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FLOW THROUGH POROUS MEDIA SYMPOSIUM

Physics and Thermodyndmics of Cdpillary

A thermodynamic theory and a detailed mechanism of immiscible displacement

in porous media are developed in terms of a quantized model

wide range of natural and technological processes

involves capillary action associated with immiscible
fluid displacement within the interstices of porous solids,
Examples are the movement of air and water in soils
and porous rocks, the recovery of hydrocarbons from
subterranean reservoirs, the drying, centrifuging and
dewatering of porous solids, the hehavior of porous fuel
cell electrodes, and the capillary properties of textile
and paper fibers.

Although principles of capillary action are well under-
stood, their application to practical problems is often
limited by the complicated geometry of porcus solids.
Difficulties are compounded when there is uncertainty
as to the surface encrgetics of the system which deter-
mine the property generally described as the wettability
of a porous solid.

The structure and surface properties of numerous
types of porous materials are commonly investigated by
measurement of capillary displacement pressures as a
function of displaced volume.  Often it has been assumed
that immiscible displacement can be treated as a
smoothly reversible process. Thermodynamic relation-
ships based on this assumption have been used to relate
the work of displacement to changes in the area of the
surfaces which bound the fluid phases contained by the
solid.  Although so-called capillary pressure equilibrium
points appear to be part of a continuous relationship
between capillary pressure and displaced volume, these
relationships are not reversible. Furthermore, when
examined in fine detail, they are not continuous. Much
of the confusion surrounding the thermodynamic inter-
pretation of capillary pressure data can be avoided
by giving consideration to the frequently referenced
general treatment of capillarity by J. W. Gibbs (7)
and the investigations of displacement in porous solids
by W. B. Haines (2).

This paper has three main sections. In the first
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section, the terminology used in: discussing surface
energetics is defined, and thermodynamic relationships
for reversible displacements are derived from funda-
mental thermodynamic equations. In the sccond section,
the mechanism and thermodynamics of displacement in
porous media are discussed. To obtain infinitesimally
slow displacement in porous media, special conditions
are required which lead to a quantized model of displace-
ment.  Changes in volumetric and surface quantities
can be classified within the framework of the quantized
model to give a consistent account of the displacement
mechanism. The third section describes an experi
mental investigation of displacement in random packings
of equal-sized spheres, commonly known as the ideal
soil. Changes in surface arca of phases within the
packings are measured directly to obtain the changes of
free energy due to surface. Inherent thermodynamic
efficiencies of displacement are then obtained by compar-
ing changes in surface free energy with the work of
displacement given by capillary pressure data,

SURFACE ENERGETICS

There is no generally accepted terminology by which
surface energetics can be discussed without risk of
ambiguity to the reader. The following terms have
appeared in published literature (7-70): surface tension,
superficial tension, interfacial tension, adhesion tension,
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Figure 1. Gibbs model of surface between two fluids
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surface stress, stress tension, surface free energy, super- Surfaces between Fluids
ficial densitics of energy, specific surface encrgy, free Superficial surface free energy. The physical
surface cnergy, surface encrgy, surface energy density, surface of discontinuity is viewed as a nonhomogencous
Hlelmholtz free encrgy, surface Helmholtz free encrgy, film separating two homogencous phases,. The proper-
specific surface free cnergy, pure surface energy, real ties of the film vary along normals to the surface but are
surface energy, actual surface cnergy, theorctical free constant over any geometrical surface which is parallel
surface energy, free encrgy of formation, and relative to the physical surface (Figure 1a). Gibbs (77) intro-
surface free energy. duced a mathematical model whereby thermodynamic
The terms surface tension, surface free energy, and quantities, which he termed superficial, could he as-
superficial surface [ree cnergy will first be defined as signed to the regions ¢ and 8 and a geometrical surface
used in this paper.  The last term is defined to preclude which divides these regions (Figure 1b).  The geometrical
any possible misunderstanding of the term surface free dividing surface lies in and is sensibly coincident with the
energy. We will begin by defining and comparing the physical surface of discontinuity (Figure 1h). All
above threc terms as they relate to a system of two fluid points in the mathematical surface are similarly situated j
phases, o and B, separated by a plane interface, S, of with respect to the physical surface. The precise ‘s
arca A. Insubsequent discussions, several pairs of fluids position of the Gibbs dividing surface is arbitrary, but,
will be used as wetting and nonwetting phases with of course, all possible placements lic parallel to cach
respect 1o a solid. The nomenclature will be defined other. "
as each pair is introduced, but for convenience in future The geometrical surface preciscly divides the volume,
references, they arce listed in Table I. V, of the system into regions e and 8 with ¥, the volume ‘
Table . Nomenclature for Three-Phase Systems ’
(Solid-wetting phase—nonwetting phase)
Notation Pore space saturations Surface areas hetween phases ’ l
System Solid Wetting Nonwetlting Welting Nonwetting Woetting- Weiting Nonwetting &
fluids ared, A, phase phase phase phase nonwetting solid solid >
General s o B Su S Ang Ay A
W ater—oil s w o S S, Avo Age A i
Water—air s w a Suw Su Aua Asw Aso i ;
Water—vapor s w v S S, Aps Asw Ay, o
Liquid—air s I a S, Se A Ag Ase
Liquid—vapor s { v S, S, A, Ay Ag
A = area, s = salid, w = water, 0 = oil, 0 = air, v = vapor, | = liquid.
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associated with the « phase, and ¥, the volume asso-
ciated with the 8 phase (see Figure 1b)

V=V,4 Vs (1)

The essential feature of the mathematical model is
that bulk propertics of each phase are maintained
right up to the dividing surface. Lect the number of
moles per unit volume of the 7th component be (),
and (¥;)g in the homogencous parts of the « and g
phases, respectively. Mbolar quantities for the regions
a and 8 up to the dividing surface of the Gibbs model
are given by

(ni)(x = (Ni)mVa (2)
(“i)ﬂ (Ni)ﬁVﬂ (3)

If the total number of moles of component 7 in the
system is n;, a material balance defines a surface excess
(or deficiency) of, say, the ith component which will be
denoted by ()5

= (e + () + (0 s (4)
Similarly, if /7 is the total Helmholtz free energy of the
system, F, is the Helmholtz free energy of a volume V,,
of the & phase in bulk, and Fg is the Helmholtz free
energy of a volume Vj of the 8 phase in bulk, a super-
ficial surface free encrgy, Fg, of the surface is defined by

F=1F,+ Fg + Fg (5)

The fundamental Gibbs equation for change in Helm-
holtz free energy of a system with f components is

)
dF = —S§'T + 3 uidn; — PdV, — PydVy + 0dd,, (6)
=1

The intensive quantities given in the right-hand side of
Equation 6 are entropy, chemical potential, pressure,
and surface tension, respectively.

When changes are isothermal, for the two regions « and
B, we may write

.

d};‘a = “1‘{(”1)0: - PadVa (7)
i=1
J

dFﬁ = & Nid(ﬂg)ﬂ i PﬁdVﬁ (8)

Change in superficial surface free energy I is given by
dFs = dF — dF, — dF, &))]

From Equations 6-9,
J s
Wy = 3 i = 3 ) —

J
E Mid(ni)ﬂ + U'd.Aaﬂ (10)

i==1

From Equation 4

dlns = dn, — d(n), — d(ny)g (11)

Hence, writing 4 for Aupy

i
dFS = Zl #1d(7’1—¢)s + odAd (12)
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Let the total area of the surface, .S, be 4 and the surface
excess per unit area of component 4, as determined by
the model, be T'y, thus

(ni)s = I‘iA (13)
d(n)s = T'idd -+ Adl', (14)

TFrom Equation 12,
7 J
dFS = 2 ,uJ‘td/l "I“ Z ,LHA([I’{ ‘]“ adA (15)
i== ] i=1

a]?S i 7 alwt>
= iP Al T N
<DA )T,V.n 1;1 pal's + 1-;1 ki <’()A o o (16)

where the subscript n implics that the number of moles
of cach component, i = 1 to j, is constant,

Variation of T'; with surface arca will occur if, say, onc
component resides only in the surface and not in the
contiguous bulk masses. In theory, the surface could
be supplied with this component so that the propertics
of the surface per unit arca remain constant.

When the properties of the surface per unit area are
independent of the total arca,

DI‘¢>
— = () 17
<DA TV an
Integration of Equation 16 then gives

P i

T nmlito (18)

Let the superficial surface free energy per unit area be fg
defined by

7
fS = 21 'y + o (19)

Recall that the location of the dividing surface which
determines the magnitude of T'; and fsais arbitrary, The
dividing surface is sometimes placed so that ', = 0
for one component. For the single component systemm
given by a pure liquid and its vapor, the dividing
surface can be located so that T' = 0 and then

fs=¢a (20)

However, in general, the surface tension, which is
numerically equal to the reversible work of cxtension
per unit area of surface, is not equal to the superficial
surface free energy.

Surface free energy and surface tension. TFrom
Equation 6, surface tension is defined by

(68). = e

If the surface tension is constant,
(AF) g,y = aAA (22)

Let the increase in Helmholtz free energy of the system
due to a unit of area extension be f, then

@)x =7 (23)




Hence
o=f (24)

and from Equation 19, f and fg arc rclated by

fs = 5’:1 Wl + f (25)

The change in free energy of the system, (AF)q o,
is equal to the reversible work of extension of the surlace.
Gibbs deseribed the product edd, given by Equation 22
above, as the available energy due to the surface in the
system (73). In many discussions of capillarity, the
product, ¢Ad, has been called surface free energy, and
we shall follow that practice here. We do this some-
what reluctantly because Defay and Prigogine have
called the quantity fg the surface free energy. They
describe confusion between surface tension and what they
call surface free energy as particularly illogical (74).
Johnson (7) points out that the term sureface [ree energy
is often used without further definition.  In the majority
of these instances, we believe the term surface [ree
enecrgy is intended to mean f, the free energy of the
system duce to the presence of the surface; this is par-
ticularly so if the Gibbs mathematical dividing surface
has not been introduced.

In systems where the surface tension is dependent
upon surface arca, the surface free energy, as we have
defined it, will not he equal to the product of surface
tension and arca. The change in surface free cenergy
duc to a change in arca from 4y to 4, is now given by

Ay
(AR py, = f o(d)dd (26)
Ay

Also, the surface free energy due to a unit area of surface,
f> will depend upon the magnitude of the arca and is not
equal to the surface tension. Systems containing in-
soluble surfactants provide examples where the surface
tension may vary significantly with arca because surfac-
tant concentration and the related spreading pressure
of the surfactant depend upon absolute arca. Such
variations are conunonly investigated experimentally
with some form of surface tension trough (3).

Surface curvature and location of dividing surface,
A completely general discussion of capillarity would
require consideration of the effect of curvature on both
surface tension and the location of the Gibbhs reference
surface which lies within the physical surface. How-
ever, these effects do not become significant until radii
of curvature of a surface approach molecular dimensions
(75-77). In porous media which are reasonably
permeable to fluid flow, the curvatures of surfaces
between fluids given by displacement pressures are

relatively low. Thus the previous discussion of the

encrgetics of plane surfaces extends to fluid interfaces
developed during immiscible displacement.

Surface Energetics of Systems Containing Solid
Surfaces

The conceptual difficulties involved in treating the
surface energetics of solids are generally admitted.
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Figuwre 25 Equilibrium at a three-phase line of condact
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Figure 3. Hypothetical model illusirating stability for plane liquid
and adsorbed film surfaces
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Figure 4{a). Equilibrium of adsorbed surface film and capillary-held
liquid
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Figure 4(b). Skeiches of variation in stress anisotropy with height for
adsorbed film depicted in Figure 4a
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Treatments of multiphase systems containing solids are
found in the original work of Gibbs (7) and the more
recent work of Defay and Prigogine (78).  These general
treatments will be tailored to the needs of the present
development. Three-phase systems in which one of the
Phases is a solid will be considered first.

A complication of dealing with solids is that the state
of strain of the solid in the region of the surface may be
important, With fluids, surface tension acts uniformly
in the surface, independent of dircction, and can be
measured directly as a force.  In a crystalline solid with
anisotropic elastic properties, surface tension cannot be
measured directly, but the force required to stretch the
surface infinitesimally may vary with direction in the
surface.

Gibbs (79) defined a quantity, o, as the work required
to form a unit area of the surface, with the assumption
that the properties of the surface are directly propor-
tional to the arca of the surface. Gibhs defined ¢ in
terms of integral excess properties of the surface.

o= fg— i pal'y 27)

=2

The dividing surface was chosen to make the surface
excess of the solid (component 1) equal to zero. In this
way, the problems arising from variations in chemical
potential with state of strain of anisotropic solids arc
circumvented.

We can also define ¢ as the contribution to the total
Helmholtz free energy of the system due to the presence
of a unit area of the surface in question. In other words,
o is the reversible work of formation of the surface

AF
T <KZ>T.V,1L (28)

If the state of stress is isotropic, ¢ is also equal to the
surface tension. In accordance with the proposec
terminology for fluid interfaces, ¢ will be called the
surface free energy per unit area, (With regard to the
problem of terminology, Defay and Prigogine call o of
Equation 27 the swface tension by analogy with the
definition of ¢ of Equation 19 for fluid interfaces. They
name the quantity f, as given by Equation 27, the rela-
tive surface free energy, where we suggest the name
superficial surface free energy by analogy with Equation
19.)

Defay and Prigogine point cut that one of the dis-
advantages of working in terms of ¢ as the free energy of
formation is the practical difficulty of measuring the
external work done in forming a solid-Auid surface by an
isothermal and reversible process. This problem is
absent for systems of interest here, since we consider
only changes in surface free energy which accompany
displacement of one overlying fluid by another from a
solid surface assumed to maintain constant surface
area. The reversible work of displacement of a three-
phase line of contact across the solid surface will be
given by the product of the changes in area and the
difference in the two o quantities of the solid surface.
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Equilibrium at three-phase line of contact—Young’s
equation. It is frequently observed that the interface
between two fluid phases meets an apparently smooth
surface of a solid phase, s, at a finite angle, say 8, mea-
surcd through the wetting phase as shown in Figure 2a.

In the region of the three-phase linc of contact given
by such a system, the model which enabled us to define
a dividing surface within the physical surface breaks
down. However, the sclected dividing surfaces can he
extrapolated into the three-phase confluent zone. The
dividing surfaces will define cxact surface arcas between
phases, and a mathematical linc to which line excess
quantitics can be assigned (20). TFor cxample, the
excess of the ith component with respect to the three-
phase line of contact, (ny), is given by

ny = (1) + (ni)ﬂ + (ny)s + (’lt)S(a/i) -+ (m).s'(.m) -+
(m) sep T (nI)L (29)

For the systems of interest here, the region occupied by
the three-phasc line of contact contains few molecules
compared with the other surface regions. The con-
tribution to the Helmholtz free energy of the system
due to variation in the length of the three-phase line of
contact, which may result from variation in surface
areas, can therefore be neglected.

If we assume that the solid is smooth and rigid and that
6 is single valued, the condition for thermodynamic
equilibrium along the three-phase line of contact is
given by Gibbs (27) as

3

LZ1 (oud1)dx 2 0 (30)

where o = surface free energy per unit area of the kth
surface

7 = clement taking along the three-phase line of
contact

dx = infinitesimal displacement over the solid

surface normal to the clement, 87

Let the surface area between the phascs be 4, with
appropriate subscripts used to define a particular surface,

dds, = brdx (31)
dAsﬂ = —frdx (32)
dAng = G7dx cos § (33)

Hence, from Equation 30,

Taf COS 6 + 050 — 055 = 0 (34)

A more general derivation of this equation with gravita-
tional potential and surface free encrgy minimized has
been given by Collins and Cooke (22).

Equation 34 relates the difference in two quantities,
Tgs, Tae Which cannot be measured individually, to the
quantities o, and § which can be measured and is the
equivalent of Young’s equation (23). This equation
is often presented on the basis of a simple force balance.
For equilibrium, the fluid surface tension resolved in the
plane of the solid surface must be balanced by some
type of force acting in the surface. If the forces acting




in the plane of the solid surface and normal to the three
phase linc of contact are denoted by v, we obtain

Tap COS 0 = Ypy — Yo (35)

Severe conceptual difficulties concerning the nature of
the v quantitics offset the apparent simplicity of this
relationship. These diflicultics have led to several
disagreements as to the interpretation and validity of
Young’s cquation. A consistent interpretation of
Young’s cquation, which includes the special case of
zero contact angle, is given by Gibbs, Before discuss-
ing Gibbs trcatment, two examples where Young’s
equation may not be appropriate in its above form will
be mentioned.

Deformation of solid surfaces. The vertical compo-
nent of tension between the fluids, oy, sin 6, is balanced
by forces which cause the solid to be strained. For
example, deformation of solid surfaces along the three-
phase line of contact is described for mercury on mica
(24). When the modulus of clasticity is low, Lester
calculated that the solid will deform to give a ridge along
the three-phase line of contact. In such cases, the
Neumann surface tension triangle for three fluids should
be used to express the balance of forces at the three-
phase line of contact, rather than Young's cquation
(25).

Spreading of solid substrates. If the solid is par-
tially soluble in ecither of the fluid phases, adsorption
may cause a significant reduction in the surface tension,
oup Observed for the two fluids alone. Thus, measure-
ments of o, may not always be applicable to the equilib-
rium expressed by Equation 34, Fowkes (26) estimated
the spreading pressure, wpz, of solids or possible atmo-
spheric contaminants on a mercury-air interface by
comparing mcasured contact angles with those calculated
for a mercury-air surface tension of 484 dynes/cm with
7 = 0. The contact angles were calculated from
interaction cnergics which had in turn been estimated
from surface tension measurements on standard systems.
Using liquid advancing and receding contact angle
data, estimates of the spreading pressure of solids on
mercury ranged from 45.5 dynes/em for paraffin wax
to 100.5 dynes/cm for polycethylene.

Gibbs formulation of Young’s equation—the un-
changeable solid. Gibbs (27) introduced the unchange-
able solid as a model. The unchangeable solid is insolu-
ble in the fluid phases and its state of strain when
bounded by a vacuum is unaltered by the presence of an
overlying fluid. Properties of the unchangeable solid
will be assumed in all subsequent discussion of solids in-
chuding porous media.

The superficial tension of the fluid, », is given by the
tension in the solid-fluid interface, oy, less the tension
in the solid surface when it is bounded by a vacuum, o;.

Nsa = Usq — T (36)

In effect, the model divides the surface tension at the
solid-fluid interface oy, into the two components, 7,
and o,. Under the stated conditions, the fluid has no
influence on the disposition of the solid; but the presence

of the solid does influence the contractile {orces within
the fluid to give rise to 7y, which Gibbs named the
superficial tension of the fluid in contact with the solid,
When the system is in equilibrium, a balance of forees
along a tangent to the solid swface at, and normal to,
the three-phase line of contact gives

Mg = G5 = Nao T 05 = Tup COS 0 (37
Hence,
Nep — Nsa = Oap COS 0 (38)

Melrose (28) points out that the quantity, 7, with
opposite sign, is equal to the more commonly cncoun-
tered film pressure,  For example, when a drop of liquid
on a smooth solid surface is in cquilibrium with its
vapor, the tension in the vapor solid surface is given by
the tension of the solid surface in vacuum less the film
pressure of the adsorbed vapor on the solid surface.

Stability in systems containing solid edges. As in
the treatment of surfaces between two fuids, the preced-
ing discussion, which includes solicls, applics strictly
to planc surfaces. However, as with curved liquid sur-
faces, the effects of curvature on surface free energy can
probably be safely neglected for smooth solid surfaces.

Many natural solids, especially if freshly broken, have
regions of extremely high curvature. As a limiting
case, without considering the question of smoothuess at a
molecular level, the solid can be regarded as having
smooth surfaces which may be wholly or partially
bounded by edges. Gibbs (27) considered the condi-
tions for cquilibrium at a three-phase (two fuids and a
solid) line of contact for the two cases of smooth surfaces
and edges.  The simpler case of the smooth solid is given
by Equation 34. In contrast, for cquilibrium at an
edge, the angles at which the interface between the
fluids can possibly meet one of the cdges forming the
surface, cover a range which is determined by the angle
subtended at the edge by the two solid surfaces, The
range of angles through which a three-phase line of
contact can be observed at an ecdge, provided other
requirements of stability are met, is depicted in Iigure
2b. Clearly, the contact angle condition for stability
of an interface between two fluids in the presence of a
solid has been relaxed, As a consequence, in systems
containing angular solids, most of the three-phase line
of contact will probably lic along particle edges.

Displacement pressures in porous solids are often
assumed proportional to the cosine of the contact angle.
When an attempt is made to deduce contact angles from
capillary displacement pressures, special attention must
be given to the possible effect of edges (29).  Even if the
solid is smooth, capillary displacement pressure is
proportional to the cosine of the contact angle only for
extremely simple geometrics such as uniform capillary
tubes.

Although the solid edges may be important in deter-
mining configurational stability of the interface scparat-
ing the two fluids, their contribution to surface free
energy can be neglected; as with three-phase lines of
contact at smooth solid surfaces, there are relatively
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few miolecules in the three-phase confluent zone com-
pared with the total in all of the surface zones.

Contact angle hysteresis. Values of contact angles
measured in real systems usually depend upon whether
the three-phase line of contact is advancing or receding
over the solid surface. Contact angle hysteresis can
arise because of surface roughness, heterogeneous dis-
tribution of adsorbed impurities on the solid surface or
the mechanism by which liquid molecules adsorb and
desorb when the interface is displaced (30). If suffi-
cient care is taken in preparation of a clean, smooth,
solid surface, contact angle hysteresis can sometimes be
reduced to less than one or two degrees (37).

Contact angles are clearly important in determining
the capillary properties of porous media. However, in
view of the difficulties of measuring reproducible contact
angles on carefully prepared surfaces and the relaxed
stability conditions at solid edges, it seems highly un-
likely that all three-phase lines of contact within porous
media will lie on smooth solid surfaces with a single-
valued, uniform contact angle,

The present study is concerned with a quantitative
treatment of displacement thermodynamics; hence,
contact angle must be eliminated as an unknown vari-
able since surface free energy is dependent on contact
angle. Absence of contact angle hysteresis in experi-
ments with porous media can only be confidently
assumed when the liquid spreads over the salid. The
contact angle is then zero if the threc-phase line of
contact lies on a smooth solid surface.

Surface energetics of spreading. In addition to
disagreement on the general validity of Young’s equa-
tion, there is also controversy as to its interpretation
when the contact angle is zero (7, 32). Perhaps this is
because Young’s equation is commonly introduced by
considering the balance of forces at the three-phase line
of contact of a drop sitting on a plane solid surface.
When the contact angle is zero, the drop will spread
indefinitely. For the purposc of illustrating stability
at plane surfaces, the above physical example is clearly
inadequate.

A hypothetical model designed for general discussion
of stability at plane interfaces was recently introduced
by Melrose (33). The two fluids were a liquid, L and
itsvapor V. In this model, a plane liquid-vapor surface
can coexist with a plane solid surface over which the
liquid will spread. Spreading is prevented by a friction-
less and inert mechanical barrier which can only move
parallel to the solid surface. An essential requirement
of the model is that the gravitational potential of the
liquid be negligible. Only the main features of the
maodel are depicted in F igure 3.

When the liquid is nonspreading, a force, Q per unit
length of the barrier, must be exerted to prevent contrac-
tion of the liquid surface. The force is given by

T Tsy (39)

From Young’s equation 34 for finite contact angle, O
is given by
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Q = o,,(1 — cos 6) (40)

On the other hand, for the spreading condition, adsorp-
tion of vapor will continue until the force, @, recuired
to retain the barrier, vanishes. At this point, the system
is asserted to be in equilibrium. Tor the nonspreading
case, work is required to extend the liquid surface by mov-
ing the barrier; in the spreading system at equilibrium,
however, the position of the barrier does not alter the
free energy of the system since the barrier can be moved
without expending work. In other words, if the ad-
sorbed film is replaced by a thin liquid layer, there is no
change in the surface free encrgy of the system.

Stability of the adsorbed film involves the limit of
film thickness achieved at the expense of the liquid (33),
Equilibrium requires that the outermost molecules of the
film have the same chemical potential as the vapor and
the surface molecules of the liquid. To attain this
condition, the adsorbed film must thicken until its
outermost molecules arc unaffected by the attractive
forces of the solid. Thus, the tension of the outermost
part of the adsorbed film must be equal to that of the
liquid-vapor surface. Similarly, the tension of the
region of the film in contact with the solid is cqual to the
solid-liquid tension.  Films of this nature were deseribed
by Harkins as duplex (34).

Spreading against Gravity. Figurc 4a depicts gpreading
up a vertical infinite flat plate in a gravitational ficld
with water and its vapor at equilibrium.  If the vapor
pressure at the level of the free water surface is Jay the
vapor pressure, p, at any height, 4, above the plane water
surface is given by

Apg/l/\4>
b= p, — 2Pl 41
)= poop (- 28 "
where Ap = density difference of liquid water and its
vapor
g = acceleration due to gravity
M = molecular weight

R = universal gas constant

Vapor pressure is expressed in Figure 4a as percent
relative humidity, Hp, where

He = £ 100

]

(42)

At an infinite height, the vapor pressurc is zero and the
tension is that of the solid against a vacuum denoted by
a5 At finite heights, adsorption of vapor at the solid
surface causes the thickness of the film to increase slowly
with decreasing height as shown qualitatively in Figure
4a. The actual thickness of the adsorbed film and
thickness variation with height are not known with any
certainty; unpublished estimates for high relative
humidities range from 10 to 30 A (4 to 12 molecular
layers of water) with 100 A as an upper limit, There is
mixed evidence that the solid can extend its range of
influence on the structure of water to even greater dis-
tances but such considerations are beyond the scope of
this paper (35-37).
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Melrose (33) cmploys the relationship, due to Buff
(38), between tension and stress disteibution in an inter-
face to illustrate qualitatively the formation of a duplex
film when the vapor pressure over a plane solid is raised
to its saturation value. Tension, o, in the surface is
given by

;= f (4r ~ ux) A (43)

where pp and py arve the transverse and normal compo-
nents of the stress tensor in an interfacial region with
integration over a normal, A, to the interface.

Sketches of variation in stress anisotropy with vapor
pressure given by Melrose (33) are included in Figure 41
to provide a rough, qualitative indication of how stress
anisotropy in the surface varies with height.  Although
the presence of adsorbed material reduces the tension
of the solid surface, the adsorbed water contributes to
the total tension,  As the film thickens, two maxima
in stresy anisotropy are conceived; at higher vapor pres-
sures, the two contributions to tension become in-
creasingly distinct (Figure 41).  If the plate touches the
water surface, capillary rise against the plate to a maxi-

mum height of '\/20,,“,/Apg, precludes the existence of
adsorbed vapor films below this height, At the water
surface, the relative humidity is 1009, and a stable
adsorbed film at this level would correspond to the
duplex film given by the hypothetical model shown in
TFigure 3.

In this limiting case of film stability, the central
minimum of the stress anisotropy diagram just touches
the zero axis with separate surface-film and film-vapor
regions contributing to the filns total tension.  Further
condensation of vapor would lead to the formation of a
bulk liquid region separating liquid-solid and vapor-solid
surfaces,  The stress disteibution in cach of these surfaces
is precisely that of the individual components of the
duplex film; the stess distibution diagram for the
system will now feature a central minimum of zero
with finite length corresponding to the bulk water
separating the solic-liquid and liquid-vapor surfaces.

In an adsorbed film, the distribution of mass in excess
of the mass of displaced vapor is dirveetly related to the
variation of superficial tension with height.  Gibbs
(39) discusses the distribution of adsorbed material
on a solid surface in a gravitational ficld. Young’s
equation is shown to follow from the special case of a
local force balance at the three-phase line of contact
that is equally valid for finite and zero contact angle.
Gibbs discusscs the variation in cxcess mass of the
adsorbed material with height in terms of superficial
tensions. At a particular height, /4, the excess mass, m,
of the adsorbed film is related to the superficial tension,
s bY '

dn = (mg)dh (44)
Thus, the excess mass, m’, of adsorbed materials between

any two given heights (fy and /s, A1 < hg), is equal to the
difference in superficial tensions at these heights.

m'g = (M — (Nu (45)

A more physically appealing statement of the above
force balance is given directly by the inerease in arvea
under the stress anisotropy curves for the two given
heights. The superticial tension is related o the stress
anisotropy distribution by

N == [f(#’l' - I»LN) (D\]l; - [f(#’z' - lx) W\]hmn (46)

Trom Bquations 45 and 46,
m'g = [[(up = pw) d\he ~ [f (40 = ny) d\ln (47)

Capillary Lquilibrium in Gravitational Field. Bulk water
can also exist at equilibrium above the free water surface
if suitable solid houndaries are provided.  As a simple
illustration, capillary rise for zero contact angle ina 10-u
diameter tube is included in Figure 4a. The vapor
above the curved water surface is in equilibrium with the
adsorbed film at this height on the flat plate.  The
equilibrium capillary pressure of any vapor-water surface
is fixed by its height above the [ree water surface.

P, = Apgh (48)

The capillary pressure is related o surface curvature
by the Laplace equation (40)

1 1
Pc = Ty <7’ : "l‘~ 7) (49)
1 2

where o, 18 the water-vapor surface tension and ry and ra
are the principal radii of curvature at any point in the
surface, usually defined as positive with respect to the
nonwetting phase, I the surface hetween water and its
vapor is stable, Equations 48 and 49 apply for any shape
of solid surface and any wettability condition,

Also depicted in Figure 4a are two scts of touching
spheres at heights of 100 and 1000 em above the (ree
water surface.  Water will condense around the points of
contact between the spheres until the pressure drop
across the surface of the pendular ving so formed corre-
sponds to capillary pressure given by Lquation 48.
The properties of pendular rings are well documented
(A7~44), Profiles for pendular rings at cquilibrium
between 10-p diameter hydrophilic spheres at the two
heights are included in Figure 4a.

Properties of adsorbed filiis on curved solid surlaces,
such as the tube and sphere surfaces shown in Figure 4a,
will vary slightly from those on the plane surface at the
sanic height. The thickness of adsorbed film on a
curved solid surface will be about cquivalent to that
given by the planc surface at a height corresponding to
the equilibrivin curvature of the vapor-water surface
increased by the curvature of the solid (taking convex as
positive). Thus, at any height, adsorbed films are
slightly thinner on convex solid surfaces and slightly
thicker on concave solid surfaces than the equilibrium
film thickness on the corresponding plane surface.

When spreading occurs, the surface {rce energy per
unit area of adsorbed film will be equal to that of the
vapor-liquid surface at the same height.  Tor the range
of capillary pressures and fluid curvatures of interest,

YOL 62 NO, 6 JUNE 1970 3¢




" OIL-WATER
SURFACE

]

A

Figure 5. Idealized system for reversible smmiscible displagement

variation of vapor-liquid surface tensions with curvature
are not measurable and can be neglected until the radii
of curvature approach molecular dimensions (15-17).
Also, for all practical purpeses, the area of a surface is
adequately defined by its physical position. Thus, for
the spreading situation, the increase in free energy due
to surface over the reference state given by solid overlain
by bulk water is

AF = G'mu(va + Asu) (50)

This result is often stated without formal derivation.
The above discussion serves to demonstrate a funda-
mentally consistent treatment of surface energetics for
spreading systems and clarifies the assumptions leading to
Equation 50.

Thermodynamics of Reversible Displacement

The thermodynamics of reversible fluid displacement
are now considered for an idealized model; changes of
surface area within the model system are related to
external work done on or by the system.

By the first law of thermodynamics, a change in the
total energy of the system, dE, is given by

J
dE = dg + dW + 3 udn, (51)
=1

where dg is the heat flowing into the system. For an
isothermal change

dg = TdS' (52)

dW = the reversible work done on the system

k¢ = the chemical potential, and n4 18 the number of
moles of the 7/th component
J = the number of components

In the following analysis, gravitational, magnetic,
and electric force ficlds are assumed to be absent or of
negligible effect.

The work 41 done on the system is given by

3 3
dW = — 3" PdV'y + 3 1dA, (53)
p=1 k=1
where

£ = the pth phase
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DRAINAGE IMBIBITION

Figure 6,  Bistability of an interface in a nonuniform tube

and o = interfacial tension of the kth surface
Ay = area of the kth surface
V' = volume

I

(We may note that two phases correspond to only one
interface. In the above system, there arc three phascs
and three interfaces. With four phases, six interfaces
arc possible, and so on.)  If the system is closed,

dn, = 0 i=1,7 (54)
and
3 3
dE = TdS' — 37 PdV', 4+ 3 01, (55)
i T
"The Helmholtz free energy is defined by,
F=F—-T (56)
dF = dE — Td§' — S'dT (57)

Thus from Equations 55 and 57,
3 3
dFf = =S4T ~ 37 PydV'y + 3 ¢dd, (58)
p=1 LES!
If displacement is isothermal,

3 3
dF = — 37 PpdV'y + 3 04dd, (59)
pe=1 k=1

To facilitate discussion, we will assume a model
system consisting of a solid(s), wetted by water (1) witha
unique contact angle 6, in the presence of oil (o). Figure
5 depicts a pendular ring of water held between two
solid particles. The water can enter or leave the ring
via a passage through one of the particles. The geom-
etry of the particles allows the ring to vary smoothly
and reversibly in volume and surface arca. The walls
of the piston are assumed to make no contribution to
the surface free energy.

If the pistons were free to move, water would tend to
be imbibed and the pendular ring would grow. If the
piston in contact with the oil is free to move, an outward
force proportional to (P, — P,) must be exerted on the
piston in contact with water in order to maintain
equilibrium. The external work, W, done on the
enclosed system in moving the piston in contact with the
water outward to give a displacement, —dV,, where
Vi is the volume of water in the pendular ring, is given by:

AWery = "_(Pn - w)de (60)
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Figure 7. Idealized capillary pressure apparatus

The decrease in Helmholtz free encrgy of the sur-
roundings of the closed system is equal but opposite in
sign to the work done on the closed system. TFrom
Equation 59 the change in Helmholtz free energy, dF,
of the closed system can be written

dF = —PdV's — PudV', — PudV'!, + ¢l e -
oylddsy - oyulddey (61)

For a virtual displacement, the total change in the
Helmholtz free energy of the system and its surroundings
is zero.

dF = 0 = (po - Pw)(le — PdV'y — Pdelw -
Pu([V’n + iAo + opddy, + Tyl (62)

If the work on compression on all three phases is ne-
glected,
dV'y = dV'y = dV’', = 0 (63)
Also, the total solid swface arca is constant so that,
dd,y = —ddg, (64)
and from Young’s equation (sce Bquation 34)
Oy ™ Oy = Gy COS 0 (65)

The pressure difference (P, — P,) is the capillary pres-
surc P, across the curved water-oil interface,
Equation 62 can therclore be redueed to

"‘chde = 0'11)0(1(/1100 4 Ayo cos 0) (66)
If the water spreads over the solid, cos 8 = 1, and

dF = — fPdVy = cwel(Aws + As) (67)
For finite displacements which can be conducted reversi-
bly Equations 66 and 67 can be integrated to give,
respectively

AN = — f Pchw = 0'100(AA100 + A4, cos 0) (68)

and

AF = fnpchw = Tuo(Adwo + Adyo) (69)
o0

The above thermodynamic analysis of reversible
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Figure 8. Capillary pressure hysieresis data for 48-60 mesh micro-
beads (6-1)

displacements will next be extended to a treatment of
displacement in porous media.

THERMODYNAMICS OF IMMISCIBLE
DISPLACEMENT IN POROUS MEDIA

Relationships between capillary pressure and - dis-
placement volume can be obtained by a number of
routine procedures which are adequately  described
clsewhere (45-48). Equations 68 and 69 have often
been applied directly to determine changes in surface
arca (47-54); this necessarily assumcs that displacement
can be conducted smoothly and reversibly, The assump-
tion of reversible displacement is at variance with com-
monly observed hysteresis in capillarvy pressure.  Ireever-

sibility at the microscopic scale is evident from observa-

tions made by Haines (2); during invasion of pore
spaces, the development of unstable interface con-

figurations caunsed small oscillations in pressure,  Strik- -

ing demonstrations of the discontinuities in capillary
pressurc vs. displaced volume were reported recently by
Crawford and Hoover (55).

The bistability of an interface in a nonuniform capil-
lary of the type shown in TFigure 6 is commonly used to
cxplain capillary pressure hysteresis.  Liquid level de-
pends upon its initial condition.  Furthermore, when the
filled tube is slowly raised above the free water surface,
the interface passes into the bulbous region spon-
taneously unless restrained by carcfully controlling the
pressure in the tube above the interface. Similarly,
when the drained tube is slowly lowered, the liquid will
imbibe spontaneously into the bully, but at a pressure
distinctly different from the drainage pressure.

It follows that when given volumes of fluid are co-
mingled in a complicated network of nonuniform pores
typical of a porous media, many stable fluid configura-
tions are possible, Unlike many thermodynamic sys-
tems which are stable at a single minimum frec energy,
there will be many local minima of frec energy, and the
global minimum for the system has no special signifi-
carnce.
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Measurement of Capillary Pressures in Porous Solids

An idealized apparatus for measurement of capillary
pressures in porous solids is shown in Figure 7. Nor-
mally, the porous solid is initially saturated with the
wetting phase (water) and placed in close contact with
a fine-pored membrane -which remains saturated with
water at all times. The pressure on the water phase
(neglecting hydrostatic head) is the measured gas
pressure acting on a frictionless piston. The nonwetting
phase (oil) is in direct contact with the porous solid,
and its pressure is given by the gas pressure P, acting
on a second piston. Since capillary pressure is defined
as the pressure difference between oil and water,
absolute pressures P, and P, are not required. Nor-
mally, one phase or the other is at atmospheric pressure
throughout the measurements.

Displacement in the porous solid is usually expressed
as per cent change in saturation, S,, the volumetric
fraction of pore space in the solid occupied by the wetting
phase. Displacement of a volume of water AV, is
related to a saturation change AS,, by

AV, = VapAS, (70)

where Vp is the bulk volume of the porous solid and ¢
is the porosity of the solid. Changes in saturation
result from changes in pressure. Fach capillary pres-
sure data point is obtained by holding the external
pressure difference at a constant value until fluid flow
to or from the porous solid ceases. In the apparatus
of Figure 7, volumetric displacement and the time at
which flow ceases is indicated by the position of the
piston acting on the water phase.

Data points are usually referred to as capillary pressure
equilibria; but this description requires qualification
because not all of the stability requirements for equilib-
rium are met. Befare discussing the nature of the
stability represented by capillary pressure data points,
the general form of capillary pressure »s. saturation
curves will be reviewed.

General form of capillary pressure data. Satura-
tion changes which result from variations in capillary
pressure do not follow a unique functional relationship.
Plots of capillary pressure data zs. saturation are shown
in Figure 8a and b. To aid discussion of capillary
pressure curves, we define the following terms.

o Irreducible saturation, Sy, the volume of wetting
phase retained at high capillary pressures where the
wetting phase- saturation appears to be independent of
further increases in the externally measured capillary
pressure.

¢ Residual saturation, S,,; the volume of nonwetting
phase which is entrapped when the externally measured
capillary pressure is reduced from a high value to zerg
(see Figure 8a).

¢ Initial drainage curve, R,: the relationship charac-
teristic of displacement of wetting phase from 1009
saturation to the irreducible wetting phase saturation, St

¢ Imbibition, 4: increase in wetting phase saturation
from the irreducible wetting phase saturation to the
residual nonwetting phase saturation, 5,,.
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o Secondary drainage, R: drainage from the residual
nonwetting phase saturation, S, to the irreducible
wetting phase saturation, Syy.

Most experimental evidence indicates that the ir-
reducible saturation obtained by initial drainage is the
same as that obtained by secondary drainage. When
the two conditions are the samc, imbibition after secon-
dary drainage will follow exactly the imbibition curve
obtained after initial drainage. Thus, the secondary
drainage curve and the imbibition curve constitute a
closed and reproducible hysteresis loop, R4,

Scanning curves within the main hysteresis loop, R4,
are obtained by reversing the dircction of pressure
change at some intermediate point along the sccondary
drainage or imbibition curves. In the former case,
they will be called primary imbibition scanning curves,
and in the latter, primary drainage scanning curves.

Hysteresis. Many natural systems exhibit hysteresis
in the relationship of one variable to another, Some-
times hysteresis, as judged by the magnitude of the
hysteresis loop, can be reduced merely by increasing the
time for traversal of a loop. If the loop degencrates into a
line, then hysteresis is clearly time-dependent. Capillary
pressure hysteresis in porous media is essentially in-
dependent of time in that the loop cannot he reduced by
further increasing the cxperimental time for cach data
point. Such behavior has been named permanent
hysteresis (57).

Everett and coworkers (56-59) developed an in-
dependent domain theory of permancent hysteresis which
has recently been investigated as a model for capillary
pressure hysteresis (60-62). BEverct’s theorems can be
stated for experimentally obscrved capillary pressure
behavior as follows:

1. The secondary drainage curve, R, and the im-
bibition curve, 4, form a closed loop, R4, with all sub-
sequent capillary pressure data points lying on or within
this loop (Figures 8a and b).

2. The primary drainage scanning curves, which
begin at the imbibition curve, A, ecither meet at the
upper intersection of the R4 curve (Figure 8h), or

CAPILLARY PRESSURE
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Figure 9. General behavior of capillary pressure scanning curves




Table l. Comparative Reductions in Relative Humidity of Water Due to Surface Curvature, Temperature
Reduction, and Salinity
Cylindrical Porcent Equivalont
Caplilary Surface caplllary radius, relativa tamporature Equivalent
prossure, b, curvaturo, {0 = o), humidity, 20°C, reduction AT salinity, {gmol
em H20 (P./Apg) om (P oy) em (2 /Py p/po) 100% bolow 20°C NaCl par liter)
0 0 ) 100 0 0
10 1.36 X 10 1.47 X 10 99.999 1.6 X 10 3 X101
10° 1.36 X 10 1.47 X 10+ 99.99 1.6 X 107 3 X 10~
108 1.36 x 101 1.47 X 10 99.92 1.3 X 10 2,4 X 102
10¢ 1.36 X 108 1.47 X 10" 99.27 1.2 X 101 0.22
108 1.36 X 10° 1.47 X 10" 93.0 1.16 2.1

converge angentially onto the secondary drainage curve,
R, in a region close o the intersection,  Behavior of
imbibition seanning curves, which begin at the drainage
curve, R, is analogous (Figure 8a).

3. Any point within a hysteresis loop can be reached
by many paths.  Complele specification of the system
at a given pressurc-saturation cootdinate must inelude
the path by which the point was attained, since
the path determines the microseopic distribution of the
fluids and future behavior of the system, (Four possible
paths to the same pressure coordinate are shown in
Pigure 9a.)

4. Il the system were taken through a series of pres-
sure oseillations of deereasing amplitude, alter the ath
pressure reversaly the systent moves toward the point at
which the n =~ 1 reversal ocenrved, and if the system is
carried through this point, it moves toward the 2 — 3
reversal point, and so on. (This bebavior is shown in
Tigure 9h,)

The ahove theovems deseribing the general hehavior of
apillavy pressure curves are consislent with the ex-
peeted displacement mechanism, Closed scanning loops
*an be explained as follows.  Clonsider a region which
has been drained (o a saturation Sy, by a pressure Py
IT the pressure were then lowered to Py, the wetting
phase would imbibe to Swe. When the pressure s
raised again (o Py, preeisely that region which became
aceupied by imbibition (when the pressure was lowered
from Py to Py), can be expected to drain. The liquid
in this region must have continuity beeause it imbibec;
the previous drainage demonstrated that reapplication
of pressure 23 will be sufficient to remove only that liquid
from the region where liquid was freshly imbibed,
Equally straightforward, but not entively rigorous,
explanations can be given {or the other general state-
ments iade above.

For a porous medium to satisfy the conditions of
Everett’s independent domain model, cach pore must
have a characteristic drainage pressure py and a filling
pressure f. The model does not require that 43 and py
be functionally related, If the conditions of the in-
dependent domain theory hold for porous media, then
imbibition scanning curves could be used to predict
drainage scanning curves and oie versa.  Satisfactory

predictions were obtained by Poulovassilis (60) in teses
on beds of sintered glass beads; however, later work by
Topp and Miller (62) showed that the theory is not
generally applicable,

In general, assigmiment of draining and {illing pressures
to a given region may be unrealistie, since pressuves for
displacament arve also determined by aceessibility and
phase continuity,  When the behavior of a domain iy
influenced by other domains, the system is said to
exhibit cooperative behavior,  Ino oother words, the
behavior of any given pore depends on its neighbors.
A model of hysteresis which ineludes coaperative be-
havior has been investigated by Enderhy (43).

Another fundamental weakness in applying the in-
dependent domain theory to displacements in porous
media is that pore space cannot he divided precisely
into volumetric zones which exhibit one to one corre-
spondence with respect to drainage and  imbibition
behavior,  Although  capillary  behavior is commonly
discussed in terms of pores, no definition of the bounds
of a single pore exists for real porous media, If a
definition were attempted in terms of capillary behavior,
a first requirement would be that a distinetion should
be made between imbibition and drainage conditions,

Stability of capillary pressure points, When two
homogencous fluid phases are held within a porous
solid, a nceessary condition for equilibrium, neglecting
gravity, is that capillary pressure across the interface
separating the two fluids be the same everywhere,  The
form of capillary pressure curves indicates that this
condition is not satislied at cach point, For example,
when water s displaced by oil, some water becomes
trapped in small pores and around points of contact
between particles. Onee  hydraulic  communication
via bulk water paths is lost, volumnes of water clements
cannot adjust quickly to attain cquilibriuny with the
externally measured pressure.  As drainage progresses,
increasing amounts of wetting phase are isolated and an
irreducible wetting phase saturation is reached (2, 47).
At this stage only continuous oil and hydraulically
discontinuous water are retained. Hence, the cx-
ternally measured capillary pressure hears no relation.
ship to the capillary pressures of oil-water interfaces
within the porous medium.  Similarly, during imbibi-
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tion, the oil phase is not completely displaced. When
the external capillary pressure is reduced to zero, globules
of residual oil are retained at pressures higher than the
water which surrounds them. Both trapped oil and
trapped water will tend to diffuse within the porous
solid; however, the time required to reach equilibrium
by diffusion is long and experimentally prohibitive.

Although discontinuous elements are not at equilib-
rium, capillary pressure data points can be regarded as
stable if we assume that changes in their volume can be
neglected for the duration of an experiment. Experi-
mental data points can then be assumed to correspond
to an idealized model, with no mass transfer across phase
boundaries or via films retained at the surfaces of drained
solids (64). Under these conditions, only those inter-
faces which can adjust curvature by hydraulic flow of
both fluids maintain capillary cquilibrium with the
externally measured capillary pressure; elements of
fluid at differing pressures can coexist indefinitely until
the region they occupy is encroached upon by an in-
vading continuous region of the same phase.

X

HEAP OF TAPERED CAPILLARIES

HEAP OF SPHERES

Figure 70.  Experiments illustrating fluctuations in pressure during
drying

The above model appears to hold well for so-called
clean solids. When the solid surface of a porous system
is rough and channeled, or has a coating of colloidal
particles, hydraulic conductivity may never be lost
completely. The almost isolated wetting liquid may
approach equilibrium at much faster rates than in a
comparable situation with smooth surfaces; this could
even permit stability to be achieved through attainment
of a true capillary equilibrium. (There is no violation
of the model in these cases because the almost dis-
continuous liquid is still strictly classified as continuous.)
In general, the applicability of the above capillary
behavior model must be judged by examining the sta-
bility of experimental capillary pressure data points.
Another indication of applicability is the development of
an irreducible saturation which is distinctly independent
of both time and further increases of the external capil-
lary pressure.

Stability can also be affected by temperature. Some-
times it is claimed that a true capillary equilibrium
would be obtained if capillary pressure experiments
were conducted over sufficiently long times. For
example, if a column of particles were drained of water
with air as the nonwetting phase, the observed and
apparently stable distribution of water would slowly
change by diffusion (caused by differences in vapor
pressure due to curvature) until a true capillary equilib-
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rium is reached (65). Aside from the long time required
for diffusion, the need for adequate temperature control
would make such an experiment difficult to exceeute.
The temperature reduction necessary to lower the vapor
pressure by the same amount as that due to surface
curvature alone is given in Table II (66). Vapor
pressure is extremely sensitive to temperature. Thus,
changes due to diffusion that arc observed over long time
periods are probably caused by ambient temperature
variations. It follows that accurate temperature eontrol
is needed for capillary pressure experiments that take
several days or even months to complete even though
the measurement of true capillary pressure equilibria
is not the objective.

Vapor pressure of water is also sensitive to salt concen-
tration. Salt concentration (gmol of sodium chloride/ L.),
necessary to reduce the vapor pressure by an amount
equivalent to effects of surface curvature alone, is also
listed in Table II. Vapor pressure above a curved
surface of a salt solution depends on both curvature and
concentration; thus liquid volumes at different capillary
pressures and salinities could exert equal vapor pressures
and be in stable equilibrium with each other. For
isolated volumes of water, each of which contains a
fixed weight of salt, any variation in volume will result
in a change in salt concentration which will tend to
stabilize the volume variations. Thus, if saline water
were used in capillary pressure experiments, appli-
cability of the idealized model of capillary behavior
would be enhanced.

Haines Jumps

The basis for treating experimental capillary pressure
points as stable has now been established.  We will now
consider the bchavior of the system during displace-
ment. A basic feature of fluid interface motion during
displacement is the Haines Jump resulting from unstable
fluid configurations (2, 67, 08). These jumps are
illustrated by the following simple experiments,

In the first experiment, melting point tubes were
heated and pulled into long fine capillaries which were
broken into short lengths. These tube segments were
then piled in a heap, saturated with a volatile Liquid,
and the system was observed through a microscope as
the wetting-phase saturation decreased by evaporation
(Figure 10a). The tubes were slightly tapered and the
air-liquid menisci moved slowly toward the narrower
ends of the tubes as the saturation decreased and the
capillary pressure increased. Occasionally, a meniscus
would suddenly recede or Jump back toward the wider
ends, indicating a sudden pressure change. The
meniscus would then continue to displace smoothly
from its new position until it suddenly kicked back
again, and so on. In effect, each tapered tube served
as a pressure measuring device which showed that
capillary pressure’ does not rise smoothly and con-
tinuously with decrease in saturation.

In a second experiment on packings of 3 mm spheres,
sudden flexures in the interface as described by Haines
again indicated that pressure was not increasing mono-
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tonically with saturation.  When the tapered end of a
melting point capillary was inserted into the pile of
spheres (Uigure 10h), the liguid in the tube behaved
ervatically as it followed pressure changes in the head
pack. v

The same spheres were heaped on a highly permeable
fritted  glass membrane connected with a sensitive
pressure transdueer as depicted in Figure 11, The bead
pile was saturated with volatile liquid,  As the liquid
evaporated, the recorded variation of pressure with tine
was ol the form shown in Figure 11, The pressure rose
relatively slowly, and then suddenly fell, then slowly
rose again, and so on,

The above experiments elearly demonstrate that dis-
placement cannot e condueted smoothly and reversibly
heeause of spontancous changes in fluid configuration.
In the next section a new treatment of displacement as a
distinetly quantized process is developed from applica-
tion of thermodynamie fundamentals.

Infinitesimally Slow Displacement

First we consider infinitesimally slow withdrawal of
liguid from the capillary model shown in Figure 12,
Liquid can be removed reversibly from hoth tubes of the
model until the meniseus in the tube on the right meets
the enlargement in tube cross seetion at 4. Boundary
conclitions at 4 cause the interface to become unstable,
and the liquid descends rapidly through the upper hulb
to a stable position in the vieinity of 8, If the hole
through which fluid is withdrawn were infinitesimally
small, we would have the limiting case of no liquid flow
during the spontancous motion of the interface.  Alter-
natively, we could envision use of an idealized valve
which would only permit flow if the pressure drop across
it were infinitesimally small.

If a finite pressure developed across the valve because
of an unstable fluid configuration, the valve would close
instantly; the valve would rcopen only after the fluid
had attained a stable configuration, and the fluid pressurc
on the outlet side of the valve was adjusted to equal
the system pressure.  Irom this point, further removal
of fluid could be cflected under reversible conditions
until the system again becomes unstable as the lower bulb
drains spontancously.

Again, a spontancous redistribution of fluid results in a
reduction of capillary pressure. If capillary pressure
were plotted against volume of liquid in the model, we

would see that displacement under these idealized cireum-
stances consists o smooth, reversible changes linked by
spontancous changes in pressure alb constant saturations.
The sequence of alternate veversible and ivveversible
changes during this quantized displacement would be
determined by the detailed structure of the model,

‘The above argument can he extended in principle to

the complicated structures of porous media. Instability
can be regarded as localized to a single pore or a group
of pores. The capacity of the rest of the system to
receive or give up a small volume of fluid, represented
by the tube on the left in Figure 12, determines the size
ol the [inite pressure change caused by the instability,

Rheons and lsons

The form of the pressure-volume relationship charac-
tervistic of the above model is similar to that obtained
experimentally for the heap of 3-mm glass beads. In
both cases, the pressure slowly increases as drainage
progresses until an unstable fluid configuration precipi-
tates o rvapid pressure change.  Reducing the drainage
rate causes the sudden pressure changes to ocour at
almost constant saturation as in the model of Figure 12,

The sudden motions of unstable interfaces veflected
by small changes in pressure have been deseribed as
Haines jumps or jerks (67, 68).  Heller (69) mentions
that the term rheon has been suggested by J. ¢ Melrose
as an alternative name for the laines jump.  In this
reatment, we adopt the term rheon for a Haines jump
which takes place at constant saturation. Under this
condition, no external work can he done on or by the
system during a Haines jump. The segments of the
pressure-volume  displacement curve  between rheons
correspond o smoothly reversible displacements; they
will be called isons.

When capillary pressures ave measured in fine-pored
media, the discontinuities in pressure ave generally too
small to observe, and experimental capillary pressure
curves, although not veversible, appear to be smooth
and continuous. In theory, displacements from porous
media could be conducted as deseribed above for the
tube model to give capillary pressure curves consisting

HA
(133
J’ ¢
e
‘fﬁe
REVERSIBLE REDISTRIBUTION AT REVERSIBLE
DISPLACEMENT CONSTANT VOLUME DISPLACEMENT

/| AREA UNDER ISONS =
EXTERNAL WORK

7

PRESSURE

Figure 12, Infinitesimally slow drainage of a model capillary system
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of series of isons and rheons.  Since capillary pressure
hysteresis is permanent with respect to time, we postulate
that the experimental data give the same path, apart
from loss of detail, as that which would be given by the
isons and rheons. Thermodynamic relationships which
apply to individual isons and rheons provide the basis
for thermodynamic relationships which apply to experi-
mental capillary pressure data.

Rheons. A rheon is defined as a spontaneous re-
distribution of fluid within a porous medium. In-
stabilities arise from fluid interfaces that are unable
to change curvature smoothly with variations in pressure,
The extent to which an interface can vary its curvature
without spontaneous motion depends upon the boundary
conditions at the surface of the porous solid. A general
discussion of the stability of interfaces is given by Gibbs
(70).

Once an unstable configuration is reached, the inter-
face moves rapidly to a new equilibrium position. The
volume of liquid spontaneously displaced from a region
may vary from a fraction of a single pore space to an
assembly of pores. For example, with rough surfaces,
displacement from regions of a single pore could be
likened to a ratchet mechanism. On the other hand,
cooperative effects could cause displacement in large
groups of pores during a single rheon. In general, the
number of rheons contained by a capillary pressure
vs. saturation curve can be expected to increase directly
with sample size and be inversely proportional to the
cube of the average pore diameter.

The magnitude of the finite pressure change accom-
panying a rheon depends on both the size of the region
spontancously vacated by a given fluid and the capacity
of the system to advance its phase boundaries elsewhere,
Generally in fine-pored solids the system capacity is
large compared to the net volume of fuid redistributed
by a rheon; hence, the pressure change is very small.
The sign of the small changes in capillary pressure will
be negative for rheons on drainage curves and positive
for.rheons on imbibition curyes.

From the second law of thermodynamics the free
energy of the system must be diminished as a result of the
spontancous change. Since the change occurs at con-
stant saturation, no external work is done on or by the
system and loss in free energy, AF, is given by

AF = ¢,,(Adyy + A, cos 0) (71)

where the quantity (Ad,, -+ AA4,, cos 6) must be nega-
tive. This loss of free energy is the most important
characteristic of the rheon. As the pressure change
associated with the rheon approaches zero, the decrease
in surface free energy has a definite value.

Total surface energy including both surface free
energy and surface heat of formation will finally appear
as heat. For water against air, surface free energy at
15°C is approximately 74 ergs/cm? and heat of forma-
tion about 43 ergs/cm?, giving a total energy of 117
ergs/cm®.  In general, the heat capacity of the system
will be so large that the temperature changes accompany-
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Figure 73.  Relationships between volumetric and surface vartahles
of twe fluid phases in a porous solid

ing loss of surface energy will be miniscule, Reeovery
of work because of the temperature difference of the
system and its surroundings is not a scrious possibility ;
we assume that the heat escapes until thermal equilil-
rium is established,

Isons. Isons arc defined as displacements of one
phase by another from porous media under balancecl,
stable conditions. These displacements arve smooth
and reversible with continuous variation of pressure
with saturation. An ison’s domain of stability with
respect to saturation change extends in both directions
from the saturation of the previous rheon; but the
defined saturation range of an ison begins with its initial
saturation and is terminated by the next rheon, Since
isons and rheons occur alternately, the number of isons
in a particular capillary pressure-saturation curve is
governed by the same factors that determine the number
of rheons.

For each individual ison the thermodynamic rela-
tionships developed for reversible displacements hold.
Thus, under the conditions for which Equation 68 was
derived, we have with Equation 70

Swa ) .
Vs s PAS, = fa'wod(Awa + A, cos 0) (72)
w1
where §,,; and S, lie within the domain of a single ison.
For drainage, work is done on the porous system and the
surface free energy of the system is increased; for imbibi-
tion, the system does work on the surroundings and

surface free energy decreases.
isothermally with heat of surface

Changes are conducted
formation continuously

given up to or adsorbed from the surroundings.

Displacement Mechanism in Poroys Media

A consistent account of the mechanism of displace-
ment in porous media can be formulated within the
framework of the quantized model. Interrelated changes
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in the volumetrie and surface area variables that oceur
during displacement are shown as dimensionless quanti-
ties in Figure 13, Volumetric variables ave wetting phase
(say walter) saturation Sy, and nonwetting phase (say
oil) saturation $,. Portions of the volwmes making up
these saturations may have hydraulic continuity with
the surroundings; other portions may not. The
continuous and discontinuous portions are denoted by
Sw.e and Sy vespeetively for water, and Sy, and S, 4
respectively for oil. Surface area variables ave the
water-solid, oil-solid, and water-oil interfaces which
bound the above volunes; these variables ave expressed
as Mractions of the total solid surface area, 4, and de-
noted by Ay, Ao and Ay, vespectively,  Tach of these
three surface arcas can be subdivided into contributions
from the continuous and discontinuous parts of cach
phase, denoted by sullixes ¢ and &, to give six surface
arca variables in alll (dewde (Do)as (Aeode (Ayodas

(dwn)e and (Ap)e  The discontinuous oil-water inter-
face avca, (dug)q can be further subdivided into (dy,)q
and (/1,,,2),, where the discontinuous phases ave }_xgz:tcr
and ol respectively Tigure 13),  (Other quantitics
included in Figure 13 relating to relative permeability
will be discussed in a later section of this paper.)

Variations of the above volumetric and sudface
quantitics with respect to rheons and isons will fiest be
considered for the initial drainage capillary pressure
curve.  Tor this curve, the porous solid i initially
saturated with water and quantities Sp,4, (dyo)y, and
(Ay)q are always zero,

As drainage from 1009, saturation progresses, some
water is cut off by the invading oil and is retained around
particle contacts and in the smaller pores as sketched in
Figure 14. The manner in which the components
Swe and Syq of the water saturation vary as drainage
progresses s indicated by the wetting phase isolation
curve of Tigure 14, As the water saturation S, de-
creases, the fraction of water which is discontinuous,
Sway increases from zero until at the irveducible satura-
tion Sy, all of the retained wetling phase is held as
disconnected  volumes. With  the  disappearance  of
the continuous interface, (Apo)e the externally measured
capillavy  pressure loses significance with respect to
conditions within the porous solid.

The capillary pressure of an individual clement of
water will be approximately cqual to the capillary
pressure, P, across the continuous interface, (o),
at the tme the element hecame isolated (64, 77).  This
correspondence cannot be exact, however, because an
clement of wetting phase loses continuity by an irreversi-
ble rupturing process.  Sinee irreversible changes are
restricted to rheons, formation of a discontinuous ecle-
ment of liquid can only occur during a rheon, A
rheon also oceurs at constant saturation, Sy; thus, any
increase in the discontinuous water saturation, ASy,q,
must be exactly equal to the deerease in continuous
water saturation, Ay, These exchanges must be finite

Table IlI,

Relationships between Continuous and Discontinuous Fluid Saturations, Surface Free Energy and
Work of Displacement for Isons and Rheons

Dralnage

| Imbibition

Ison, {smoothly reversible
displacement)

Svar Sowr (Awu)dr (A.va)dr (A.vw)d are constant

AW = Vo ./‘Pcdsw

dS, = [dsw]
AF = Vyo _/'Pc[dSw]

]

f“iuod[(Aivo)c + (Ago)o cos 0}

dSy = [dS,]
[AF] = Vpo fpcds1u
./“Twa [d{(Awo)c + (A.vo)c Cos 0}]

I

\| Rheon, {spontaneous
change at constant
saturation)

AW = 0
[AF] = [AAy, 1 AAg, cos 0]

Sor Sy are constant
AF <0

Aswd == [Aswa]
ASye = [Asod]

ASy, = [Asw(l]
ASyq = [AS(,‘,]

Quantitles in square brackets [ ] are negative unless equal to zero.
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Figure 75.  Detailed mechanism of displacement showing relationships
between continuous and discontinuous paris of cach phase during a
drainage-imbibition cycle

and any number of discrete volumes of water could be
isolated during a single rheon.

When water is imbibed, the fraction of discontinuous
water decreases and we can postulate the existence of a
water de-isolation curve which complements the mea-
sured capillary pressure imbibition curve. As with
isolation of water during drainage, any union of the
invading water with a discontinuous element of water
will be irreversible and must be associated with a rheon.
Some imbibition rheons may also include entrapment
of oil as globules. Entrapment of oil tends to accur at
relatively high water saturation (72). A capillary
imbibition curve is depicted as a series of isons and
rheons in Figure 15, together with water de-isolation
and oil entrapment curves. Changes in the discon-
tinuous saturations are shown as discrete steps. For
simplicity we assume that no water remains trapped
within regions occupied by the discontinuous oil.

Secondary drainage from the residual oil saturation
Ss: is similar to the initial drainage curve except that
rheons may include hoth disentrapment of oil globules
and isolation of water. The secondary drainage curve
together with water isolation and oil disentrapment
curves are also depicted in Figure 15. In all, Figure 15
includes three hysteresis loops.  The central loop is the
capillary pressure hysteresis loop which can be measured
experimentally. In fine detail, these curves consist of
isons and rheons as shown, The curves illustrating
variations of discontinuous saturations (horizontal
arrows) represent finite saturation changes with capillary
pressure coordinates defined by the capillary pressure
P, measured at the time of formation or elimination of
discontinuous elements.

The relationships between the surface area and
volume quantities shown in Figure 13 for drainage and

imbibition isons and rheons are summarized in Table
II1.

Free Energy Changes of Displacement

The area under a series of isons is exactly equal to the
external work done on or by the system during displace-
ment. Neglecting loss of fine detail in experimental
capillary pressure data, the avea under the isons also
corresponds exactly to the area under a capillary pressure
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curve. This observation provides a consistent thermo-
dynamic basis for the common assumption that the area
under a capillary pressurc curve corresponds to reversible
external work.

The quantum approach is also useful in sctting definite
limits on surface frce cnergy changes that accompany
displacement. If a closed capillary pressure hysteresis
loop is measured from wetting phase volume V; to a
smaller volume 7y, the difference in surface free energy,
AF, of the states corresponding to 'y and ¥y, lies hetween
the work done on the system for drainage and the work
recovered from the system for imbibition,

72 "
f PAV > AF> | Pav (73)
&t V2

(Pearce and Donald (73) attempt to define free energy
changes more closely by comparing different work paths
to the same pressure-saturation coordinate on the main
hysteresis loop.  Primary scanning curves are shown as
closed loops which span intermediate points on a main
drainage-imbibition loop. However, such behavior

.Is not in accord with the general form of experimental

capillary pressure hysteresis data,)

The area of the hysteresis loop is the minimum possible
amount of work lost in describing the hysteresis loop.
The area of the loop also gives the maximum error
which arises from the often made assumption that work
given by the arca under a capillary pressure curve
equals the change in surface free energy.

Any displacement represented by a capillary pressure
curve will have a characleristic cefficiency which s
determined by the geometry of the solid.  For example,
the efficiency of initial drainage is given by the ratio of
the increase in surface frec encrgy of the system to the
work of drainage.
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Table IV. Surface Areas at lrreducible Wetting-Phase Saturation as Percent of Total Solid Surface Area from
Analysis of Thin Sections

sccl.gzuinno. A Al A Porosity t:::g:::ﬁiltr

1 70.8(243) 29.2(100) 8.45(29) 40.5(153:62) 16.1{10)
67.8(250) 32.2(119) 11.1(41) 45.5(154.70) 11.4(8)
2 79.8(253) 20.2{44) 3.5{11) 37.5(141:53) 3,8(4)
78.3(252) 21.7{70) 6.5(21) 42.5(153:65) 4.6(3)
3 68.8(237) 31.2(107) 7.55(26) 36.6(156:57) 5.3(3)
70.3(253) 29.7(107) 6.4(23) 29.4(143:42) 4.8(2)
4 71.8(267) 28.2(105) 7.25(27) 35.1(148:52) 7.7(4)
74.6(294) 25.4{100) 4,55(18) 41.8(146:61) 4.9(3)
5 72.4{270) 27.6(103) 8.85(33) 43.6(149:65) 7.7(5)
72,5(275) 27.5(104) 9.25(35) 36.5(145:53) 0.0{0)
6 67 .4{269) 32.1{130) 7.25(29) 33.6(152:51) 7.8(4)
66.7(263) 33.3{131) 7.6{30) 34,0(147:50) 2.0(1)

Av, values 71.6(3126) 28.4(1240) 7.4(323) 38.1(1787:481) 7.2(49)

EFFICIENCY OF DISPLACEMENT IN
RANDOM PACKINGS OF EQUAL SPHERES

Data which relate solid surface area to work of dis-
placement have been reported by Payne (50).  Drainage
curves for water displaced by air were measured for
several random packings of equal spheres with sphere
size varied [rom one packing to the next.  Sphere
surface arca was measured civectly by microscopie
analysis. The work required to drain the spherical
beads was almost cqual to the product of the interfacial

@® SOLID
OWETTING PHASE ONONWETTING PHASE

FTigure 77, Distribution of fluid phases in a packing of 3 mm beads
al the irreducible wetting phase saturation

tension and the solid surface avca of the beads,  Average
values of Payne’s data are shown in Figure 16 as bead
surface arca versus work of displacement. These
results appeared to indicate that, for a packing formed
from spheres of a given size, work of digplacement equals
the increase in surface free energy of the system. The
method has since received some aceeptance as a general
technique for determining the swface arcas of coarse
solids (57, 74, 75). However, the one-to-one relation-
ship between surface arca and work observed for random
sphere  packings is mainly coincidental. A critical
assumption in evaluating the surface free energy of the
drained head pack was that essentially all of the solid
surface had been exposed to the invading phase. In
fact, the beads cannot he drained beyond their irreduci-
ble saturation; thus, some of the solid avea must remain

- covered by wetting phase.  Also, an interface exists

between the discontinuous water and air which con-
tributes to the total surface free energy of the drained
bead pack. The following section deseribes experi-
ments in which surface free energy changes were deter-
mined dirvectly,

Determination of Surface Areas at Irreducible
Minimum Saturations

A random packing of 3-mm beads was held ina1-1/2
in, diameter lucite tube with a supporting wire screen
at onc end, The column was saturated with a liquid
cpoxy resin containing a blue organic dye. The epoxy
was allowed to drain by gravity. In the upper parts of
the column liquid epoxy was retained as an irveducible
wetting phase saturation. The blue epoxy hardened
with very little shrinkage and occupied essentially the
same position as when in the liquid state.  The air space
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in the core was evacuated and filled with an orange
dyed epoxy resin primarily to strengthen the sample.

After the orange epoxy had hardened, six thin sections
were prepared. They showed clearly the regions
originally occupied by the spheres (transparent), the
irreducible liquid epoxy saturation (blue), and the
invading air (orange). Photographic enlargements
were made directly from the thin sections. A drawing
made from an enlargement is shown in Figure 17.
On the enlargements, the region within about two
particle diameters from the Iucite wall was covered by a
circular mask. A square grid was cast at random over
the central region of the thin section Pphotograph.
Points on the grid were used to determine the relative
fractions of space occupied by the solid spheres and the
two colors of epoxy. The point count was used to
determine porosity and saturation. Ratios of solid-
liquid, solid-air, and liquid-air surface areas were
determined by counting the number of times the lines on
the grid intersected the various interfaces. Results are
presented in Table IV. Surface areas are expressed as a
percentage of the solid surface and are recorded as
Asy Asey A, where the subscripts, 5, /, and 4 correspond
to solid, liquid and air, respectively.

Bracketed figures in Table IV under columns labeled
4 are the number of line. intersections for the indicated
interface. The two bracketed numbers in the porosity
column are the total number of points counted and
the number lying within the pore space of the packing.
Percentage porosity is calculated as the ratio of the
second to the first. The bracketed figure in the irreduci-
ble saturation column is the number of points that fell in
the region occupied by wetting phase.  Although counts
for individual thin sections resulted in fairly wide
variations in porosity and irreducible saturation, the
average values of 38.1%, and 7.29, respectively, are in
close agreement with direct measurements of these
quantities. Random packings of equal spheres usually
have porosities in the range of 36-409%, and irreducible
saturations in the range of 6-89%,. The average per-
centage of solid surface drained at the irreducible
saturation was 71.69, leaving 28.49, still covered- by
the liquid phase. The area of the air-liquid interface
at the irreducible saturation was 7.49,.

An independent check of the fraction of solid surface
which drains was made using a packing of 6-mm diam-
eter ball bearings. The packing was saturated with a
dilute acid and drained to its irreducible saturation.
The retained acid etched the undrained region of the
bearing surfaces. The bearings were dried, laid on a
plane, and the uppermost point of each bearing used in
point counting to obtain the ratio of drained to un-
drained surface. The result of 500 point counts in-
dicated that 69.2% of the solid surface was drained;
this value agrees substantially with the average value of
71.6% obtained from thin sections of the bead packs.

Efficiency of Initial Drainage
The liquid €poxy resin spread on glass; hence, the

increase in surface free energy due to drainage should be
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directly proportional to the sum of the air-liquid and aijr-
solid surfaces (cf. Equation 50). Expressing these arcas
as percentage units of the total solid surface, AX units
of surface free energy,

AF(IOO—)Swi) = AAS(I (71.6%) + AAM (7.4%) =
79 USFE  (74)
The inherent efficiency, E, of conversion of work to

creation of surface is given by the increase in frec cnergy
divided by the work of displacement

Ula<AAs¢z + AAM)
" IS‘[U;; T

Ve | PAS,
100

Ep = (75)

But from Payne’s results shown in I igure 16, the work of
displacement is equivalent in energy to the surface frec
energy of totally drained spheres. For purposes of
comparing inherent displacement efficiencics, we can
take the area under the capillary pressure initial drainage
curve as 100 units of work and the surface energy of the
totally drained solid (zero wetting phase saturation)
as 100 units of surface free energy, equivalent to 100
units of work.  (In general, the work given by the area
under a capillary pressure drainage curve is not likely
to be equivalent to the surface energy of any porous
solid at zero wetting phase saturation.) -

If the completely saturated solid is taken as a reference
state for zero surface energy, then a drained head pack
will have 79 units of surface free energy at irreducible
saturation. Since 100 units of work were required for
drainage, the inherent thermodynamic efficiency of
drainage from 100%, saturation to Sui 15 79%.  (See
Figure 18b.)

Surface Area of Entrapped Nonwetting Phase
Determination of the inherent thermodynamic effi-
cien¢y of imbibition requires measurement of residual
nonwetting phase surface area. Gravitational effects in
3-mm beads are such that very little air is entrapped by




imbibition of a wetting liquid. Entapment of air by
liquid epoxy was therefore studied on two packings of
microbeads.  (The  compressibility of aiv has  liude
effect on the measured volume and swface area) In
onc packing, bead diameters were in the range of 297
to 350 p and in the other 125 to 149 4.

A given packing was first saturated with liquid epoxy
resin and then drained. The liquid epoxy was then
imbibed into the packing and allowed to  solicily,
Attempts o prepave thin seetions from  packings of
microspheres at residual nonwetting phase saturation
were unsuceessful. - Bven in preparing a polished
surface (which could only be examined by refleeted
light), portions of beads bhecome dislodged  during
polishing; the resulting void spaces were not clearly
distinguishable from entrapped air pockets,

The method finally chosen for preparation of a surface
cross section was as follows,  T'he packing was cut with a
diamond saw, and the exposed surface was given a thick
coating of red-dyed epoxy resin, - After the resin havd-
encd, it was ground away until the upper surface of the
exposed packing had been lowered by a depth of about
2/3 ol a bead diameter; this procedure removed the
red-dyed cpoxy which had filled spaces left by dislodged
sphere segments. Ilxamination of the exposed surface
revealed  the following  distinguishable vegions: (1)
sphere segments or spherical bowls where sphere segments
had broken away, (2) the blue epoxy of the oviginally
imbibed wetling phase, (3) the red epoxy which hac
invaded pockets of air exposed when the sample surface
was coated with red epoxy, and (4) air pockets (contain-
ing no red epoxy) which had heen freshly exposed by
grinding.  The [reshly exposed air pockets were rela-
tively rare and generally distinet from spaces left by
distodged sphere segments. Finally, the surface was

briefly exposed to hydrofluoric acid vapor which frosted
the visible surface of bead segments to make them dis-
tinet when observed under vefleeted light.,

To determine swlace areas, the prepared cross scetion
was examined with a binocular microscope using re-
flected light.  The eye picce contained a 10 X 10
arithmetic grid.  The objective was chosen so that one
square on the grid was a little larger than once particle.
For cach line on the grid, the number of interscetions
with the solid surface and the number of intersections
between the wetting phase and the nonwetting phasc
were counted, I prid dines cut positions where a non-
wetling phase was touching the solid, it was counted
both as a solid-liquid interface and as a liquic-air inter-
face, '

Results ave shown in Table V. Six scts of measure-
ments were made on the 297 to 350 p bead packs.
Only two measurements were made for the packing of
125 to 149 p beads Dbecause of difficulty in obtaining
suflicient illumination with reflected light. Tor the
smaller head packings, the surface area of the entrapped
nonwelting phase was 13,89 of the solid surface and for
the larger beads, 13,1%, to give an average overall
count ol 13.2%,.

Work of Imbibition and Secondary Drainage

From surface areas determined thus far, elficiencics
of imbibition and secondary drainage were obtained
from respective arcas under these curves.  Results for
three sets of capillary pressure tests on glass heads giving
curves of the form shown in Figure 18a ave presented in
Table VI, The average area expressed as a percentage
of the arca under the initial drainage curve was 609
for imbibition and 89%, for sccondary drainage.  These
percentages are shown in Figure 18 as units of work,

Thin
Microbead diamoter section no,
297-350 u 1
2
3
4
5
é
All regions (1-6)
125~149 u 1
2

Regions (1~2)

A = area, s = solid, | = liquid, a = air,

Table V. Surface Area of Residual Nonwetting Phase as Percent of Total Solid Surface from
Analysis of Thin Sections

Counts (A,q + Ay,
total solid surface

Averaged values 3062

Counts (A, -4 A,
residual
nonwehing-
phase surface

(Ags + Alg} as % of

total solid area

395 57 14.4
390 55 14.1
397 46 11.6
393 58 14.7
388 53 13.7
401 40 10.0
2364 309 13.1
356 44 12.4
342 52 15.2
698 96 13.8

405 13.2
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Table V1. Percent Area under Capillary Pressyre

Curves Relative to Initial Drainage Curve
; Microbead Secondary
diameters, u Imbibition, A drainage, R
250--297 462 92
177-210 43 85

177-210 56 20
Averaged values 60 89

Efficiency of Imbibition

Imbibition corresponds to the conversion of free sur-
face energy of the porous system into external work.
The area under the imbibition curve is about 609,
of the arca under the drainage curve (see Iigure 18¢).
However, after imbibition is complete, the system still
has surface free energy duc to entrapped nonwetting
phase equal to 13% of the solid surface. Adding the
60% for recovered work to the 13%, for the stored
surface energy, the imbibition cfliciency is caleulated ag
73/79 or 92.5%,; this valuc is considerably higher than
the efficiency of initial drainage.

Efficiency of Secondary Drainage

The work required for secondary d -ainage is about
89% of that required for initial d rainage.  The initial
surface free energy of the system was 13 units, Lfli-
ciency of secondary drainage can be defined as the
. ratio of the final surface free encrgy (79 units) to the sum
. of the initial free energy (13 units) and the work done
| on the system (89 units) to give a value of 79/102 or
77.5%. The presence of 13 units of residual nonwetting
phase surface reduces the work of drainage by 11 units,

Yo [~

Displacement Efficiencies at Intermediate Saturation
Inherent thermodynamic eflicicncics of displacement
so far determined apply to maximum changes in satura-
tion. To determine the efliciency of displacement at
intermediate saturations, a column of 30-35 mesh
microbeads was saturated with liquid epoxy resin and
allowed to drain under gravity, as shown in Tigure 19.
Beads of this size give a transition zone of about 2 em
depth through which saturation should vary from nearly
100% to the irreducible saturation. After the epoxy had
set, the space in the upper part of the column was evac-
uated and an orange cpoxy injected under pressure and
allowed to harden. Thin sections were prepared at
one-half c¢cm intervals along the length of the column
and their saturation and surface areas determined by
counting point and line intersections. Figurc 20 is an
illustration of part of a thin section in which both phases
. are mainly continuous. Analysis of the thin sections
... showed that epoxy had set in the upper region of the
. . column before drainage to the irreducible saturation
| could occur. However, using the surface tension (38
Y | . dynes/cm) and density (1.1 g/cm®) of the liquid epoxy
. . ' leie | and the average bead radius, R, a plot of ApghR/e
: ‘ . . ‘ (= P,R/cy,) vs. saturation approached a plot of P,R/o
‘ vs. saturation given by conventional capillary pressurce
Figure 19.  Distribution of solidified epoxy resin in a colymn of glass drainage tests on sphere packings. Figure 19 shows the

beads close agreement obtained for saturations above 35%,.
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The saturations and surface arcas obtajned by thin
section analysis are summarized in Iigure 21, In
Figure 21, work of displacement at any saturation is
expressed as percentage of the total work of displacement
to irreducible saturation.

S
0 )])C(lSw
ot
a0 100 (76)
PS

100

work of displacement = *

The surface free energy is expressed as percentage of
the total solid surface, 4,.

Alu 'I"_ A.gq
Ay

§

swrface free energy = <100 (77)
Data points corresponding o irreducible saturation
(Swi = 7%) are those obtained for the 3-nun diameter
beads. The surface avca between the fluid phases,
shown in Tigure 21, never execeds about 109, ol the
solid surface.  Since the surface area of residual non-
wetting phase was 13%, the interfacial area hetween the
fluids is probably about 10%, at all stages of displace-
ment,

Net efliciency, the ratio of increase in free energy to
the work done, declines as the saturation decreases,
Figure 21, A plot of net eflicieney o5, saturation is
shown in Figure 22,

Thermodynamic efliciency for a small displacement at
a saturation S, is given by

‘fla(l(Alu -+ A-‘m)

<100
Vi P oS,

(En)s, = (78)

The variation of (F;)g, with saturation is shown in
Figure 22 as the stagewise cflicieney curve,  The in-
herent efliciency of conversion of work to surface frec
energy is highly nonlinear, declining from nearly 100%,
at high saturations to less than 60%, near the irreducible
saturation,

DISCUSSION

Techniques used in the present study could be ex-
tended to many other systems such as porous secdimen-
tary rocks. Details of a solidified liquid technique for
preparing thin sections ilusteating fluiel disteibution in
porous rock are reported by Le Fournier (76).  Studies
on other porous systems could determine whether the
inherent thermodynamic efliciencies of drainage and
imbibition found for random sphere packs are gencral
or vary significantly from one rock sample to the next.
Determination of changes in surface area of individual
phases may find application in studies of both wettability
and two-phase fow.

Wettability

Wettabhility of a porous medium relates to the surface
energetics of displacement but is not a well-defined
term.  Capillary displacement pressures are often used
as a measure of wettability; recently an empirical
method of defining wettability according to ratios of

®sOLID OWETTING PHASE ONONWETTING PHASE

Lisgure 20, Distribution of fluid phases in a packing of 30-35 mesh
microbeads when both phases are mainly continuous

avcas under capillary pressure drainage and imbibition
curves was prosented by Donaldson, Thomas, and
Lorenz (77).  The present study also suggests that these
aveas provide a method of determining wettability if
the inherent thermodynamic efficiencies of displacement
and the surface arcas of residual wetling and nonwetting
phases are known,

Il it could he assumed that the inhevent thermo-
dynamic efliciency of imbibition is always relatively
high, then the work done by the system during imbibi-
tion might give an acceptable estimate of the surface
free energy of the system at its irveducible saturation.
A theoretical upper limit to the area under an imbibition
curve would be largely determined by the product of the
fluid surface tension and the contact angle integrated
over the total exposed solid surface area. Iowever,
caleulations of displacement pressures in sphere packings
suggest that the inherent efliciencey of imbibition will be
considerably reduced when the eontact angle is greater
than zero (67). On the other hand, experimental
studies of the effect of contact angle change with cubic
shaped galena particles indicate that efficiency of im-
hibition may not change greatly with wettability (78).

The above observations point to fundamental diffi-
cultics that must be overcome in obtaining relationships
among wettability, pore geometry, displacement pres-
sures, work of displacement, and changes in surface frec
energy.

Fluid Flow~~Hydraulic Radii of Individual Phases

The presented detailed mechanism of displacement
is based on the assumption that capillary pressure data
points are time independent and that capillary pressure
curves correspond to infinitely slow displacement.
Capillary pressure data arc commonly used in solving
equations of two-phase flow (79, 80). Instances of
distinct change in displacement mechanism with flow
rate have been reported (87). TFor the present, we will
assume that variations in the volume and surface proper-
ties shown in Figure 13 remain essentially unchanged.
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Solutions to cquations of flow also require relutive
permeability data for the two phases as a [(unction of
saturation. A variety of direct methads of measuring
relative permecability have been described, mostly in soil
science and oil production literature, Understanding
of the mechanism of two-phase flow might be enhanced
by comparing measured relative permeability to the
volume and surface aveas of individual flowing phascs,
Single-phase permeability of clean sands correlates well
with hydraulic radius, 7,, given by the ratio of the volume
of the pore space to the wetted surface area (82, 83).
If ¢ is the porosity and 4, is the surface area of the solid
per unit solid volume then,

@ 1
=% 1 79
g 1 ¢ 4, ( )

Darcy’s equation for single-phase flow is:

@ _ k' P

b 80
dt u o dL (80)

where dV/dt is the volumetric flow rate through a cross
section, 4, under pressure gradient dP/dL, u is viscosity,
and £ is permeability.

The Kozeny-Carman  equation incorporating  hy-
draulic radius into the Darcy equation is usually written,

AV Algrt dP
dt Ky dL

The dimensionless parameter K, known as Kozeny’s
constant, usually has a value of about 5 for clean sands.
If the surface area and porosity of a particle packing arc
known, permeability can be predicted from

WORK — ENERGY

i

0 20 40 60 80 100
S (SATURATION PER CENT)

Figure 27.  Relationships between work of displacement, surface free
energy, and saturation for initial drainage
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= (81)

_ ot

5

The concept of hydraulic radius has been extended to
the flowing portions of the individual phases in two-
phase flow (52).

Expressions for the hydraulic radius of individual
phases arc included in Figure 13. Only the continuous
portion of each phase provides a flow path. The con-
tinuous portion of a flowing phase, say oil, is bounded
mainly by the solid surface, (d,,), The remaining
boundary of the continuous oil is given by the continuous
oil-water surface and the oil-water surface of the dis-
continuous water. Thus, the hydraulic radius for oil,
*o, 18 given by

o = ) 9 . _i“ S (83)
(l —¢ ac) [(Asu)c + (Awo)c + (Aﬁa)tl]

Data relating changes in surface area to saturation
(Figure 21) permit calculation of r, as a function of
saturation for initial drainage from 1009%, saturation.
Since all of the oil is continuous, .5, is given by the oil
saturation, §,. The sum of the surface arcas (4s0)
(A1o) e (AE’”) a relative to the surface arca of the solid can

k (82)

be taken dircetly from Figure 21.
The equation
v, _ A'S,rs dP (84)
dt Kup dL
defines a parameter X, analogous to the Kozeny constant
K of Equation 81 for single-phase flow. The value of K
is believed to reflect the tortuosity of flow paths within a
porous medium. For displacements corresponding to a
given capillary pressure curve, X, probably varies with

80|

EFFICIENCY %
<
o

o
o

50
0 20 40 60 80 100

SATURATION %

Figure 22.  Net efficiency and Stagewise ¢fficiency versus saturation
Jor initial drainage
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Ligure 23, Hysteresis in sorption isotherms for xenon on porous glass
at 757°K. (57)

Sa turation but this variation may sinilarly reflect changes
in the tortuosity of flow paths available for the oil phase.

The value of K, can be determined by comparing
mmeasured values of relative permeability £,, with the
hydraulic radius at a given saturation from the relation-
ship

K, = (85)
R elative permeability to oil, &, is defined by
AV, Ak, dP
4Va 0 (86)

dt i dr,

E.cyuations 84 and 86 arc equations of flow for individual
Plrases and are analogous to Lquations 81 and 80 for
single-phase flow.

If both variations of K, and displacement efficiencies
are reasonably consistent, relative permeability could he
predicted from capillary pressure data through Equation
85.

Hy steresis in Adsorption by Capillary Condensation
A number of general theorics of hysteresis have been
proposed.  [See references cited by Evercit (56-59).]
A review of these theorics and their relevance to the
specific problem of immiscible displacement in porous
mcdia is beyond the scope of this paper. At present, no
existing theory leads to accurate prediction of capillary
pressurce data. However, several observations of the
present investigation bear importantly on the theory of
hysteresis in adsorption by capillary condensation.
Hysteresis in adsorption isotherms, a topic recently
reviewed by Everett (57), has been ascribed to several
causes. Where the pore diameter of a solid adsorbent is
large compared with the molecular diameter of the
aclsorbate, hysteresis has often been explained by capil-
lary models. (When the solid has a high surface area,
nmultilayer surface adsorption may contribute signifi-
cantly to the total weight of adsorbed material (84);
present considerations will be restricted to capillary
condensate.) Striking similarities exist between the

form of adsorption and capillary pressure hysteresis.
(Compare Figures 8 and 23.)

Since adsorption isotherins represent a vapor in
equilibrium with its liquid, all vapor-liquid curvatures
arc given by the externally measured vapor pressure.
Whercas mass transfer across a phasc boundary could he
neglected for immiscible displacement, it dominates the
mechanism of saturation change in adsorption. Thus,
the distinction made between discontinuous and con-
tinuous fluid, defining stability conditions for capillary
pressure data points, is unnecessary for adsorption.  For
example, a pendular ring of liquid held between two
particles, after immiscible displaceiment, was assumed
constant in volume, but the surface curvature and volume
of capillary condensed liquid varies with Vapor pressure,

Experimental observations of adsorption by capillary
condensation arc made in the range of capillary pressures
where relative humidity is less than about 95% and vapor
pressure varies significantly with surface curvature.
Packings of spheres with diameters ranging from 100 to
1000 A would provide suitable boundaries for the de-
velopment of high surface curvatures, As a model,
assumc a sphere packing in which the absolute size of the
spheres can be varied while maintaining similarity,
If liquid is desorbed from this packing, essentially the
same unstable configurations arise as in inuniscible dis-
placement, resulting in spontancous movements of
liquid. When vapor is adsorbed, the capillary mech-
anism differs somewhat from imbibition because isolated
regions of fluid grow. in volume as vapor pressure is
increased, but imbibition and adsorption will stilf have
comparable features,  As with immiscible displacement,
adsorption isotherms cannot be smoothly continuous on
a microscopic scale. ‘

A model proposed by Everett in discussion of macro-
scopic changes during adsorption (57) can also be used
to discuss adsorption from a microscopic point of view
as a quantized process (Figure 24), The adsorbent
and adsorbate are contained in a cylinder, and vapor
pressure can be changed by moving a frictionless piston.
As in immiscible displacement, movement of the piston
is only permitted when the vapor pressure is exactly
halanced by the force on the piston.  When an unstable
configuration arises, the piston does not move until
equilibrium is re-cstablished.  The foree on the piston
is then allered to balance the pressure of the vapor, and
the piston continues displacement smoothly and rever-
sibly until the next instability occurs. The area under
the segmented pressure-volume curve so obtained is the
reversible work done on the system. The increase in
free energy of the system equals this work less the free
energy lost during spontancous transition. The size
of the pressure change accompanying a transition is
determined cssentially by the factors that determined the
pressure change associated with the rheons of immiscible
displacement. :

The hypothetical nature of this discussion is em-
phasized by the fact that these pressure changes for
adsorption may be smaller than statistical fluctuations.
However, as with rheons, the important feature of each
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Figure 24.  Idealized adsorption apparatus

instability is not the size of the pressure change, but the
characteristic loss of surface free energy. This logs has a
definite value as the pressure change approaches zero.
As with capillary pressure hysteresis, the origin of
hysteresis in adsorption by capillary condensation can be
ascribed to the losses of surface frec energy which accom-
pany spontaneous changes of iiterface configuration.
‘The simultaneous measurements of adsorption isotherms
and surface arcas reported by Wade and coworkers
should permit calculation of inherent thermodynamic
efficiencies of adsorption (85, 86).

In seeking the origin of adsorption hysteresis, possible
differences in the degree of irreversibility of adsorption
and desorption isotherms have been investigated,
Kington and Smith (87) made a calorimetric study of
sorption of argon on porous glass. They concluded
that adsorption occurred reversibly whereas desorption
was accompanied by a spontaneous process. Although
it does not seem likely that any one side of a hysteresis
loop can actually correspond to reversibility, the above
observation is consistent with the results of the present
investigation in which imbibition was characterized by
a considerably higher inherent thermodynamic efficiency
than drainage.
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