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ON THE WAVE STRUCTURE OF TWO-PHASE FLOW MODELS∗

STEINAR EVJE† AND TORE FLÅTTEN‡

Abstract. We explore the relationship between two common two-phase flow models, usually
denoted as the two-fluid and drift-flux models. They differ in their mathematical description of
momentum transfer between the phases. In this paper we provide a framework in which these two
model formulations are unified. The drift-flux model employs a mixture momentum equation and
treats interphasic momentum exchange indirectly through the slip relation, which gives the relative
velocity between the phases as a function of the flow parameters. This closure law is in general highly
complex, which makes it difficult to analyze the model algebraically. To facilitate the analysis, we
express the quasi-linear formulation of the drift-flux model as a function of three parameters: the
derivatives of the slip with respect to the vector of unknown variables. The wave structure of this
model is investigated using a perturbation technique. Then we rewrite the drift-flux model with a
general slip relation such that it is expressed in terms of the canonical two-fluid form. That is, we
replace the mixture momentum equation and the slip relation with equivalent evolution equations
for the momentums of each phase. We obtain a mathematically equivalent formulation in terms of
a two-fluid model and by this bridge some of the gap between the drift-flux model and the two-fluid
model. Finally, the effect of the various exchange terms on the wave structure of the two-fluid model
is investigated.
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1. Introduction. In general, multiphase flows exhibit a complex dynamical
behavior, where depending on the physical parameters several different flow regimes
may occur. Flow regimes are commonly divided into separated (stratified, annular)
and mixed (bubbly, dispersed) flows.

There exists no simple model formulation able to describe all these phenomena
adequately. Rather, a variety of different models have been suggested with different
applications in mind; see, for instance, [6, 8, 23, 24].

A classical way to obtain tractable models is to average in space. Of such mod-
els, two particular strategies have attracted considerable interest in the petroleum
industry: the two-fluid [4, 20] and drift-flux [22] models. These models, described in
sections 2 and 3, are the focus of the current paper.

The models contain a significant amount of additional closure laws. These closure
relations typically depend on the flow structure and represent the main difficulty in
the model formulation.

As noted by Bouré [9], the effect of closure relations may be viewed on two different
levels:

1. Their physical magnitude affects the predicted values of the flow parameters.
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2. Their mathematical form affects the propagation properties of the flow model.
That is, differential closure terms affect the velocities and composition of the
predicted waves, whereas nondifferential terms do not.

The drift-flux model and its closure relations are commonly formulated to model
mixed flow regimes. Depending on the closure relations, the two-fluid model has more
general validity. In its most basic form, it is nevertheless best suited for a description of
separated flows. These different domains of applicability manifest themselves through
the different wave structures of the common formulation of the two models.

The purpose of this paper is twofold.

(I) Primary aim. To demonstrate how nondifferential closure relations for the
drift-flux model may be transformed into corresponding differential relations in the
two-fluid framework. By this transformation, we obtain a two-fluid model whose un-
derlying mathematical structure is identical to the original drift-flux model. Hence it
becomes possible to alternate between the two formulations within a unified frame-
work.

(II) Secondary aim. To demonstrate how the wave structure of the drift-flux
model may be investigated by a perturbation technique, first applied to two-phase
flows by Toumi and coworkers [27, 28], who considered the two-fluid model.

The paper is organized as follows: In sections 2 and 3 we describe the two-fluid
and drift-flux models in question. Section 4 is dedicated to the secondary aim of the
paper; here we investigate the wave structure of the drift-flux model.

In section 5 we confront the primary aim of our paper, writing the drift-flux
model in the framework of a two-fluid model. A main result is equation (118), the
explicit form of the interface friction that makes the two-fluid model mathematically
equivalent to a general drift-flux model.

Armed with a thorough understanding of the mathematical structure of both
models, we demonstrate in section 6 how the wave velocities of the two-fluid model
gradually change by addition of the different terms of (118). This illustrates the
physical effects of the different closure terms on the wave phenomena inherent in the
models.

2. Two-fluid model. To be consistent with the dynamical behavior of the
flow physics, the two-phase models we consider must describe the following wave
phenomena:

• Sonic waves, conveying rapid variations in the pressure and the associated
velocity fields. They are a consequence of the compressibility of the flow.

• Material waves, conveying large scale variations in the volumetric phase frac-
tions and mixture density. They are responsible for the dynamics correspond-
ing to mass transport.

• Entropy waves, representing thermodynamic properties transported along the
flow.

As noted, for instance, by [9, 27], the entropy waves are uncoupled from the remaining
wave structure. Phasic entropies are simply advected with the fluid velocities.

Hence the structure of the sonic and material waves may be studied with no loss
of generality by considering only isentropic flow models. Such models are based on
the physical principle of conservation of the mass and momentum variables, neglecting
dynamic energy transfers.

Supplemented by proper closure relations, the models hence consist of mass and
momentum balance equations, expressed in the form of partial differential equations.
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2.1. Model formulation. For a gas (g) and a liquid (�) phase, the isentropic
two-fluid model may be written as follows:

• Conservation of mass

(1)
∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,

(2)
∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,

• Momentum balances

(3)
∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+

∂

∂x
(αgpg) − pi ∂

∂x
(αg) = Qg + M i

g,

(4)
∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+

∂

∂x
(α�p�) − pi ∂

∂x
(α�) = Q� + M i

�.

Here αk is the volume fraction of phase k with

(5) αg + α� = 1,

where ρk, pk, and vk denote the density, pressure, and fluid velocity of phase k,
respectively, and pi is the pressure at the gas-liquid interface. M i

k represents inter-
phasic momentum exchange terms with M i

g + M i
� = 0. Momentum sources acting on

each phase separately, such as wall friction or gravitational forces, are represented by
the terms Qk.

2.2. Closure relations. The closure relations needed to complete the model
may be divided into three groups.

2.2.1. Thermodynamic submodels. For each phase k, the thermodynamic
state relation

(6) pk = p(ρk, Sk)

must be specified. Here Sk is the entropy of phase k. Furthermore, the interface
pressure pi must be expressed as a function of the phasic pressures:

(7) pi = pi(pg, p�).

When the flows are separated due to gravitational forces, the relationships between
the pressures pi, pg, and p� are commonly chosen to model the effects of hydrostatics.
In this case, the two-fluid model is able to describe travelling surface waves on the
gas-liquid interface; see, for instance, [2].

2.2.2. Phase-specific source terms. The main momentum sources acting on
each phase separately are the following:

• Gravity.
The effect of gravitational acceleration is expressed by

(8) Qk = −ρkαkg sin θ,

where θ is the angle of the flow direction with respect to the horizontal.
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• Wall friction.
For separated flows, the wall friction for each phase is commonly expressed
in terms of friction factors as follows:

(9) Qk = −fk
ρk |vk| vk

2
.

The Blasius equation is commonly used for calculating fk; see, for instance, [1,
25]. According to [7], most mixed flow regimes may be modeled to acceptable
accuracy by using friction factors corresponding to one-phase liquid flow (fg =
0).

2.2.3. Interphasic momentum exchange terms. The interactions between
the phases are highly complex and different in character for each flow regime. Hence
these terms are notoriously difficult to derive from theoretical considerations. Nor
are they easily determined from experimental data, as their effects are only indirectly
visible. We here briefly describe two of the most common approaches for modeling the
interphasic momentum exchange, applied to separated and mixed flows, respectively.

• Stratified flows.
For stratified flows it is common [1, 25] to express the interphasic momentum
exchange in nondifferential form, as a function of a friction factor fi:

(10) M i
� = −M i

g = fi
ρg |vg − v�| (vg − v�)

2
.

Andritsos and Hanratty [1] noted that waves existing on the gas-liquid inter-
face have a significant effect on the magnitude of fi. They suggested that for
sufficiently small gas flow rates αgvg < Ucrit, such that no waves are generated
at the interface,

(11) fi ≈ fg.

For αgvg > Ucrit they developed a correlation where fi/fg increases linearly
with αgvg.

• Bubbly flows. For a two-phase mixture of gas dispersed within the liquid,
the momentum transfer induced by a gas bubble accelerating with respect to
the surrounding fluid must be taken into account. This effect, denoted as the
virtual mass force, has been analyzed by Drew, Cheng, and Lahey [10]. By
imposing the condition that this interface friction is invariant under a change
of reference frame, they derived the expression

M i
g = αgρ�Cvm

(
∂t (vg − v�) + vg∂x (vg − v�)

+ (vg − v�) ((λ− 2)∂xvg + (1 − λ)∂xv�)
)
,

(12)

where λ and Cvm (the coefficient of virtual mass) are volume fraction depen-
dent parameters. The value of Cvm is expected to be 1/2 for noninteracting
spheres and smaller for bubbles of other shapes.
The wave structure of the two-fluid model with virtual mass force included has
been analyzed in [18, 19, 28]. In particular, Lahey [19] discusses similarities
between such a two-fluid model and the drift-flux model.
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2.3. Canonical formulation. The multitude of possible closure relations gives
rise to a large class of slightly different models, all falling under the heading of two-
fluid models. In the following, we will find it useful to base our analyses on some
common formulation of these models. By neglecting the phasic pressure difference
(p = pg = p�) and writing

(13) τi =
(
p− pi

) ∂αg

∂x
−M i

g = −
(
p− pi

) ∂α�

∂x
+ M i

�,

we arrive at the following canonical two-fluid model:
• Conservation of mass

(14)
∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,

(15)
∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,

• Momentum balances

(16)
∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+ αg

∂

∂x
(p) + τi = Qg,

(17)
∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+ α�

∂

∂x
(p) − τi = Q�,

where the interfacial momentum exchange term τi may or may not contain differential
operators.

3. Drift-flux model. A strategy to avoid the modeling difficulties associated
with the momentum exchange terms, as mentioned in the previous section, is to
reformulate the model such that these terms no longer directly appear. This is
precisely the idea of the drift-flux formulation of two-phase flow. By making the
simplifying assumption

(18) p = pg = p�,

and adding the two momentum equations (3) and (4), we obtain the conservation
equation for the mixture momentum:

(19)
∂

∂t
(ρgαgvg + ρ�α�v�) +

∂

∂x

(
ρgαgv

2
g + ρ�α�v

2
� + p

)
= Qg + Q�.

Note that (18) is consistent with the assumption of a mixed flow regime, which is the
situation for which the drift-flux model is commonly applied.

The phasic momentums must satisfy a slip relation in the functional form

(20) vg − v� = Φ(p, αg, vg).

Hence the two momentum evolution equations (16)–(17) of the two-fluid model are
replaced by one evolution equation (19) and one functional relation (20). Bouré [9]
discusses generalized drift-flux models where Φ may also contain differential operators.
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3.1. Model formulation. In summary, using the nomenclature

mg = ρgαg,(21)

m� = ρ�α�,(22)

Ig = mgvg,(23)

I� = m�v�,(24)

I = Ig + I�,(25)

Q = Qg + Q�,(26)

we may express the drift-flux model as

(27)
∂mg

∂t
+

∂Ig
∂x

= 0,

(28)
∂m�

∂t
+

∂I�
∂x

= 0,

(29)
∂I

∂t
+

∂

∂x
(Igvg + I�v� + p) = Q,

supplemented with the following functional relations:
• Thermodynamics: p = p(ρg) = p(ρ�).
• Slip relation: vg − v� = Φ(mg,m�, vg).

3.2. Quasi-linear formulation. The model (27)–(29) may be written in the
following quasi-linear form:

(30)
∂U

∂t
+ A(U)

∂U

∂x
= Q(U),

where

(31) U =

⎡
⎣ mg

m�

I

⎤
⎦

and

(32) Q(U) =

⎡
⎣ 0

0
Q

⎤
⎦ .

In the following, we will derive an expression for the Jacobi matrix A. Towards this
aim, we will follow the common practice of thermodynamics and take

(33)

(
∂X

∂Y

)
a,b

to mean the partial derivative of X with respect to Y under the assumption of constant
a and b.
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3.2.1. Some definitions. We now define the following basic abbreviations:

μg =

(
∂Φ

∂mg

)
m�,vg

,(34)

μ� =

(
∂Φ

∂m�

)
mg,vg

,(35)

μv =

(
∂Φ

∂vg

)
mg,m�

,(36)

ζ =

(
∂v�
∂vg

)
mg,m�

.(37)

We further define the pseudomass ρ̂:

(38) ρ̂ = mg + ζm�.

Remark 1. We observe that by writing (20) as

(39) dΦ = dvg − dv�,

we obtain from (36) and (37) the basic relation

(40) μv = 1 − ζ.

We may now derive the following useful differentials.
Differential 1 (gas velocity). We may expand dI as

(41) dI = mg dvg + vg dmg + v� dm� + m� dv�.

Using (39) and

(42) dΦ = μg dmg + μ� dm� + μv dvg,

we obtain

(43) dvg =
1

ρ̂
(dI + (m�μg − vg) dmg + (m�μ� − v�) dm�) .

Differential 2 (gas momentum). Using

(44) dIg = mg dvg + vg dmg,

we obtain from (43)

(45) dIg =
1

ρ̂
(mg dI + (mgm�μg + ζm�vg) dmg + (mgm�μ� −mgv�) dm�) .

Differential 3 (liquid momentum). Using

(46) dI = dIg + dI�,

we obtain from (45)

(47) dI� =
1

ρ̂
(ζm� dI − (mgm�μg + ζm�vg) dmg − (mgm�μ� −mgv�) dm�) .
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Differential 4 (pressure). Writing αg + α� = 1 as

(48)
mg

ρg(p)
+

m�

ρ�(p)
= 1,

we obtain by differentiation

(49) dp = κ (ρ� dmg + ρg dm�) ,

where

(50) κ =
1

(∂ρg/∂p) ρ�αg + (∂ρ�/∂p) ρgα�
.

Differential 5 (gas momentum convection). We have

(51) d (Igvg) = Ig dvg + vg dIg.

Hence from (43) and (45) we obtain

d (Igvg) =
1

ρ̂

(
2mgvg dI +

(
2mgm�vgμg + (ζm� −mg)v

2
g

)
dmg

+ (2mgm�vgμ� − 2mgvgv�) dm�

)
.(52)

Differential 6 (liquid momentum convection). We have

(53) dv� = dvg − dΦ = ζ dvg − μg dmg − μ� dm�.

From (43) we obtain

(54) dv� =
1

ρ̂
(ζ dI − (mgμg + ζvg) dmg − (mgμ� + ζv�) dm�) .

Hence from

(55) d (I�v�) = I� dv� + v� dI�

we obtain

d (I�v�) =
1

ρ̂

(
2ζm�v� dI − (2mgm�v�μg + 2ζm�vgv�) dmg

−
(
2mgm�v�μ� + (ζm� −mg)v

2
�

)
dm�

)
.(56)

3.2.2. The Jacobi matrix. With the aid of these differentials we can more or
less directly write down the Jacobi matrix

(57) A(U) =
1

ρ̂

⎡
⎣ mgm�μg + ζm�vg mgm�μ� −mgv� mg

−(mgm�μg + ζm�vg) mgv� −mgm�μ� ζm�

A31 A32 2(mgvg + ζm�v�)

⎤
⎦ ,

where

(58) A31 = κρ̂ρ� + 2mgm�μg(vg − v�) + (ζm� −mg)v
2
g − 2ζm�vgv�

and

(59) A32 = κρ̂ρg + 2mgm�μ�(vg − v�) − (ζm� −mg)v
2
� − 2mgvgv�.
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4. Wave structure analysis. As is well known from the theory of hyperbolic
conservation laws, the velocities of the inherent wave phenomena of the system (30)
are given by the eigenvalues of A.

These eigenvalues satisfy the characteristic equation

(λ− vg)(λ− v�)(ρ̂λ−mgvg − ζm�v�) + mgm�

(
μ�(λ− vg)

2 − μg(λ− v�)
2
)

+ κρgρ� (αgα�(ρgμg − ρ�μ�) − αg(λ− v�) − ζα�(λ− vg)) = 0.

(60)

Remark 2 (eigenvectors). The eigenvector equation for A is

(61) Aω = λω.

From (57) we obtain

(62) ω =

⎡
⎣ mg (m�μ� + (λ− v�))

ζm�(λ− vg) −mgm�μg

λ (ρ̂λ−mgm�(μg − μ�) −mgv� − ζm�vg)

⎤
⎦ .

The eigenvalue equation (60), being a third-order polynomial, can in principle be
solved exactly to yield algebraic expressions for the eigenvalues λ. However, as tools
for understanding the wave structure of the drift-flux model, these exact solutions
are of limited value due to their high degree of complexity. In practice, one would
often prefer making some simplifying assumptions and study the resulting approximate
eigenvalues.

4.1. The Zuber–Findlay relation. A very important special case is the Zuber–
Findlay slip relation [30], which can be written in the following simple analytical form:

(63) vg = K (αgvg + α�v�) + S

or equivalently

(64) Φ =
(K − 1)vg + S

Kα�
.

This expression was derived from continuity considerations by Zuber and Findlay [30],
where two different effects are taken into account:

1. The effect of nonuniform velocity and concentration profiles. The shape factor
K is defined as

(65) K =
〈(αgvg + α�v�)αg〉
〈αgvg + α�v�〉〈αg〉

,

where

(66) 〈·〉 =
1

A

∫
A

(·)(x, y, z)dA.

Here A is the cross-sectional area in the (y, z)-plane.
2. The effect of local relative velocity. The drift velocity S is defined as the

terminal velocity of a single gas bubble rising through the liquid.
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The Zuber–Findlay relation (63) has been experimentally established for a broad
range of parameters for both bubbly and slug flows [3, 15].

This particular drift-flux model has been extensively studied by Théron [26] and
Benzoni-Gavage [5]. By making some simplifying assumptions (most notably constant
K and S as well as an incompressible liquid phase) they obtained the eigenvalues

• sonic waves

(67) λs = v� ±
√

p

ρ�αg (1 −Kαg)
,

• material wave

(68) λm = vg.

Benzoni-Gavage [5] demonstrated that the sonic characteristic fields are genuinely
nonlinear, whereas the material field is linearly degenerate. Provided the liquid phase
is incompressible, Gavrilyuk and Fabre [16] have demonstrated that under a suitable
variable transformation, the drift-flux model with slip relation (63) is mathematically
similar to the Euler equations of gas dynamics.

In the following sections, we demonstrate how the drift-flux model may be ana-
lyzed more generally using a perturbation technique suggested by Toumi and cowork-
ers [27, 28, 29]. In particular, we allow the liquid to be compressible and recover the
above results of [26, 5] as the low-order limit in the perturbation parameter.

4.2. A simplifying assumption. In the following, we will assume that the
slip relation can be expressed in the Zuber–Findlay form (63). Here we allow the
parameters K and S to be expressed as general functions:

K = K(p, vg),(69)

S = S(p, vg).(70)

Equivalently, this can be expressed as a differential equation:

(71) α�

(
∂Φ

∂α�

)
p

+ Φ = 0.

From (34), (35), and (48) we may derive the following identity:

(72)

(
∂Φ

∂α�

)
p

≡ ρ�μ� − ρgμg.

Hence from (71) we obtain

(73) μ� =
ρg

ρ�
μg +

v� − vg

m�

and the eigenvalue equation (60) simplifies to

(λ− vg)(λ− v�)(ρ̂λ−mgvg − ζm�v�) + mgm�

(
μ�(λ− vg)

2 − μg(λ− v�)
2
)

(74)

− κρgρ� (αg + ζα�) (λ− vg) = 0.
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4.3. Dimensionless formulation. By making the substitution

(75) λ = vg + aσ

we will achieve some simplification, where a now plays the role of the unknown. We
may now write (74) as

aσ(vg − v� + aσ) (ρ̂aσ + ζm�(vg − v�)) + mgm�

(
μ�a

2σ2 − μg(vg − v� + aσ)2
)

− κρgρ� (αg + ζα�) aσ = 0.
(76)

Now defining σ as

(77) σ2 = κρ̂ (αg + ζα�)

and introducing the dimensionless variables

ε =
vg − v�

σ
,(78)

z =
mgα�

σ
μg,(79)

ψ =
ρg

ρ̂
,(80)

ϕ =
ρ�
ρ̂
,(81)

the eigenvalue equation (76) may correspondingly be written in dimensionless form

(82) a(ε + a)(a + ζα�ϕε) + zψa2 − zϕ(ε + a)2 − αgψεa
2 − ϕψa = 0.

Now introducing the pseudoliquid fraction

(83) α̂ = ζα�

and noting that

(84) αgψ + ζα�ϕ = 1,

the eigenvalue equation (82) simplifies to

(85) a3 + (2α̂ϕε− z(ϕ− ψ)) a2 + ϕ
(
α̂ε2 − 2zε− ψ

)
a− zϕε2 = 0.

4.4. A power series approximation. We may now write a as a power series
expansion

(86) a =

∞∑
i=0

βiχ
i

for some perturbation parameter χ. Now several choices for χ are available through
(78)–(81), depending on the values of the physical variables. In the following, we will
use as our starting point the incompressible limit and obtain eigenvalues accurate to
the lowest orders of compressibility.

Towards this aim, we observe that σ given by (77) will have a magnitude in the
order of the phasic sound velocities (which tend to infinity in the incompressible limit).
Hence, for subsonic flows, we expect

(87) ε � 1.
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Consequently we write

(88) a =
∞∑
i=0

βiε
i

and obtain the coefficients βi by repeatedly solving (85) to the corresponding order
in ε.

4.4.1. Material wave. From (85) we obtain

(89)

⎡
⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

...

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0

−z/ψ
2z2/ψ2

...

⎤
⎥⎥⎥⎥⎥⎦ ,

which translates into the eigenvalue

(90) λm = vg −
αgα�

αg + ζα�
μg

(vg − v�)
2

κ
+ O(ε3)

by the relations of section 4.3.

4.4.2. Sonic waves. We will find it convenient to introduce the shorthand

(91) w =
√
z2(ψ − ϕ)2 + 4ϕψ.

From (85) we obtain
• downstream pressure wave

(92)

⎡
⎢⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

((ϕ− ψ)z + w) /2
2ϕ (z − α̂β0) /w

β1

(
4ϕψ(1 − α̂ϕ) − z2(ϕ2 − ψ2) − 2ϕwz

)
/(2β0w

2)
...

⎤
⎥⎥⎥⎦ ,

• upstream pressure wave (obtained from (85))

(93)

⎡
⎢⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

((ϕ− ψ)z − w) /2
−2ϕ (z − α̂β0) /w

β1

(
4ϕψ(1 − α̂ϕ) − z2(ϕ2 − ψ2) + 2ϕwz

)
/(2β0w

2)
...

⎤
⎥⎥⎥⎦ .

Now by writing the sonic eigenvalues in the form

(94) λp = v̄p ± c,

the coefficients (92)–(93) yield after some manipulation

(95) v̄p =
mgvg + ζm�v�
mg + ζm�

+ mgα�μg
ρ� − ρg

2ρ̂
+

αgα�

αg + ζα�
μg

(vg − v�)
2

2κ
+ O(ε3),

as well as the sonic velocity c:

(96) c =
1

2
wσ +

zϕ

w
(2 − α̂(ϕ− ψ)) (vg − v�) + O(ε2).
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Remark 3. Given that

(97) trace(A) =
∑
i

λi,

the following exact relation between v̄p and λm is satisfied:

(98) 2v̄p + λm =
1

ρ̂

(
mgm�μg

(
1 − ρg

ρ�

))
+ vg + 2

mgvg + ζm�v�
ρ̂

.

Remark 4. Although these eigenvalue expressions have been obtained under the
assumption (71), similar techniques may be applied to solve (60) for other slip rela-
tions not satisfying (71). However, some knowledge of the relationship between the
parameters μg, μ�, and μv will be useful for simplifying the calculations and deter-
mining a good choice of perturbation parameter.

4.5. Zuber–Findlay revisited. We now revisit the special case of the Zuber–
Findlay slip relation (63)

(99) vg = K(αgvg + α�v�) + S,

but we now consider K and S to be constants, which depend on the flow regime. This
further simplification of (71) is often used for practical calculations [11, 15, 30].

4.5.1. Slip derivatives. By differentiation, we obtain the following explicit
expressions for the slip parameters (34)–(37):

(100) μv =
K − 1

Kα�
,

(101) μg = (vg − v�)κ
∂ρ�
∂p

,

(102) μ� = −(vg − v�)κ
αg

α�

∂ρg

∂p
,

and

(103) ζ =
1 −Kαg

Kα�
.

Asymptotic expressions for the eigenvalues could now be obtained by substituting
(100)–(103) into the previously calculated expressions (90) and (95)–(96). Equiva-
lently, we may also substitute (100)–(103) into (76) and repeat the power series anal-
ysis. This will greatly simplify the calculations, a point that will be demonstrated in
the following.

4.5.2. Eigenvalue equation. From (101) we note that z, as defined by (79),
may be written as

(104) z = ηε,

where

(105) η = mgα�κ
∂ρ�
∂p

.

Substituting in (85) we obtain the eigenvalue equation

(106) a3 + ε (2α̂ϕ− η(ϕ− ψ)) a2 + ϕ
(
α̂ε2 − 2ηε2 − ψ

)
a− ηϕε3 = 0.
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4.5.3. Material wave. Solving (106) to powers of ε yields the following coeffi-
cients:

(107)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

β4

β5

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−η/ψ
0

η(2η − α̂)/ψ2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence

(108) λm = vg −Kαgα�
∂ρ�
∂p

(vg − v�)
3 + O(ε5).

Changes in the material composition are consequently propagated by the velocity of
the gas bubbles, plus small correction terms representing volumetric changes due to
compression. Note that λm = vg becomes an exact eigenvalue for η = 0, the limit of
incompressible liquid [16].

4.5.4. Sonic waves. For the sonic waves, we obtain the following coefficients:
• Downstream pressure wave

(109)⎡
⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

√
ϕψ

η(φ− ψ)/2 − α̂ϕ(
2ϕ(4η + 2α̂ηψ − η2ψ − 4α̂) + (2α̂− η)2ϕ2 + η2ψ2

)
/(8

√
ϕψ)

...

⎤
⎥⎥⎦,

• Upstream pressure wave
(110)⎡
⎢⎢⎣

β0

β1

β2

...

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−
√
ϕψ

η(φ− ψ)/2 − α̂ϕ

−
(
2ϕ(4η + 2α̂ηψ − η2ψ − 4α̂) + (2α̂− η)2ϕ2 + η2ψ2

)
/(8

√
ϕψ)

...

⎤
⎥⎥⎦.

Hence

(111) v̄p =
mgvg + ζm�v�
mg + ζm�

+ mgα�κ
∂ρ�
∂p

(vg − v�)
ρ� − ρg

2ρ̂
+ O(ε3),

and the sound velocity c may be written as

(112) c =

√
κρgρ�

Kαg(ρg − ρ�) + ρ�
+ O(ε)2.

Remark 5. Note that ρg � ρ� implies c � σ, and the requirement ε � 1 (87)
has a significantly broader range of validity than the assumption of subsonic slip,
|vg − v�| � c.

Remark 6. The sonic eigenvalues may be written as

(113) λs = v� ±
√

(∂p/∂ρg)ρg

(1 −Kαg)ρ�αg
+ O(η) + O(ψ) + O(ε2),

which reduces to the result (67) when p(ρg) satisfies the ideal gas law.
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5. Two-fluid formulation. In this section, we perform the transformation re-
quired to write the general drift-flux model of section 3.1 in canonical two-fluid form
as described in section 2.3. In other words, we replace the conservation equation
(19), together with the slip relation (20), with equivalent evolution equations for the
momentums of each phase.

5.1. Momentum evolution equations. We first derive an explicit gas mo-
mentum evolution equation for the general drift-flux model with slip relation (20).
Our starting point is the previously derived differential (45), which becomes

(114)
∂Ig
∂t

=
1

ρ̂

(
mg

∂I

∂t
+ (mgm�μg + ζm�vg)

∂mg

∂t
+ (mgm�μ� −mgv�)

∂m�

∂t

)
,

when written as a partial derivative with respect to t.

By using the conservation equations (27)–(29), we obtain the gas momentum
evolution equation, written in terms of spatial derivatives

∂Ig
∂t

+
mg

ρ̂

∂

∂x
(Igvg + I�v� + p) +

ζm�

ρ̂
vg

∂Ig
∂x

(115)

− mg

ρ̂
v�
∂I�
∂x

+
mgm�

ρ̂

(
μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
=

mg

ρ̂
Q.

Further manipulation of derivatives yields

∂Ig
∂t

+
∂

∂x
(Igvg) +

mg

ρ̂

∂p

∂x
(116)

+
mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x
+ μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
=

mg

ρ̂
Q.

5.1.1. Canonical form. Writing (116) under the canonical two-fluid form of
section 2.3,

(117)
∂Ig
∂t

+
∂

∂x
(Igvg) + αg

∂p

∂x
+ τi = Qg,

where Q = Qg + Q�, we find that the interface friction τi is given by

τi = αgα�
ρg − ζρ�

ρ̂

∂p

∂x
+

ζm�

ρ̂
Qg −

mg

ρ̂
Q�

+
mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x
+ μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
.

(118)

5.1.2. Liquid momentum evolution. By inserting (118) into the canonical
liquid momentum equation (17), we obtain

∂I�
∂t

+
∂

∂x
(I�v�) +

ζm�

ρ̂

∂p

∂x

−mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x
+ μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
=

ζm�

ρ̂
Q.

(119)
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5.2. Quasi-linear formulation. We may now express this rewritten drift-flux
model in quasi-linear form:

(120)
∂U

∂t
+ A

∂U

∂x
= Q,

similar to section 3.2. However, the matrix A is now 4 × 4 and U is given by

(121) U =

⎡
⎢⎢⎣

ρgαg

ρ�α�

ρgαgvg

ρ�α�v�

⎤
⎥⎥⎦ ,

whereas the vector of sources is

(122) Q =
1

ρ̂

⎡
⎢⎢⎣

0
0

mgQ
ζm�Q

⎤
⎥⎥⎦ .

We now split (118) into four parts:

(123) τi = τp + τv + τα + τQ,

where

(124) τp = αgα�
ρg − ζρ�

ρ̂

∂p

∂x
,

(125) τv =
mgm�

ρ̂

(
v�
∂v�
∂x

− ζvg
∂vg

∂x

)
,

(126) τα =
mgm�

ρ̂

(
μg

∂Ig
∂x

+ μ�
∂I�
∂x

)
,

and

(127) τQ =
ζm�

ρ̂
Qg −

mg

ρ̂
Q�.

This defines a natural decomposition of the Jacobi matrix as follows:

(128) A(U) = A0 + Ap + Av + Aα,

i.e., one additional contribution for each differential term of the interface friction.

5.2.1. A0. The Jacobi matrix for the canonical two-fluid model with τi = 0 is
[12]

(129) A0 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

κρ�αg − v2
g κρgαg 2vg 0

κρ�α� κρgα� − v2
� 0 2v�

⎤
⎥⎥⎦ .
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5.2.2. Ap. From (49) we obtain

(130) Ap(U) =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0

κρ�αgα�
ρg−ζρ�

ρ̂ κρgαgα�
ρg−ζρ�

ρ̂ 0 0

−κρ�αgα�
ρg−ζρ�

ρ̂ −κρ�αgα�
ρg−ζρ�

ρ̂ 0 0

⎤
⎥⎥⎥⎦ .

5.2.3. Av. From

(131) dvg =
1

mg
dIg −

vg

mg
dmg

and

(132) dv� =
1

m�
dI� −

v�
m�

dm�

we obtain

(133) Av(U) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

ζm�

ρ̂ v2
g −mg

ρ̂ v2
� − ζm�

ρ̂ vg
mg

ρ̂ v�

− ζm�

ρ̂ v2
g

mg

ρ̂ v2
�

ζm�

ρ̂ vg −mg

ρ̂ v�

⎤
⎥⎥⎦ .

5.2.4. Aα. We directly obtain

(134) Aα(U) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0

mgm�

ρ̂ μg
mgm�

ρ̂ μ�

0 0 −mgm�

ρ̂ μg −mgm�

ρ̂ μ�

⎤
⎥⎥⎦ .

5.2.5. End result. Adding all contributions we obtain from (128)

(135)

A(U) =⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

mg

ρ̂

(
κρ� − v2

g

)
mg

ρ̂

(
κρg − v2

�

) (
2 − ζm�

ρ̂

)
vg +

mgm�

ρ̂
μg

mg

ρ̂
v� +

mgm�

ρ̂
μ�

ζm�
ρ̂

(
κρ� − v2

g

)
ζm�
ρ̂

(
κρg − v2

�

)
ζm�
ρ̂

vg − mgm�

ρ̂
μg

(
2 − mg

ρ̂

)
v� − mgm�

ρ̂
μ�

⎤
⎥⎥⎦ .

5.2.6. Eigenvalues. The eigenvalues of the matrix A are the roots of the poly-
nomial equation

λ
[
(λ− vg)(λ− v�)(ρ̂λ−mgvg − ζm�v�)

+ mgm�

(
μ�(λ− vg)

2 − μg(λ− v�)
2
)

+ κρgρ� (αgα�(ρgμg − ρ�μ�) − αg(λ− v�) − ζα�(λ− vg))
]

= 0.

(136)

By direct comparison with (60), we see that this may be written as

(137) λP (λ) = 0,

where P (λ) is the eigenvalue polynomial for the original drift-flux model.
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Remark 7. We have written the drift-flux model as a quasi-linear system of four
equations by deriving two momentum equations which replace the mixed momentum
equation and the slip law. As a consequence, the characteristic speeds of this system
are given by (137) showing that a new characteristic speed λ = 0, representing the slip
relation, has been added to the characteristic speeds already given by the drift-flux
model.

This situation is similar to what is observed for a much simpler problem. Consider
the scalar equation

(138) ut + f(u)x = k′(x)g(u),

where k, f , and g are given functions. A common approach for deriving numerical
schemes for the model (138) is to first write the model as a quasi-linear system of two
equations, by adding the trivial equation kt = 0, which gives

(139) Ut + A(U)Ux = 0, U =

(
u
k

)
, A(U) =

(
f ′(u) −g(u)

0 0

)
.

The characteristic speeds of this system are given by λ1 = f ′(u) and λ2 = 0. If f ′(u) =
0 for some u, then the eigenvalues coincide, and we have so-called resonance; see, for
instance, [17] and the references therein for more on this. Note that this phenomenon
might well also occur for our system (120)–(126), since one of the solutions of P (λ) = 0
corresponding to the slow material wave (see below for more details) can be zero. This
happens when vg = v� = 0.

It is interesting to note that the form (139) often is used as the starting point
for designing numerical schemes for solving (138). In a similar manner we could
imagine to use the above two-fluid form (120)–(126) as a starting point for developing
a numerical scheme for the drift-flux model, e.g., by using the numerical schemes more
recently proposed in [13, 14] for the two-fluid model.

6. Interface friction and wave velocities. In this section, we investigate how
the wave structure of the two-fluid model gradually changes as it is transformed into
a drift-flux model by addition of the various terms of (123). Our starting point is the
canonical model with τi = 0:

(140)
∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,

(141)
∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,

(142)
∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+ αg

∂

∂x
(p) = Qg,

(143)
∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+ α�

∂

∂x
(p) = Q�.

6.1. Wave structure of the canonical model. For different choices of τi,
Toumi and coworkers [27, 28, 29] investigated the wave structure of the model with a
perturbation technique. For τi = 0, the wave velocities are precisely the eigenvalues
of the matrix A0 given by (129). Now defining

(144) ε =
vg − v�

ĉ
,
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where ĉ is a mixture sonic velocity given by

(145) ĉ =

√
ρ�αg + ρgα�

(∂ρg/∂p)ρ�αg + (∂ρ�/∂p)ρgα�
=

√
(ρ�αg + ρgα�)κ,

approximate eigenvalues for (140)–(143) were presented by Evje and Fl̊atten [12] as
described below.

6.1.1. Material waves. Writing

(146) λm = v̄v ± γ,

we obtain

(147) v̄v =
ρgα�vg + ρ�αgv�
ρgα� + ρ�αg

+ O(ε3)

and

(148) γ = i

√
ρgρ�αgα�(vg − v�)

ρgα� + ρ�αg
+ O(ε3).

Remark 8. Note that unless vg = v�, γ is imaginary and the canonical two-fluid
model with τi = 0 loses hyperbolicity. Hence the inclusion of a differential interface
friction τi is essential for obtaining a well-behaved mathematical solution.

Remark 9. Note that if ρg � ρ�, v̄
v ≈ v� and the material waves travel with the

velocity of the liquid phase. This is quite the opposite of the drift-flux model, where
the velocity of the material wave corresponds to the gas velocity vg (section 4.4).

6.1.2. Sonic waves. Writing

(149) λs = v̄p ± c,

we obtain

(150) v̄p =
ρgα�v� + ρ�αgvg

ρgα� + ρ�αg
+ O(ε3)

and

(151) c = ĉ
(
1 + O(ε2)

)
.

Remark 10. If ρg � ρ�, v̄
p ≈ vg and the part of the sonic wave that is transported

along the flow travels with the velocity of the gas phase. Again this contrasts the drift-
flux model, where the corresponding result of section 4.4 yields v̄p ≈ v�.

6.2. Numerical investigations. In the framework of the canonical two-fluid
model, the eigenvalues of the previous section correspond to τi = 0, whereas the
eigenvalues of section 4.4 correspond to the interface friction (123),

(152) τi = τp + τv + τα + τQ,

which was derived in section 5.1.1. We now study the relation between the interface
friction and the wave velocities more closely, by looking at a specific example. More
precisely, we consider a two-phase flow satisfying the Zuber–Findlay slip relation (63)
with phasic properties roughly representing an air-water mixture.
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Fig. 1. The Zuber–Findlay gas velocity as a function of liquid fraction. Left: Near singularity.
Right: Physical region.

6.2.1. Model parameters. In the following, we assume that the phasic veloc-
ities are related by the Zuber–Findlay slip relation

(153) vg = K (αgvg + α�v�) + S,

where we choose

(154) K = 1.07

and

(155) S = 0.216 m/s.

Furthermore, we assume the flow conditions

v� = 10 m/s,(156)

ρg = 1.0 kg/m
3
,(157)

ρ� = 1000 kg/m
3
,(158)

∂p/∂ρg = 105 m2/s
2
,(159)

∂p/∂ρ� = 106 m2/s
2
.(160)

6.2.2. Gas velocity. By inspecting the slip expression (153) we find there is a
singularity corresponding to

(161) α̂ = ζα� =
1 −Kαg

K
= 0,

which with our choice of parameters occurs at

(162) αcrit
� ≈ 0.0654.

The gas velocity vg changes sign from −∞ to +∞ across the singularity, as shown
in Figure 1. However, α� < αcrit

� implies large gas bubbles corresponding more or less
to the annular flow regime, where the drift-flux model is not applicable [16]. Hence
we discard the corresponding results as unphysical and base our further investigations
on the assumption α� > αcrit

� .
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6.2.3. Wave velocities. We now investigate the effect of the different terms of

(163) τi = τp + τv + τα + τQ

on the wave velocities of the canonical two-fluid model. Note that τQ, as given by
(124), is purely nondifferential, and hence has no effect on the wave structure of the
model. In the following plots we use the labels

• two-fluid: τi = 0,
• drift-flux: τi = τp + τv + τα

to denote the special choices of interface friction yielding the basic two-fluid and
drift-flux wave structures, respectively, as described in sections 4 and 6.1.

Remark 11. Note that with our choice of slip relation (153), the expression (126)
may by use of (101) and (102) be rewritten as

(164) τα = (vg − v�)
mgm�

ρ̂α�

∂α�

∂t
.

In the following, wave velocities corresponding to different choices of τi (163) are
calculated as the eigenvalues of the corresponding matrix A(U) as described in section
5.2. A numerical algorithm was used to calculate the eigenvalues, sorted in ascending
order by their real parts as

(165) Re(λ1) < Re(λ2) < Re(λ3) < Re(λ4).

Here λ1 and λ4 are sonic waves, whereas λ2 and λ3 represent slow waves.

6.2.4. Slip wave. As noted in Remark 7, the slip relation manifests itself as a
stationary wave for the drift-flux interface friction (τi = τp+τv+τα). Hence one of the
two material waves described in section 6.1.1, corresponding to τi = 0, will gradually
transform into this stationary “slip wave” as the terms (124)–(126) are added to the
interface friction.

The effect of this is illustrated in Figure 2, where |λ2| is plotted as a function of
liquid fraction. Already for τi = τp + τv, we obtain λ2=0, which is left unchanged by
the addition of τα. Note that τα = 0 corresponds to a special case of the drift-flux
model, where the slip relation satisfies μg = μ� = 0. Hence the “drift-flux” character
of the system (λ2 ≡ 0) is fully manifest in the τp and τv components of the interface
friction.

6.2.5. Material wave. As seen by the analyses of section 4.5 and 6.1, one
material wave is gradually transformed from (146) (λm ≈ v�) into (108) (λm ≈ vg).

This is illustrated in Figure 3, where Re(λ3) is plotted as a function of liquid
fraction. Note that without the inclusion of τα, the wave velocity is constant. This
demonstrates the fact that τα = 0 implies that the slip is independent of volume
fraction.

6.2.6. Sound velocity. Following sections 4.4.2 and 6.1.2, we write the sonic
waves as a combination of two components as follows:

(166) λs = v̄p ± c,

where v̄p represents the part of the sonic wave that is transported with the flow,
whereas c is the sonic velocity with respect to v̄p. Hence we get

(167) c =
λ4 − λ1

2
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and

(168) v̄p =
λ1 + λ4

2
.

In Figure 4, the sound velocity c is plotted as a function of liquid fraction. We
observe that c is transformed from the two-fluid sound velocity (145) into the drift-flux
sound velocity (112) by the action of τp alone; the terms τv and τα have no additional
effect.

Remark 12. This plot illustrates the fact that whereas for the two-fluid model

(169) ctf ≈ cg,

the drift-flux sonic velocity satisfies

(170) cdf � min(cg, c�).

A similar parabolic-like shape for cmix(α�) was also derived by Nguyen, Winther, and
Greiner [21] by considering the interface as an elastic wall. They also pointed out
that this shape is consistent with experimental data for mixed flows.

6.2.7. Sonic transport velocity. The sonic transport velocity v̄p is plotted in
Figure 5. We get more or less the inverse of Figure 3; now v̄p ≈ vg (two-fluid model)
is transformed into v̄p ≈ v� (drift-flux model) by the action of the interface friction
(118).

7. Summary. A quasi-linear form of the drift-flux two-phase flow model has
been derived. The wave structure of this model has been investigated by a perturba-
tion technique, extending previous results of Théron [26] and Benzoni-Gavage [5].
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Fig. 5. Sonic transport velocity v̄p as a function of liquid fraction.

The drift-flux model has further been rewritten within the framework of a more
general two-fluid model, by derivation of the proper form of the interface friction τi.
Here the slip relation is represented as a stationary wave.

The interface friction τi may be split into four parts

(171) τi = τp + τv + τα + τQ,

where the following hold:
• The terms τp and τv make up the drift-flux nature of the system (stationary

slip wave).
• The term τp is almost exclusively associated with the mixture sound velocity
c.

• The term τα is associated with the slow waves, imposing a dependency of
volume fraction on the material wave.

The drift-flux and two-fluid formulations are often considered to be different mod-
eling strategies with different domains of applicability. The unification presented in
this paper may facilitate the implementation of both models within a single computer
code. Furthermore, the link presented between the observable slip velocity and the
underlying interface friction may serve as an aid for developing better physical models
for two-phase flows.
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