°<;oo>7/cj mzfzodhdx
L) () - () s
+/0 /0 m<1f°zoo> /i thv dhdzds
<[t b (2225 () () o
s () - (5 e
/ / L (1_%) /i W h2@” dhdads + C,

where we have used Lemma 3.1 and Lemma 3.3. Furthermore, due to (2.11), (2.13) and the
assumption (2.21) we can estimate as follows:

s lGe) - () e

s [ () [ () () e
oo o (50 [mee (0[]
<c /0 t /0 g [1 — exp (—7 / - HA<~,T>quo,de>] duds

< C/Ot [1 — exp (—7 /:OO HA(»T)HLOC([O,MT)] ds < C,

and




COMPRESSIBLE GAS-LIQUID MODEL WITH WELL-FORMATION INTERACTION 25

and o "\ e hw_ngdhd
/0/Opl<1_000> /oo h? !
toel c Y Coo Y
SC/O/OQOOQIQ—QOO\KI Q) —(1_%@%) dzds
t 1 ol Y
sc/o/c;gfrcz—czoo\](lc Q) - (;5,0) |
X
vo [ [Maze-anl|(750) - (720x) fasas
=: A+ B,
where

dxds

1o [ta-(5na) -2
o [[ae-an (r50) [ (155 (155 o
§C{At[faﬁ_a[1—exp(—q:l+awpﬂyTﬂhwqade>]dmds
<c [ [r-ew (=1 [ 146 lmgoayir) | as <

and
B:C/t/lQ;leQool‘( Q>7 <1f°f;w@°°)y
2
_C// ’ ‘(.;2 _Q(OC’Q)(;

T—Coo coo 1—c

<1_cm@oo>‘9—<1iccz>”
“((750) - () ) ((mee) - (50) )

Choose 0 = ary, then (5.1) and (5.2) are immediately obtained from Gronwall inequality and
Lemma 3.5. This completes the proof of Lemma 5.1. O

dxds

X

<g//

Corollary 5.1. Assume the conditions in Theorem 2.2 hold, we have

Lféh+gﬁmwga (5.3)

Proof. The result can be easily obtained by (3.11) and Lemma 5.1 and the details are omitted.

Corollary 5.2. Assume the conditions in Theorem 2.2 hold, we have

/Ot/ol(l +8)93_ﬁ+fw <(1 i CQ)7 - <1 — Qoo)ﬁ/>2d9:ds <C. (5.4)
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Proof. Due to (2.5)3, we have

/Ot/01(1+s)x—ﬁ?°” <(1iCQ>7— <1i°‘;m>7>2dxds
Lo () (50 () )
[ 1o ()~ (2 ()

=J + Jo.

Next, we estimate terms on the right hand side of the above equality. Integrating by parts
with respect to t,

n= [ ((Fe) - (ee) ) ([ ) o
—(141) /lemvm ((1f0(9>7 _ <1i°‘;m@oo>v> (/Ox 1icudy> dz
] (e) - () ) () ) e
Ny S D P

Thus,

= /olxé%am </o1 (1 160%)2@);@
o [ ([ () )
L1 i [ [ (220) (=) Yo

t 1 z 1 t rl |_oBtay c 2y
+C/(1+s)/ / u dy d:cds+/ / (1+s)x v A? Q) dxzds
0 0o \Jo \1—¢ 0 Jo l—c
t ol c B
—l—C/ / (1+s) (> QY Puldxds
o Jo 1—c¢

2v—p 1 2

a 1

—i—C/ / 1+ s)x 1— 25+ v (1 c c) Q27*ﬁ+1 (/ (1 cu) dy) dxds
_ 0 _

<C+C(1+ )/0 273(Q — Quo) da:—i—C// u?dxds

t 1 1 3 2[3"!‘0‘7
+c/ / (1+s)u2dxds+/ (1+S)HA(3>HL00([OJDds/ 25 0y
0 0 0 0

> dxds.
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tort 9_9oy+B 6 c N R c 0 0
[ L () - (e ) () - () o
+C/0t/01(1+s)333_a_37ﬂ </01u2dy> dxds

— 9

(5.5)
where we have used the assumption (As), Lemma 3.1, Lemma 3.3, Lemma 5.1, Corollary 5.1
and 0 = 2(y — ary — #) > 0 in Lemma 3.5 (7).
By using Young inequality and Lemma 5.1, we have

1 t 1 _ Btay I v T 2
J2§4/0 /0 (1+s)z <<1CQ) - <1COOQOO> > dxds
. t ol 1 _ B+ay c \P 13 c \? s,
+ /0/0( +s)x 7 (1_c> Q (1_6) Q" Puzdxds
I _ Btay c gl 7 2
S [arart ((10) - (1) Vawse 6o

Then from (5.5), (5.6), we complete the proof of Corollary 5.2. O

Lemma 5.2. Assume the conditions in Theorem 2.2 hold, we have

1 3_ 2B+ay c 4 s\ * C
T — < — > .
/Om <1_CQ>x <1_ Qoo> x_1+t, Vit>0, (5.7)

and

oo rl 4 3B+ay c B B 2
/O /O(I—i—t)x : ((1_(:@)36_(1_%@00) ) dudt < C. (5.8)

L. 3_26+ay B .

Proof. Multiplying (3.27) by (1 + t)z ~ <ﬁ@) — (1_6
X
integrating the resulting equation on [0, 1] x [0,t], we get

;(1+t)/1x3‘%7” ((1fCQ>5— (1_ Qoo)ﬂ-i-ﬁplll_cu)Qda:
+w:// 1+ ) 32ﬂ+av( > <<1fCQ>i—<1_ Qm>ﬁ+ﬂplli
1 () )

T () e e

B
) +ﬁp111_cu), then
x

2
u> dxds
c
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bt 28+ay c h c A 1
2 3— 28tay
1 _ -
1 c y—B
X(l—c(l—cQ> u) dxds
torl _28+ay c s c p

+6ng/ / (1+s)2” 7 <<1 Q> - < = Qoo> + B

0 0 — C x 1 — Cxo x 1

i (ﬁ@)v—ﬁ
(130500 Qoo)v_ﬁ

ok 32 ¢ ’ Coo ? Bpw c A
+ﬁ/0/0(1+8)$ ¥ ((]—_CQ>I_<1_COOQOO>I+1_C (1—CQ> Al dxds

5
=>
=1

(5.9)
Now we estimate J;—J5 as follows:
First, by the assumption (A4), Lemma 3.6, Lemma 5.2 and Cauchy-Schwarz inequality, we

have
2
L 3y-36-ay 3v—p—ay 1
J1§/$ R (( ) ( oo> +ﬁpz uo) dr < C,
0 1-— C — Cp
2
o ﬁ oy 57—3ﬁ—a7 1
Jo < / / 2y << > ( Oo) + Bp u) dxds < C,
1—c 1—c
8 B I5] ?
3 28tay c Coo oru
J?’—SW’// (1+s)z l—c ( 1— <1—cooQ°°>m+1—c> duds

372B+a7 c v=h 1 \?
1 bt 4_28+ay c 1=h c A Bpiu ’
Sg’m/o /0 (1+s)z™ <1_CQ> (<1—CQ>x_<1— Qoo> + 1, | duds

> u’dxds

t 1 1 2
+C/0/0(1+s)(1_c
c B c 8 B 2
(1—CQ> (<1_CQ>$_<1_ Qoo) +1—c dxds + C,

1 torl _28
S’Ypl/ / (1+5):p3 e
8 o Jo
2
1 bt g_20tar [ ¢ 7=h c b Coo 7 B
Jp < = 1 — dxd
4_8wl/0/0< T )2t (1_CQ> <1_CQ>x (1_COOQOO>I+1_C wds

2

t rl 5 26tar c B~y (ﬁ@)y_ﬁ
+C'/0 /0 (1+s)x 2] (HQ> 1-— ( - )“/*ﬁ dzds

1—coo
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1 bt 3_28+ay c V=8 c g Bpiu ’

o[ [ (20 () (o) )
torl _ Btay ¢ v Coo 72

—l—C/O/O(l—i-s)m g (<l—cQ> —<1_COOQOO>>d:Uds

<1 //1+ s (f g " CQB —Q +ﬂp’u 2dd+C

=g e 1—c 1-c?), [0 ) Ho, ) deds+C

In the following, we devote ourselves to deal with J5, which contains the function A(x,t).

t ol 2B+ ay s p
J5=5/0/0(1+3)1’3 = <<1ECQ> —<1_ Qoo> +Bpig
N 6
X ((1_CQ>xA <1_ QOO) A) dzds
torl 28+ay A g
+ﬁ/0/0(1+s)x3—‘2 <<1icQ> —(1_ Qoo> —i—ﬁpllicu)

B—
X (ﬂ ( Coo Qoo> gA + (CQ> Ax> dxds = Jél) + Jéz),
¥ \1—cx 1—-c

where

) t 1 5 20+ay c B Co B\ 2
B < [l [ o5 ((15.0) - (12m0x) | o
0 0 —C z 1—000 x
t pl 2hta B B
+c//(1+s)g;36?” 1 u(( ¢ Q> A—< Coo QOO> A)da;ds
o Jo 1-c¢ 1—c”/, 1—ceo .
t 1 5 20+an c B 3\ 2
<0 [l +) [ ((150) - (1220w ) dres
0 0 —C z 1—c¢
2
1 t pl 5 2+ay c ¥—8 c B B
o [l 5 (1) ((1500) - 250-) )
t prl - B—y 2
—i—C/ / (1+s)z®" R ( c Q) < ! u) Adxds
0 0 1-c 1-c
t 1 5 26+an c B B\ 2
§C+C/ ||AHLO<>([01D(1+5)/ 25 ( Q) —< Qoo> dads
0 ’ 0 1—-c z 1—-c
2
1 t pl 5 2041 c v—B8 c B B
+8’sz/0/0(1+8)$ v <1_CQ> (1—cQ>z_<1— Qoo> dxds,
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t 1 B
2)< S_M C _ prl
_/0 |AHL°°([0,1])(1+8)/0 x v l—cQ ) 1_ Qoo —1—1 - dxds
t U, 2giay 282y
0 [ Ml as [0 (L2 0n) as
N -8 2
+ ’Yﬂl// (1+5s) 3_2ﬁ+v< ¢ Q) (( > ( oo) +ﬁplu> dxds
]_—C ].— ].—C
1
9 3_2ﬁ+oﬁ
+C/O ”AIHL‘”([O,H)O"'S)/O z 7 (1—0 > ( ) dxds
t 1 B B 2
3 20ten ¢ Coo Bpru
<0 C [ Aoyt +9) [ 275 ((1_,:@)30—(1_%@00);1_6) dads
2
1 t 1 3_2B+0W c =3 c B B
+8wz/0 /0 (1+ )25 <1_CQ> (1_062) - (1_%@%) duds.

T

Here we have used Corollary 5.1, (3.5), (2.16) and Cauchy inequality. Substituting J;-J5 into
(5.9), we obtain (5.7) and (5.8) immediately by using Gronwall inequality. This completes
the proof of Lemma 5.2. O

Lemma 5.3. Assume the conditions in Theorem 2.2 hold, we have

L ¢\’ C

and )
/ / (1 + t)uldzdt < C. (5.11)
0 0

Proof. Multiplying (2.5)3 by (1 + t)u;, integrating the resulting equation over [0, 1] x [0, ],
integrating by parts, we get

t 1 ) P

//(1+t) (11—0) ufdxds%—;(l—i—t)/o <1ic> QHﬁugdx
1 8

// (1+5) < >Auutd:r:ds+;/0 <1i060> Hﬁu%mdx

1 [t c 145, 2 1 t rl ¢ 8 s s
+2/0 /0 <1_C> Q' umdxds—z(l—kﬁ)pl/o /0 (1+s) (1—0) Q>3 dzds

1 B
+;ﬁ/t/ (1 C c> QU3 (1 + 5)Adz
0 Jo -
t 1 v v

+/0 /O (1+s)<<1icQ> - (1_ QOO> )umd:cds

6
:ZK
=1

(5.12)
It is easy to see Ko+ K3+ K5 < C' from the assumptions (A;), (A4), Lemma 3.1 and Lemma
5.1. By using ||Quy||z~ < C and Lemma 5.1, we have

t rl B
K, < CHQUQ,;”LOO/ / (1+s) (1 < c) QP utdrds < C. (5.13)
0 Jo -
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By using Cauchy inequality and Corollary 5.1, we have

K < //1+s
_2// 148

In order to complete the proof of Lemma 5.3, it suffices to estimate Kg of the right-hand side
n (5.12).

K62(1+t)/01 ((éﬂ)v— (1_%@00)7) updz
_/1 ((1—(: Q0>7‘ <1_COOQ°0>V> U0z

/ / ((Lﬂ)v‘ (1_COOQ°°>W) uedrds
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—V/Ot/ol(Hs) (1fc >7Adxds
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+o(1 +t)/01 <<1icQ>V— (1_ QOO)7>2 <1ic>_BQ‘1‘ﬁdx
(e - (men) ) as [

/ / ((1—0 ) (1_ Qw>v>2 <1i6>_6Q_1_ﬁdxds
+/0t/0 (1C_C> Q1+6u§dxds+/0t||A||L°°([0,1])(1+s) /01 (1iCQ>7dxds
+p1 /Ot /01 <1ECQ>7B(1+3) <1c_c)ﬂQ1+ﬂu§dxds

<C+1(1+t)/1 ¢ BQHﬁzd
=Ty o \1—¢ Ua P

(1”)/1 (<1ch>7‘ (1_%@@)52 <1ic>_ﬁQ_1_ﬁd:ﬁ
// ((1—c ) ‘(1_ Q°°>7>2<1ic)ﬁ621ﬂdxds.

urdrds + C/ / (1+5) 2A2 2dxds

U 2dxds + C.

IN

(5.14)
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Here, we have used the assumption (Asz), (As), Lemma 3.1, Lemma 3.2, (2.16) and Lemma
5.1. The rest two terms on the right-hand side of (5.14) can be estimated as follows:

o[ () (o) (i50)

1 oy
<O+ t)/o (Q = Qu)? 2> 52y,

<C(1+1) /01 (Q — Qoo)* 2! 3%

<C. (5.15)

And if we take § = v — 3 — ary > 0 in Lemma 3.5 (i), we have

/t/l(<1i Q)v_ (1_%0@00)7)2<1EC>_ﬁQ_l_ﬂdmds

- (ICCQ Eiw ge <1f6)ﬂc216

(1) (120 ) (1) (1250) s
[((50) () ) (750) - (20x) ) w

O

X

(
A

| /\

Proof of Theorem 2.2.

Choosing a positive number m large enough, which is to be determined later, applying
Holder inequality and (2.16), we have by ( Q) (0,t) = (1f°° ) (0) =0,

(140) @0 - (20x) @
Ge) - (es)
n( [](50) - (r5es)
(L () - () ).

1 2842ay—4v+B8(2m—2
<O +1)7 (/0 BT (R Q- Qw)?) dx)
(5.17)

Taking m = 215°%, then 28 + 20y — 4y + B(2m — 2) = 0. It follows from (5.1) and (5.17)
that (2.22) holds.

m

0<

m—1

dy

(=) (=e) ),

2m—2

[N

_34 268+ay
T de

1
2\ 2
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For the velocity function u(z,t), (2.23) follows from (4.1) and (5.10) directly. This com-
pletes the proof of Theorem 2.2.

Acknowledgements: QQL and CJZ were supported by the National Natural Science Foun-
dation of China # 11331005, the PhD specialized grant of the Ministry of Education of China
#20100144110001, and the Special Fund for Basic Scientific Research of Central Colleges
#CCNU12C01001.

1]
2]

REFERENCES

C.E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005.

J.M. Delhaye, M. Giot, M.L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design
and Nuclear Engineering, Von Karman Institute, McGrawCHill, New York, 1981.

Q. Duan, On the dynamics of Navier-Stokes equations for a shallow water model, J. Differential Equations,
250(2011), 2687-2714.

S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction, J.
Differential Equations, 251(2011), 2352-2386.

S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells, SIAM J. Math.
Anal., 43(2011), 1887-1922.

S. Evje, K.H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential
Equations, 245(2008), 2660-2703.

S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law,
Commun. Pure Appl. Anal., 8(2009), 1867-1894.

H.A. Friis, S. Evje, Global weak solutions for a gas-liquid model with external forces and general pressure
law, SIAM J. Appl. Math., 71(2011), 409-442.

H.A. Friis, S. Evje, Asymptotic behavior of a compressible two-phase model with well-formation interac-
tion, submitted, 2012.

S. Evje, T. Flatten, On the wave structure of two-phase flow models, STAM J. Appl. Math., 67(2006/07),
487-511.

S. Evje, T. Flatten, H.A. Friis, Global weak solutions for a viscous liquid-gas model with transition to
single-phase gas flow and vacuum, Nonlinear Anal., 70(2009), 3864-3886.

L. Fan, Q.Q. Liu, C.J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external
forces, Nonlinearity, 25(2012), 2875-2901.

Z.H. Guo, C.J. Zhu, Remarks on one-dimensional compressible Navier-Stokes equations with density-
dependent viscosity and vacuum, Acta Math. Sin., 26(2010), 2015-2030.

Z.H. Guo, C.J. Zhu, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes
equations with density-dependent viscosity and vacuum, J. Differential Equations, 248(2010), 2768-2799.
Z.H. Guo, Q.S. Jiu, Z.P. Xin, Spherically symmetric isentropic compressible flows with density-dependent
viscosity coefficients, STAM J. Math. Anal., 39(2008), 1402-1427.

T. Nagasawa, On the asymptotic behavior of the one-dimensional motion of the polytropic ideal gas with
stress-free condition, Quart. Appl. Math., 46(1988), 665-679.

D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space di-
mension with nonsmooth initial data, Proc. Roy. Soc. Edinburgh, Sect. A, 103(1986), 301-315.

Q.Q. Liu, C.J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity
and vacuum, J. Differential Equations, 252(2012), 2492-2519.

M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas,
Japan J. Appl. Math., 6(1989), 161-177.

I. Stragkraba, A. Zlotnik, Global behavior of 1d-viscous compressible barotropic fluid with a free boundary
and large data, J. Math. Fluid Mech., 5(2003), 119-143.

L. Yao, C.J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent
viscosity, J. Differential Equations, 247(2009), 2705-2739.

L. Yao, T. Zhang, C.J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous
liquid-gas two-phase flow model, STAM J. Math. Anal., 42(2010) 1874-1897.

L. Yao, C.J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with
vacuum, Math. Ann., 349(2011), 903-928.



34

STEINAR EVJE, QINGQING LIU, AND CHANGJIANG ZHU*

[24] L. Yao, T. Zhang, C.J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J.

Differential Equations, 250(2011) 3362-3378.

[25] T. Yang, Z.A. Yao, C.J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and

vacuum, Comm. Partial Differential Equations, 26(2001), 965-981.

[26] T. Yang, H.J. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations

with density-dependent viscosity, J. Differential Equations, 184(2002), 163-184.

[27] T. Yang, C.J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vac-

uum, Comm. Math. Phys., 230(2002), 329-363.

[28] T.Zhang, D.Y. Fang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity

coefficient, Arch. Ration. Mech. Anal., 182(2006) 223-253.

[29] C.J. Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity

and vacumm, Comm. Math. Phys., 293(2010), 279-299.

[30] C.J. Zhu, R.Z. Zi, Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with

gravity and vacuum, Discrete Contin. Dyn. Syst., 30(2011), 1263-1283.

(SE) UNIVERSITY OF STAVANGER, NO-4068 STAVANGER, NORWAY
E-mail address: steinar.evje@uis.no

(QQL) THE HuBEI KEY LABORATORY OF MATHEMATICAL PHYSICS, SCHOOL OF MATHEMATICS AND

STATISTICS, CENTRAL CHINA NORMAL UNIVERSITY, WUHAN, 430079, P. R. CHINA

E-mail address: shuxueliuqingqing@126.com

(CJZ) TueE HuBEI KEY LABORATORY OF MATHEMATICAL PHYSICS, SCHOOL OF MATHEMATICS AND STA-

TISTICS, CENTRAL CHINA NORMAL UNIVERSITY, WUHAN, 430079, P. R. CHINA

E-mail address: cjzhu@mail.ccnu.edu.cn



