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Abstract We are interested in a viscous two-phase gas-liquid mixture model relevant

for modeling of well control operations within the petroleum industry. We focus on a

simplified mixture model and provide an existence result within an appropriate class of

weak solutions. We demonstrate that upper and lower limits can be obtained for the gas

and liquid masses which ensure that transition to single-phase regions do not occur. This is

used together with appropriate a prior estimates to obtain convergence to a weak solution

for a sequence of approximate solutions corresponding to mollified initial data. Moreover,

by imposing an additional regularity condition on the initial masses, a uniqueness result

is obtained. The framework herein seems useful for further investigations of more realistic

versions of the gas-liquid model that take into account different flow regimes.
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1 Introduction

We are interested in a one-dimensional two-phase liquid (ℓ) and gas (g) model in the form

mt + (vℓm)x = 0,

nt + (vgn)x = 0,

(mvℓ + nvg)t + (mv2
ℓ + nv2

g)x + p(m,n)x = qF + qG + µ(vmix)xx,

(1.1)
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where µ > 0 and

m = αℓρℓ,

qF = −fvmix,

vmix = αℓvℓ + αgvg,

n = αgρg,

qG = −gρmix,

ρmix = αℓρℓ + αgρg,

where f and g are nonnegative constants. The variables involved are as follows: αℓ, αg are

volume fractions, ρℓ, ρg are fluid densities, and vℓ, vg are fluid velocities. This model is supple-

mented with the following constraints (algebraic relations):

p = Cργ
g , ρl = constant, γ ≥ 1, (1.2)

αℓ + αg = 1, (1.3)

vg = Kvmix + S, K, S are constants. (1.4)

The model (1.1)–(1.4) is often referred to as the drift-flux model. Note that by combining (1.2)

and (1.3), we get ρg = ρl
n

ρl−m . Consequently,

p = Cργ
l

(

n

ρl −m

)γ

= p(m,n). (1.5)

The drift-flux model is highly relevant in modeling of various well operations [7]. In

particular, the model has been used for the study of drilling operations. Currently, there is

much focus on development of safe and optimal drilling methods in the context of deepwater

wells. In this setting a typical model problem involves an interesting but complicated interaction

of different physical mechanisms like the balance between the pressure gradient induced by

frictional forces qF and the hydrostatic pressure qG, transition from mixture to single-phase

regions, free gas-liquid interface behavior, and various compressible effects like compression

and decompression. One aspect that requires special attention is the possibility of having a

gas-kick. A gas-kick refers to a situation where gas flows into the well from the surrounding

formation. As this gas ascends in the well it will typically experience a lower pressure. This

leads to decompression of the gas, which can provoke blowout-like scenarios. Clearly, for the

study of such flow scenarios we need a two-phase gas-liquid model that takes into account

compressible effects.

The purpose of this paper is to focus on one aspect of the model (1.1) by making several

simplifying assumptions. More precisely, we first neglect the acceleration terms in the mixture

momentum equation. That is, we consider the simplified momentum balance given by the

following static force balance

p(m,n)x = qF + qG + µ(vmix)xx. (1.6)

The resulting “vanishing Mach number” model, often with µ = 0 and sometimes called the

no-pressure wave model, has been demonstrated to be highly relevant in the context of well

flow scenarios, see [19] and [18] and references therein. The main effect of using the simpler

momentum equation (1.6) is that pressure (acoustic) waves are neglected. However, for many

applications the main interest is the slow transport of volume fraction waves (mass waves),

and not a detailed study of the pressure waves. In the present model the pressure waves are

approximated by infinite velocity waves.
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In this paper we want to explore the viscous dominated model where we also neglect the

friction term qF and assume horizontal flow, i.e., qG = 0. In addition, we restrict to the special

flow case of no slip between the two phases, i.e., vℓ = vg = u. This represents a situation where

the gas is dispersed in the liquid phase such that the two-phase mixture moves with the same

velocity, more or less.

Previous work on the model (1.1)

Development of good discrete methods for solving the compressible gas-liquid model (1.1)

has been a topic for many papers during the last decade [1–3, 6, 7, 11–13, 18–21]. However, it

is only recently that the mathematical properties of this model have been investigated. In [8] a

simplified version of (1.1) was studied. More precisely, it was assumed that the gas and liquid

velocities were equal, no external forces were taken into account in the momentum equation,

and certain gas terms were neglected in the momentum equation taking advantage of the fact

that ρl/ρg ≫ 1. The existence of global weak solutions was then obtained under suitable

assumptions on the initial data. In particular, the result showed that when the initial masses

n0 and m0 do not vanish or blow up (n = αgρg and m = αlρl), then n and m remain bounded:

C−1
T ≤ n(t, ·),m(t, ·) ≤ CT , t ∈ [0, T ], T > 0,

for a positive constant CT . The 1D results [8] are extended to a 2D version of the model in [25].

The main assumption in [25] is that the initial energy is small in a certain sense. The provided

estimates are also strong enough to give the large time asymptotic behavior of the solution. We

also refer to [26] for a result on the blow-up behavior of the 2D gas-liquid model in Eulerian

coordinates.

Studies have also been carried out with the model (1.1) considered in Lagrangian variables

with free boundaries and a viscosity term depending on the masses. A first work in this

direction can be found in [9, 10]. More recently, these studied have been extended to include

the possibility of different fluid velocities [4], well-reservoir interaction [5], and external forces

like friction and gravity [14].

Contributions of the present work

The main purpose of this paper is to explore some other aspects of the two-phase model

(1.1) concerning the existence and uniqueness within an appropriate class of weak solutions.

The model we investigate becomes different than the one studied in [8, 25, 26] since we consider

a steady state mixture momentum equation (1.6). A main motivation for this work is to

establish a framework that possibly can allow for inclusion of important physical mechanisms

that currently are neglected in the model studied in the works [8, 25, 26]. Such investigations

are left for future work.

An important feature of the model we study is that although we apply a simplified linear

EOS for the gas phase (isothermal flow) by choosing γ = 1 in (1.2), the resulting pressure law

p(m,n) for the two-phase mixture (1.5) becomes a nonlinear function. This reflects some of the

additional complexity represented by two-phase over single-phase modeling. Clearly, a potential

difficulty with the model we consider is the singularity m = ρl (i.e. αℓ = 1) in the pressure

law (1.5). This corresponds to a situation where transition to single-phase liquid flow occur.

A main observation is that the assumption of no-slip condition implies that the two masses m

and n are related as n
m = s with s controlled. As a consequence, we obtain pointwise control
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on m and n (lower and upper bounds) which allows us to verify that the pressure p(m,n) is

well-defined.

Equipped with pointwise control on m,n we derive several a priori estimates in Lp and

Sobolev spaces of a sequence of approximate solutions {mk, nk, uk} obtained by applying a

regularization of initial data m0, n0. These estimates yield some basic (weak) convergence

results. However, strong convergence of mk, nk is required to recover the nonlinear pressure law

p(m,n). This is obtained by studying various renormalizations of the approximate solutions

and corresponding defect measures.

An interesting aspect of the model we study is that a (presumably natural) viscous approx-

imation of (2.1) is not easy to analyze using weak compactness and renormalization arguments.

This appears to be due to the fact that our analysis relies heavily on using the simple equation

satisfied by the quantity s := n
m , an equation that is not available in the context of uniformly

parabolic problems. A similar difficulty arises when attempting to prove strong convergence of

upwind-type difference schemes, cf. the discussion in Section 6.

The remaining part of this paper is organized as follows: In Section 2 we present the

compressible gas-liquid model and state the main results. Section 3 contains the analysis

yielding pointwise control on the masses as well as various Lp estimates. In Section 4 the

compactness (convergence) of a sequence of approximate solutions is established. Moreover,

the limit functions are identified as weak solutions of the two-phase model in question. In

Section 5, a uniqueness result is derived under some additional regularity on the initial masses.

Finally, we make some concluding remarks in Section 6.

2 A Viscous Two-phase Model

We focus on a two-phase model in the following form

mt + (um)x = 0, nt + (un)x = 0,

p(m,n)x = µuxx, µ > 0,
(2.1)

where the pressure function is given by

p(m,n) = C

(

n

ρl −m

)γ

, γ ≥ 1. (2.2)

In what follows, we set C = 1, γ = 1, and µ = 1. We may restate the model as

mt + umx = −mp(m,n), nt + unx = −np(m,n).

The main purpose of this work is to establish the global-in-time existence of weak solutions

to the initial-boundary value problem

mt + umx = −mp(m,n), t > 0, x ∈ R
+,

nt + unx = −np(m,n), t > 0, x ∈ R
+,

ux = p(m,n), p(m,n) =
n

ρl −m
,

u(t, x)|x=0 = 0, m|t=0 = m0(x), n|t=0 = n0(x),

(2.3)
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where m0, n0 ∈ L∞(R+) ∩ Lp(R+) for p > 1 and R
+ := (0,∞).

We mention that this system (2.3), along with its analysis, shares some resemblence with

the so-called Hunter-Saxton model

vt + uvx = −
1

2
v2, ux = v,

see for example [22–24] and references therein.

Definition 1 (Weak solution) We call (m(t, x), n(t, x), u(t, x)) a weak solution of (2.3)

provided the following conditions hold:

(i) m(t, x), n(t, x) ∈ L∞
loc(R

+, Lp(R+)), u(t, x) ∈ C([0,∞) × R
+);

(ii) mt + (um)x = 0, nt + (un)x = 0, p(m,n) = ux in the sense of distributions;

(iii) The function u(t, x) is equal to zero at x = 0 as a continuous function. The function

m(t, x) and n(t, x) take on the initial values m0(x) and n0(x) in the sense C([0,∞), L1(R+)).

To establish an existence result for weak solutions, the main challenge is to pass to the

limit in a sequence of approximate solutions in the nonlinear pressure function without relying

on BV or Sobolev-type of estimates.

Theorem 1 (Existence result) We assume that

(i) m0(x), n0(x) ∈ L∞([0,∞)) ∩ Lp([0,∞)) for some appropriate p;

(ii) there are positive constants A1, A2 and B1, B2 such that

0 < A1 ≤ m0(x) ≤ A2 < ρl, 0 < B1 ≤ n0(x) ≤ B2. (2.4)

Moreover, m0 and n0 have compact support;

Then problem (2.3) possesses a global weak solution (m(t, x), n(t, x), u(t, x)) in the sense

of Definition 1. In addition, for any finite time T > 0, there are positive constants C1 = C1(T ),

C2 = C2(T ) such that

0 < C−1
1 ≤ m(t, x) ≤ C1 < ρl <∞,

0 < C−1
2 ≤ n(t, x) ≤ C2 <∞.

Remark As reflected by the assumptions, we consider a situation where the initial state

represents a true gas-liquid mixture. In other words, there exists no pure gas or liquid regions

at time zero.

In what follows, we will make use of the following notations:

QT = [0, T ]× [0,∞), Q∞ = [0,∞) × [0,∞).

By assuming some more regularity on the initial masses m0 and n0, we can supply a

uniqueness result in the BV ∩ L∞ class.

Theorem 2 (Uniqueness result) Fix any T > 0. For i = 1, 2, let (mi, ni, ui) be a weak

solution on QT of the system

mi
t + (uimi)x = 0, ni

t + (uini)x = 0,

ui(t, x) =

∫ x

0

p(mi(t, y), ni(t, y))dy,
(2.5)
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with initial data mi|t=0 = mi
0 ∈ L∞ ∩BV , ni|t=0 = ni

0 ∈ L∞ ∩BV satisfying

0 ≤ mi
0(·) ≤ Cmi < ρl, 0 ≤ ni(·) ≤ Cni ,

for some finite constants Cmi , Cni . Then for any t ∈ (0, T ),

∥

∥m1(t, ·) −m2(t, ·)
∥

∥

L1 +
∥

∥n1(t, ·) − n2(t, ·)
∥

∥

L1 ≤ CT

(∥

∥m1
0 −m2

0

∥

∥

L1

∥

∥n1
0 − n2

0

∥

∥

L1

)

.

In particular, there is uniqueness of weak solutions of (2.3) in the BV ∩ L∞ class.

3 Estimates

First, we solve (2.3) with smooth initial data and obtain a priori estimates. In particular,

we assume for the initial data m0, n0 that m0, n0 ∈ C∞
c (R) and supp(m0), supp(n0) ⊂ [0, 1)

and they are nonnegative. We apply the method of characteristics and rewrite (2.3) in the

following form

dXt(x)

dt
= u(t,Xt(x)) =

∫ Xt(x)

0

[p(m,n)](t, y)dy, X0(x) = x,

d

dt
m(t,Xt(x)) = −[mp(m,n)](t,Xt(x)),

d

dt
n(t,Xt(x)) = −[np(m,n)](t,Xt(x)),

m(t,Xt(x))|t=0 = m0(x), n(t,Xt(x))|t=0 = n0(x).

(3.1)

Clearly, the right hand side of this system of ODEs is Lipschitz continuous for an open set U ,

such that m is bounded away from ρl for all (m,n) ∈ U . Hence, for each (m̄, n̄) ∈ U , where

we also clearly can assume that (m0, n0) ∈ U in light of (2.4), there exists a unique solution of

(3.1) which can be continued up to the boundary of U [15]. Now, we can study the behavior of

m and n along the characteristics. We have

dm

dt
= −mp(m,n),

dn

dt
= −np(m,n),

from which we get, since m,n > 0,
1

m

dm

dt
=

1

n

dn

dt
,

or
d log(m)

dt
=

d log(n)

dt
.

In other words,

log(m(t,Xt(x))) = log(n(t,Xt(x))) + C, i.e., m(t,Xt(x)) = Cn(t,Xt(x)).

In view of the initial data we get the following solution

m(t,Xt(x)) = n(t,Xt(x))
m0(x)

n0(x)
, (3.2)

where

A1B
−1
2 ≤

m0(x)

n0(x)
≤ A2B

−1
1 . (3.3)
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Along the characteristics the first equation of (2.3) takes the form

d

dt
m(t,Xt(x)) = −

[

mp

(

m,
n0

m0
m

)]

(t,Xt(x)) = −

(

n0

m0

)

m2(t,Xt(x))

ρl −m(t,Xt(x))
,

since ρl −m(t,Xt(x)) > 0, which implies that

log(m(t,Xt(x))) +
ρl

m(t,Xt(x))
=

(

n0

m0

)

t+ C(m0), C(m0) = log(m0) +
ρl

m0
. (3.4)

Define φ(m) by

φ(m)
def
:=

m

m log(m) + ρl
.

Then we have from (3.4)

φ(m(t,Xt(x)) =
1

n0

m0
t+ C(m0)

. (3.5)

Moreover, we find that

φ′(m)=
ρl −m

(m log(m) + ρl)2
,

φ′′(m) = −
2 log(m)ρl −m log(m) + 3ρl − 2m

(m log(m) + ρl)3
.

According to (2.4), we have that

0 < inf
[0,1]

m0(x) ≤ m0(x) ≤ sup
[0,1]

m0(x) < ρl.

Hence, C(m0) > 0 so we can conclude that the right hand side of (3.5) is always positive and

does not blow up for any t > 0. Moreover, We can check that φ(m) is strictly increasing in

[0, ρl], φ(0) = 0, φ′(ρl) = 0, φ′′(ρl) = − 1
(ρl log ρl+ρl)2

< 0 such that m = ρl is a maximum point,

and φ(ρl) = 1
log(ρl)+1 . From this we get for 0 < t1 < t2,

φ(m(t1, Xt1(x))) =
1

n0

m0
t1 + C(m0)

>
1

n0

m0
t2 + C(m0)

= φ(m(t2, Xt2(x))),

which implies that

m0(x) > m(t1, Xt1(x)) > m(t2, Xt2(x)).

In other words, m(t,Xt(x)) is decreasing in time (along its characteristics). Since sup
[0,1]

m0 < ρl

we conclude that m(t,Xt(x)) ∈ [0, ρl) for all t > 0, and we have the relation

ρl > sup
[0,1]

m0 > m(t1, Xt1(x)) > m(t2, Xt2(x)) ≥ 0.

It is of interest to quantify the rate of the decrease in m as time is running. For that purpose,

we may argue as follows: Clearly φ−1 exists on [0, sup
[0,1]

m0] and we find that

m(t,Xt(x)) = φ−1

(

1
n0

m0
t+ C(m0)

)

.
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We may find ψ(x) = Kx for some constant K such that

φ−1(x) ≤ ψ(x) = Kx, x ∈ [0,M ], M = φ(sup
[0,1]

m0) <
1

log(ρl) + 1
.

Thus, we may conclude that

m(t,Xt(x)) ≤
K

n0

m0
t+ C(m0)

≤
Km0

n0t
≤
KA2

B1t
, (3.6)

in view of (3.3). Consequently, the rate of dissipation directly depends on the bounds of the

initial data m0 and n0.

Next, we see from the first equation of (3.1) that

d

dt
[∂xXt(x)] = [p(m,n)](t,Xt(x)) · [∂xXt(x)].

In other words (using that ∂xX0(x) = 1), we get

log[∂xXt(x)] − log(1) =

∫ t

0

[p(m,n)](s,Xs(x))ds.

That is,

1 ≤ ∂xXt(x) = exp

(
∫ t

0

[p(m,n)](s,Xs(x))ds

)

= exp

(

n0(x)

m0(x)

∫ t

0

[

m

ρl −m

]

(s,Xs(x))ds

)

= exp

(

n0(x)

m0(x)

∫ t

0

g(m)(s,Xs(x))ds

)

, g(m) =:
m

ρl −m
,

= exp

(

n0(x)

m0(x)

∫ t

0

g

(

φ−1

(

1
n0

m0
s+ C(m0)

))

ds

)

≤ C(t,m0(x), n0(x)), (3.7)

for an appropriate constant C(t,m0, n0) where we employ the fact that g(m) is bounded since

m is bounded away from ρl. Thus, we conclude that Xt(x) can be inverted for all x ∈ R
+ and

t > 0 since it is strictly increasing in x; we denote the inverse mapping by X−1
t (x). Using this

in (3.2) we see that
n(t, x)

m(t, x)
=

(

n0

m0

)

(X−1
t (x)) =: s(t, x). (3.8)

Moreover, in view of (3.5),

φ(m(t, x)) =
1

n0(X
−1

t (x))

m0(X
−1

t (x))
t+ C(m0(X

−1
t (x)))

=
1

s(t, x)t+ C(m0(X
−1
t (x)))

. (3.9)

Clearly, in view of (2.4) we have the estimate

0 < B1A
−1
2 ≤ s(t, x) ≤ B2A

−1
1 <∞. (3.10)

For further use we apply (3.8) and define

p(m,n) = p(m,ms) = s
m

ρ−m
= sg(m)

def
:= P (m, s). (3.11)
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As far as the velocity u is concerned, we estimate as follows:

u(t, x) =

∫ x

0

P (m, s)dy ≤ sup
x∈R+

s(t, x)

∫ x

0

g(m(t, y))dy

≤ B2A
−1
1

∫ x

0

g(m(t, y))dy ≤ CB2A
−1
1

∫ x

0

m(t, y)dy

≤ KCB2A
−1
1

∫ x

0

1
n0(X−1

t (y))

m0(X−1

t (y))
t+ C(m0(X

−1
t (y)))

dy

≤ Cu(t).

Here we have taken advantage of (3.10) and the fact that

g(m) =
m

ρl −m
≤

m(t, x)

ρl − sup(m0(x))
≤ Cm(t, x),

for an appropriate choice of C and by an application of assumption (2.4). We also have used

(3.6). Consequently, we can conclude that

‖u(t, ·)‖L∞(R+) ≤ Cu(t), t ≥ 0, (3.12)

and hence we have proved

Lemma 1 For (t, x) ∈ R
+ × R and under the assumptions (2.4) we have the following

pointwise estimates:

0 ≤ m(t, x) ≤ sup(m0(x)) < ρl,

0 ≤ n(t, x) ≤ sup(s) sup(m0(x)) ≤ A−1
1 A2B2,

|u(t, x)| ≤ Cu(t).

Note that this is sufficient to guarantee that p(n,m) = P (m, s) is well-defined. We may

sharpen the above estimates for m and n as follows when we consider a finite time T > 0.

Corollary 1 For any finite time T , there is an ε = ε(T ) > 0 such that

0 < ε ≤ m(t, x), 0 < εB1A
−1
2 ≤ n(t, x),

for all x ∈ [0,∞) and t ∈ [0, T ].

Proof To see this, assume (for a fixed T > 0) that this is not the case. This implies that

there exist points {xk, tk} where tk ∈ [0, T ] and a time t ∈ [0, T ] such that

mk = m(tk, xk) → 0, tk → t, as k → ∞.

In light of (3.9), this implies that t = ∞, which produces a contradiction. The lower estimate of

n(t, x) follows from the relation n(t, x) = s(t, x)m(t, x) given by (3.8) and its lower and upper

bounds (3.10).

Remark 2 An interesting and relevant aspect of the model (1.1) (and simplified variants

of this) is to obtain a clearer understanding when vacuum (transition to single-phase flow) might

appear. The above calculation shows that for the model (2.1) and (2.2), we are guaranteed that

vacuum will not occur in finite time. However, it’s not clear to us to what extent this will be

the case for more general slip relations and/or pressure laws.
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Remark 3 If transition to single-phase liquid flow occurred in an appropriately modified

two-phase model of the form (2.1) with pressure law (2.2), then this would correspond to a

situation where m becomes equal to ρl, i.e., p(m,n) = ux blows up, say at time t∗. In this case

we would have to describe precisely how the solution should be extended beyond the blow-up

time t∗. Note that a similar phenomenon is observed for the Hunter-Saxton equation. This

ambiguity gives rise to different notions of weak solution, see [22–24] and references therein.

We now consider the case with general initial data m0, n0 with compact support. Let

jk(x), k = 1, 2, · · ·, be a standard Friedrich’s mollifier satisfying

jk(x) = kj(kx), j(x) ∈ C∞
c (R), j(x) ≥ 0,

∫

R

j(x)dx = 1.

We assume 1 ≤ m0(·) < ρl, 0 ≤ n0(·), and m0, n0 ∈ Lp(R). Without loss of generality, we

assume that supp(m0), supp(n0) ⊂ [0, 1). Set

mk
0(x) = jk ⋆ m0(x), nk

0(x) = jk ⋆ n0(x).

For each fixed k, by the preceding calculation we find that (2.3) has a global smooth solution

mk(t, x), nk(t, x) with initial data mk
0(x) and nk

0(x), respectively. Clearly, from the third

equation of (2.3)

uk =

∫ x

0

p(mk, nk)dy.

We also note that in view of (3.12) we have

‖uk(t, ·)‖L∞(R+) ≤ Cu, supp(mk(t, ·)) ⊂ [0,Km(t)),

where Km(t) is determined from the first equation of (3.1) which implies that Xt(x) ≤ Cut so

that Km(t) = Cu(t)t+ 1 will do the job.

The plan now is to prove that the approximations {mk(t, x), nk(t, x)}k≥1 are compact in

Lq([0, T ]× R
+) for any T > 0, q > 1.

According to (3.8) we have

sk(t, x) =
nk(t, x)

mk(t, x)
,

and from (3.11) it follows

p(mk, nk) =
nk

ρl −mk
= skg(mk)=P (mk, sk).

We have the following estimates:

Lemma 2 The approximate solutions {mk(t, x)} satisfy the following estimates:

‖mk(t, ·)‖Lp(R+) ≤ ‖m0‖Lp(R+), p ≥ 1, (3.13)

‖mp
kP (mk, sk)‖L1(Q∞) ≤

1

p− 1
‖m0‖

p
Lp(R+), p > 1, (3.14)

‖P (mk(t, ·), sk(t, ·))‖L1(R+) ≤ ‖P (m0, s0)‖L1(R+), (3.15)

‖s−1
k P (mk, sk)3‖L1(Q∞) ≤ ‖P (m0, s0)‖L1(R+), (3.16)

‖P (mk(t, ·), sk(t, ·))q‖L1(R+) ≤ ‖P (m0, s0)
q‖L1(R+), q ≥ 1, (3.17)

‖P (mk, sk)q+1‖L1(Q∞) ≤
1

q − 1
‖P (m0, s0)

q‖L1(R+), q > 1, (3.18)

‖s−1
k P (mk, sk)q+2‖L1(Q∞) ≤

1

q
‖P (m0, s0)

q‖L1(R+), q ≥ 1. (3.19)
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Proof Multiplying the first equation of (2.3) by f ′(mk) we get

f(mk)t + ukf(mk)x = −f ′(mk)mkP (mk, sk).

This can also be written in the form

f(mk)t + (ukf(mk))x = [f(mk) − f ′(mk)mk]P (mk, sk).

First, by using the choice f(m) = mp for p ≥ 1 we get

(mp
k)t + (ukm

p
k)x = −(p− 1)mp

kP (mk, sk).

That is, by using that the support of mk(t, x) is contained in [0,K(T )] for t ∈ [0, T ] we get

∫ t

0

∫ K(T )

0

[

(mp
k)t + (p− 1)mp

kP (mk, sk)
]

dxdt = 0, p ≥ 1.

From this, we get

∫ K(T )

0

(mp
k)dx+

∫ t

0

∫ K(T )

0

(p− 1)mp
kP (mk, sk)dxdt =

∫ K(T )

0

(mp
0)dx.

In particular, since both terms on the left hand side are non-negative,

∫ K(T )

0

mp
k(t, x)dx ≤

∫

R+

m0(x)
pdx = ‖m0‖

p
Lp(R+)

and

(p− 1)

∫ T

0

∫ K(T )

0

mp
kP (mk, sk)dxdt ≤ ‖m0‖

p
Lp(R+).

Thus, by letting T → ∞, the estimates (3.13) and (3.14) follow. Next, we are interested in

deriving an equation for the choice

f(mk, sk) = P (mk, sk) = skg(mk) = sk
mk

ρ−mk
.

Noting that

mkg
′(mk) = g(mk) + g(mk)2, (3.20)

and from the two mass equations of (2.3) it follows that

(sk)t + uk(sk)x = 0, sk(t, x) =
nk(t, x)

mk(t, x)
. (3.21)

Now we can calculate as follows:

P (mk, sk)t = (skg(mk))t

= skg
′(mk)(mk)t + g(mk)(sk)t

= −skg
′(mk)(mkuk)x − g(mk)uk(sk)x

= −(sk)2g′(mk)mkg(mk) − ukskg(mk)x − ukg(mk)(sk)x

= −(sk)2g′(mk)mkg(mk) − uk(g(mk)sk)x

= −(sk)2[g(mk) + g(mk)2]g(mk) − ukP (mk, sk)x

= −P (mk, sk)2 − (sk)2g(mk)3 − ukP (mk, sk)x, (3.22)
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and

(ukP (mk, sk))x = (uk)xP (mk, sk) + ukP (mk, sk)x = P (mk, sk)2 + ukP (mk, sk)x. (3.23)

Here we have repeatedly used the third equation of (2.3) together with (3.20) and (3.21).

Combining (3.22) and (3.23) we arrive at the following equation

P (mk, sk)t + (ukP (mk, sk))x = −s−1
k P (mk, sk)3. (3.24)

This implies the identity

∫ t

0

∫ K(T )

0

[

P (mk, sk)t + s−1
k P (mk, sk)3

]

dxdt = 0,

from which we get

∫ K(T )

0

P (mk, sk)dx+

∫ t

0

∫ K(T )

0

s−1
k P (mk, sk)3dxdt =

∫ K(T )

0

P (m0, s0)dx.

From this equality the estimates (3.15) and (3.16) follow. Finally, consider the choice f(mk, sk) =

P (mk, sk)q for q ≥ 1. Then we calculate as follows:

(P (mk, sk)q)t = qP (mk, sk)q−1P (mk, sk)t

= qP (mk, sk)q−1
[

− s−1
k P (mk, sk)3 − (ukP (mk, sk))x

]

= qP (mk, sk)q−1
[

− s−1
k P (mk, sk)3 − P (mk, sk)2 − ukP (mk, sk)x

]

, (3.25)

and

(ukP (mk, sk)q)x = (uk)xP (mk, sk)q + ukqP (mk, sk)q−1P (mk, sk)x

= P (mk, sk)q+1 + ukqP (mk, sk)q−1P (mk, sk)x. (3.26)

Adding (3.25) and (3.26) gives

(P (mk, sk)q)t + (ukP (mk, sk)q)x = −(q − 1)P (mk, sk)q+1 − qs−1
k P (mk, sk)q+2.

Hence, for q ≥ 1,

∫ t

0

∫ K(T )

0

[

(P (mk, sk)q)t + (q − 1)P (mk, sk)q+1 + qs−1
k P (mk, sk)q+2

]

dxdt = 0,

and the estimates (3.17), (3.18), and (3.19) follow.

By making use of the relation n = sm and the estimates (3.10), we obtain the following

k-uniform estimates for nk(t, x):

Corollary 2 The following estimates hold for the approximate solutions nk(t, x):

‖nk(t, ·)‖Lp(R+) ≤ B2A
−1
1 ‖m0‖Lp(R+).
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4 Compactness

We begin by establishing strong compactness of the velocity {uk(t, x)}. By Morrey’s in-

equality,

W 1,q
loc (Q∞) →֒ C

1− 2
q

loc (Q∞), for 2 < q ≤ ∞.

Consequently, we want to bound {uk} in W 1,q
loc (Q∞) for some q > 2. We have

uk(t, x) =

∫ x

0

p(mk, nk)(y, t)dy =

∫ x

0

P (mk, sk)(y, t)dy.

In view of the pressure equation (3.24) we get

∂tuk =

∫ x

0

∂tP (mk, sk)(y, t)dy

= −

∫ x

0

(ukP (mk, sk))ydy −

∫ x

0

s−1
k P (mk, sk)3dy.

Consequently, for (t, x) ∈ [0, T ]× R
+ (using that uk(t, 0) = 0)

|∂tuk| ≤ max(|uk|)P (mk, sk) +

∫ Km(T )

0

s−1
k P (mk, sk)3dy

≤ CuP (mk, sk) + max(s−1
k )‖P (m0, s0)

3‖L1(R+),

where we have applied (3.17) with q = 3. This implies that

|∂tuk|
q ≤ C

(

P (mk, sk)q + ‖P (m0, s0)
3‖q

L1(R+)

)

, q > 2.

That is, by (3.18) with q − 1 as the exponent we get (note that q > 2)

∫ T

0

∫

R+

|∂tuk|
qdxdt

≤ C

(
∫ T

0

∫

R+

P (mk, sk)qdxdt+Km(T )T ‖P (m0, s0)
3‖q

L1(R+)

)

≤ C

(

1

q − 2
‖P (m0, s0)

q−1‖L1(R+) +Km(T )T ‖P (m0, s0)
3‖q

L1(R+)

)

.

Since ux = P (m, s), then (3.18) also implies that

∫ T

0

∫

R+

|∂xuk|
qdxdt =

∫ T

0

∫

R+

P (mk, sk)qdxdt

≤
1

q − 2
‖P (m0, s0)

q−1‖L1(R+), q > 2.

Hence, we can conclude (by Ascoli-Arzela and Banach-Sakes theorems) that there is some

u(t, x) ∈ W 1,q
loc (Q∞) for q > 2 and a subsequence of {uk(t, x)} such that uk(t, x) converges to

u(t, x) uniformly on any compact subset of Q∞. Furthermore, ∂xuk(t, x) = P (mk(t, x), sk(t, x))

converges weakly to a limit function

v(t, x) = P (m(t, x), s(t, x)) in Lq(Q∞) for q > 2.
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Furthermore, it is clear that

1 ≤ ∂xX
k
t (x) ≤ C, |∂tX

k
t (x)| ≤ C.

The first estimate follows from (3.7) and the upper bound on P (mk, sk) (cf. Lemma 1). Simi-

larly, the second estimate follows from the first equation of (3.1) and the pointwise upper bound

on uk, also guaranteed by Lemma 1. Consequently, we have uniform Hölder continuity in space

and time for {Xk
t (x)}, i.e., the sequence converges to a limit function Xt(x) uniformly on com-

pact sets in Q∞. Clearly, the same properties hold for the inverse Y k
t (·) = (Xk

t )−1(·), such that

Y k
t (·) → Yt(·) uniformly on compact sets in Q∞ where for each t, and Yt(·) = X−1

t (·).

Since sk(t, x) =
nk

0

mk
0

((Xk
t )−1(x)), see (3.8), we conclude that sk(t, x) converges a.e. to the

limit function s(t, x) = n0

m0
(X−1

t (x)).

To sum up, we have the following lemma.

Lemma 3 (Compactness) Regarding the initial data m0 and n0, we assume

0 < ε ≤ m0(x) < ρl,

0 < ε ≤ n0(x) <∞,

m0 ∈ L2(R+), P (m0, s0) = p(m0, n0) ∈ L2(R+),

for some ε > 0. We have the following basic convergence result towards limit functions

(m,n, u, v, w) as k → ∞:

uk → u uniformly in [0, R]× [0, T ] for each R > 0 and pointwise in QT

and the limit function u belongs to W 1,q(QT ) →֒ C
1− 2

q

loc (QT ) for q > 2;
(4.1)

sk → s a.e. in Q∞ and

s(t, x) =
n0

m0
(X−1

t (x)), i.e.,
d

dt
s(t,Xt(x)) = 0, that is, st + usx = 0;

(4.2)

mk ⇀m in Lp(QT ), p ≥ 1;

nk ⇀ n in Lp(QT ), p ≥ 1;
(4.3)

vk := P (mk, sk) = skg(mk) = ∂xuk

⇀ ∂xu = v = sg(m) in Lq(QT ), q ≥ 1;
(4.4)

(vk)3=(P (mk, sk))3 = (sk)3g(mk)3 ⇀ s3w in L1(QT ); (4.5)

ukmk ⇀ um in Lp(QT ), p ≥ 1;

uknk ⇀ un in Lp(QT ), p ≥ 1.
(4.6)

Finally, the limit functions m, v, s, w are related by the inequalities

P (m, s) = sg(m) ≤ v, v3 ≤ s3w, (4.7)

or equivalently,

g(m) ≤ g(m),
(

g(m)
)3

≤ w.
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Proof The limit operations (4.1) and (4.2) follow from the above discussion, whereas

(4.3), (4.4), (4.5), (4.6) follow from the estimates of Lemma 2 and Corollary 2. The relations

(4.7) rely on the convexity and continuity properties of g(·) and (·)3.

We are now in a position to prove strong convergence of mk, nk by analyzing a particular

renormalization (in the sense of Diperna-Lions) of the approximate solutions and their limits.

Strong convergence ensures that the weak limit functions m and n solve the original equations.

Lemma 4 (Limit equations) The limit functions (m,n, s, u, v, w) from Lemma 3 satisfy

mt + (um)x = 0, nt + (un)x = 0, st + usx = 0, ux = v, (4.8)

in the sense of distributions on QT , and

m ∈ C([0, T ];Lp(R+)), lim
t→0

‖m(·, t) −m0‖Lp(R+) = 0,

n ∈ C([0, T ];Lp(R+)), lim
t→0

‖n(·, t) − n0‖Lp(R+) = 0,

for any p ≥ 1. Moreover,

vt + (uv)x = −s−1[s3w] (4.9)

in the sense of distributions on QT and

lim
t→0

∫ ∞

0

(

v(t, x) − P (m0(x), s0(x))
)

dx = 0.

Proof The approximate solutions (mk, nk, uk) satisfy the system

∂tmk + ∂x(ukmk) = 0,

∂xuk = p(mk, nk) = P (mk, sk),

nk(t, x) = mk(t, x)
n0(X

−1
k,t (x))

m0(X
−1
k,t (x))

= mk(t, x)sk(t, x).

In view of Lemma 3, it follows that (4.8) holds. Similarly, (4.9) follows from the pressure

equation (3.24).

Lemma 5 (Identification) Suppose that

(i) u(t, x) is bounded and continuous inQT with u(0, t) = 0 for t ∈ [0, T ],m ∈ L∞((0, T );Lp(R+)),

and m ≥ 0 a.e. in QT ;

(ii) v ∈ L∞((0, T );Lp(R+)) and P (m, s) ≤ v a.e. in QT ;

(iii) w ∈ L∞((0, T );L1(R+)), and v3 ≤ s3w a.e. in QT ;

(iv) As t→ 0,
∫ ∞

0

(

v(t, x) − P (m(t, x), s(t, x))
)

dx→ 0; (4.10)

(v) The limit functions u,m, n, s, v, w satisfy the system

mt + (um)x = 0, nt + (un)x = 0, st + usx = 0, ux = v, (4.11)

vt + (uv)x = −s−1[s3w], (4.12)

in the sense of distributions on QT .
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Then P (m, s) = sg(m) = v a.e. in QT .

Proof The proof follows along standard lines in the theory of renormalized solutions.

We set mε = m ⋆ ωε, nε = n ⋆ ωε, sε = s ⋆ ωε, vε = v ⋆ ωε, and wε = w ⋆ ωε where ωε is a

standard mollifier acting on the spatial variable. In view of (4.11) together with an application

of the Diperna-Lions lemma we get

mε
t + umε

x = −vεmε +Rε, (4.13)

where Rε = u(mε)x − (umx) ⋆ ωε + vεmε − (vm) ⋆ ωε and

Rε → 0 in Lp(QT ) for any p ≥ 1.

Having this regularized version of the first equation in (4.11), the plan is now to derive from

this an equation that contains information about P (m, s). First, we multiply (4.13) with g′(mε)

and rewrite (using ux = v) such that we get

g(mε)t + ug(mε)x = −vεmεg′(mε) +Rεg′(mε).

Then we multiply by sε and get

[sεg(mε)]t + u[sεg(mε)]x − g(mε)[sε
t + usε

x] = −vεmεsεg′(mε) +Rεg′(mε)sε,

or

P (mε, sε)t + (uP (mε, sε))x − g(mε)[sε
t + usε

x] = vP (mε, sε) − vεmεsεg′(mε) +Rεg′(mε)sε.

Sending ε→ 0 we get

P (m, s)t + (uP (m, s))x = vP (m, s) − vmsg′(m),

in the sense of distributions. Using (3.20) and P (m, s) = sg(m), we get

P (m, s)t + (uP (m, s))x = vP (m, s) − vs[g(m) + g(m)2]

= −vsg(m)2 = −s−1vP (m, s)2. (4.14)

Taking the difference between (4.12) and (4.14) we get

∂t[v − P (m, s)] + ∂x(u[v − P (m, s)]) = s−1(vs2g(m)2 − s3w)

= s−1(vP (m, s)2 − s3w)

≤ s−1(v3 − s3w) ≤ 0, (4.15)

using the relations P (m, s) = sg(m) ≤ v and v3 ≤ s3w, see (4.7). Recalling that (4.15) holds in

the sense of distributions we can choose a test function ψ(t, x) = ω1(t)ω2(x) and then let ω1(t)

be a smooth approximation to χ[t1,t2] for t1 < t2 whereas ω2(x) = 1. Then (4.15) simplifies to

−

∫ T

0

∫ ∞

0

(

v(τ, x) − P (m(τ, x), s(τ, x))
)

ω′
1(τ)dxdτ ≤ 0,
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that is,

−

∫ ∞

0

(

v(t1, x) − P (m(t1, x), s(t1, x))
)

dx

+

∫ ∞

0

(

v(t2, x) − P (m(t2, x), s(t2, x))
)

dx ≤ 0.

Letting t1 → 0 and t2 → t and comparing with (4.10), we get

v(t, x) − P (m(t, x), s(t, x)) ≤ 0 for a.e. (t, x) ∈ QT ,

which implies that v = P (m, s) a.e. in QT , in view of (4.7).

Proof of Theorem 1 The existence result of Theorem 1 now follows as a result of

Lemmas 3, 4, and 5.

5 A Uniqueness Result in the L
∞

∩ BV Class

It was proved in Section 4 that the smooth solutions (mk, nk, uk) converge to a weak

solution (m,n, u) of (2.3). Now we want to prove that this weak solution, which satisfies

0 ≤ m(·, ·) ≤ Cm < ρl, 0 ≤ n(·, ·) ≤ Cn, |u(·, ·)| ≤ Cu, (5.1)

possesses spatial BV regularity provided the initial data do so; more precisely,

m0, n0 ∈ BV (R) =⇒ m,n ∈ L∞(0, T ;BV (R)), T > 0. (5.2)

To this end, it is sufficient to establish an estimate of the form

∫

R

|∂xmk(t, x)| + |∂xnk(t, x)| dx ≤ CT , t ∈ (0, T ),

for some constant CT that is independent of k.

Set

qm
k = ∂xmk, qn

k = ∂xnk.

Then

∂tq
m
k + u∂xq

m
k + p(mk, nk)qm

k

= −qmP (mk, nk) −mk (pm(mk, nk)qm
k + pn(mk, nk)qn

k )

Multiplying by sgn(qm) yields

|qm
k |t + uk |q

m
k |x + p(mk, nk) |qm

k |

= − |qm
k | p(mk, nk) −mkpm(mk, nk) |qm

k | −mkpn(mk, nk)qn
k sgn(qm

k )

≤ ‖m‖L∞ ‖pn(m,n)‖L∞ |qn| ≤ C |qn| ,

where we have used that

p =
n

ρl −m
, pm =

n

(ρl −m)2
, pn =

1

ρl −m
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are all (nonnegative) bounded quantities. In divergence form, this equation inequality reads

|qm
k |t + (uk |q

m
k |)x ≤ Cm |qn

k | ,

where the constant Cm is independent of k.

Similarly, it follows that

|qn
k |t + (uk |q

n
k |)x ≤ Cn |qm

k | ,

for some constant Cn that does not depend on k.

Adding the inequalities for |qm
k | and |qn

k | yields

(|qn
k | + |qn

k |)t + (uk (|qm
k | + |qn

k |))x ≤ C (|qn
k | + |qm

k |) , C := Cm + Cn,

and thus by Gronwall’s inequality,

∫

R

(

|∂xmk(t, x)| + |∂xnk(t, x)|
)

dx ≤ eCt

∫

R

(

|∂xmk(0, x)| + |∂xnk(0, x)|
)

dx,

and the claims follows.

Let us now turn to the uniqueness of weak solutions in the L∞ ∩BV class, i.e., the proof

of Theorem 2. In view of the assumptions, the solutions (mi, ni, ui) satisfy (5.1) and (5.2). By

the DiPerna-Lions regularization lemma, one can prove that the weak solutions (mi, ni, ui) of

(2.5) are entropy solutions, i.e., for any convex η : R → R,

η(mi) +
(

uiη(mi)
)

x
+ p(mi, ni)

[

miη′(mi) − η(mi)
]

≤ 0,

η(ni) +
(

uiη(ni)
)

x
+ p(mi, ni)

[

niη′(ni) − η(ni)
]

≤ 0,

in the sense of distributions.

Now the uniqueness of weak solutions is an immediate consequence of a result proved in

[17] regarding continuous dependence of entropy solutions with respect to the flux function. We

may apply Theorem 1.3 in [17] to conclude that there exists a constant C such that

∥

∥m1(t, ·) −m2(t, ·)
∥

∥

L1 ≤
∥

∥m1
0 −m2

0

∥

∥

L1 +

∫ t

0

∫

∣

∣u1
x(s, x) − u2

x(s, x)
∣

∣ dxds

+

∫ t

0

∥

∥u1(s, ·) − u2(s, ·)
∥

∥

L∞

∣

∣m2(s, ·)
∣

∣

BV
ds

≤
∥

∥m1
0 −m2

0

∥

∥

L1 +

∫ t

0

∫

R

∣

∣p(m1, n1) − p(m2, n2)
∣

∣ dxds

+C̃

∫ t

0

∫

∣

∣p(m1, n1) − p(m2, n2)
∣

∣ dxds

≤
∥

∥m1
0 −m2

0

∥

∥

L1 + Cm

∫ t

0

∫

(

∣

∣m1 −m2
∣

∣ +
∣

∣n1 − n2
∣

∣

)

dxds. (5.3)

Similarly,

∥

∥n1(t, ·) − n2(t, ·)
∥

∥

L1 ≤
∥

∥n1
0 − n2

0

∥

∥

L1 + Cn

∫ t

0

∫

R

(

∣

∣m1 −m2
∣

∣ +
∣

∣n1 − n2
∣

∣

)

dxds. (5.4)
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By adding the two inequalities (5.3), (5.4) and, following this, applying the Gronwall

inequality, we arrive at

∥

∥m1(t, ·) −m2(t, ·)
∥

∥

L1 +
∥

∥n1(t, ·) − n2(t, ·)
∥

∥

L1

≤ eCt
(∥

∥m1
0 −m2

0

∥

∥

L1

∥

∥n1
0 − n2

0

∥

∥

L1

)

, C := Cm + Cn.

This concludes the proof of Theorem 2.

6 Concluding Remarks

In this work we have investigated a simplified no-pressure gas-liquid model which is com-

posed of two continuity equations for the two phases and a steady state momentum equation

which represents the balance between the pressure gradient and a viscous term. We derive point-

wise upper and lower bounds on the masses which guarantee that the initial two-phase mixture

remains a two-phase mixture, i.e., no transition to single-phase flow occurs in finite time. Ex-

istence of weak solutions is shown under minimal regularity on the initial masses. Moreover, a

uniqueness result is derived by requiring that the the initial masses are BV bounded.

Interesting extensions of the model studied in this work would be to take into account

that the two phases can move with different fluid velocities, consider inclusion of more general

pressure laws, as well as take into account terms representing external forces like gravity and

friction.

It is difficult to find solutions of the system (2.3) without resorting to numerical methods.

Fortunately, it is possible to devise very simple finite difference schemes for computing approx-

imate solutions of (2.3). To this end, introduce the spatial grid cells Ij = [xj−1/2, xj+1/2),

where xj±1/2 = xj ± ∆x/2, j ∈ N0 := {0, 1, · · ·}. The forward/backward difference operators

are denoted byD+/D−, respectively. Let
{

m0
j

}

j∈N0

,
{

n0
j

}

j∈N0

be discrete initial data satisfying

0 ≤ m0
j(x) < ρl, 0 ≤ n0

j ≤ Const <∞, j ∈ N0.

For j ∈ N0 and t ∈ [0, T ], let {(mj(t), nj(t), uj(t))}j∈N0
satisfy the finite system of ordinary

differential equations

m′
j(t) + uj(t)D−mj(t) = −mj(t)p(mj(t), nj(t)),

n′
j(t) + uj(t)D−nj(t) = −nj(t)p(mj(t), nj(t)),

D+uj(t) = p(mj(t), nj(t)), u0(t) = 0,

mj |t=0 = m0
j , nj |t=0 = n0

j ,

(6.1)

It follows that

uj(t) = ∆x

j−1
∑

i=0

p(mi(t), ni(t)), for j ∈ N, t ∈ [0, T ].

By properly adapting the BV arguments from Section 5 to the discrete setting, one can

prove that the numerical scheme (6.1) converges strongly in Lp, p <∞, to the unique L∞∩BV

weak solution of (2.3). The details will be presented elsewhere.

The numerical scheme is of upwind type, which means that the finite differencing of the

transport terms umx, unx are biased in the direction of incoming waves. The use of upwind
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schemes is quite natural, since they dissipate energy and hence generate dissipative solutions

in the limit as ∆x→ 0. We stress that the convergence result is not obvious. Indeed, whereas

the BV approach works, it is not clear how to apply the “weak convergence” argument used in

the existence proof to the numerical approximations; the reason seems to be that the argument

relies too heavily on the non-dissipative nature of the approximate solutions.

The semi-discrete method (6.1) amounts to a system of ordinary differential equations

which must be solved by some numerical method. There are a variety of time-discretization

methods available. The simplest and most obvious one is an explicit discretization, i.e., we

replace the time derivatives in (6.1) by forward differences,

m′
j(t) →

mℓ+1
j −mℓ

j(t)

∆t
, n′

j(t) →
nℓ+1

j − nℓ
j(t)

∆t
,

while the remaining part of (6.1) are evaluated at tℓ := ℓ∆t, ℓ = 0, 1, · · ·. It can be shown that

this fully discrete difference scheme also converges to the L∞ ∩BV weak solution of (2.3).
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