Predicting perfect adaptation motifs in reaction kinetic networks

Tormod Drengstig
Department of Electrical Engineering and Computer Science,
University of Stavanger, Stavanger, Norway

Hiroki R. Ueda
Center for Developmental Biology,
RIKEN, Kobe, Japan

Peter Ruoff*
Centre for Organelle Research,
Faculty of Science and Technology,
University of Stavanger, Stavanger, Norway

*Corresponding author. Address: Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway, Tel.: (47) 5183-1887, Fax: (47) 5183-1750
Abstract

Adaptation and compensation mechanisms are important to keep organisms fit in a changing environment. 'Perfect adaptation’ describes an organism’s response to an external step-wise perturbation by resetting some of its variables precisely to their original pre-perturbation values. Examples of perfect adaptation are found in bacterial chemotaxis, photoreceptor responses, or MAP kinase activities. Two concepts have evolved how perfect adaptation may be understood. In one approach, so-called 'robust perfect adaptation’, the adaptation is a network property (due to integral feedback control) which is independent of rate constant values. In the other approach, which we have termed 'non-robust perfect adaptation’, a fine-tuning of rate constant values is needed to show perfect adaptation. Although integral feedback describes robust perfect adaptation in general terms, it does not directly show where in a network perfect adaptation may be observed. Using control theoretic methods we are able to predict robust perfect adaptation sites within reaction kinetic networks, and show that a prerequisite for robust perfect adaptation is that the network is open and irreversible. We applied the method on various reaction schemes and found that new (robust) perfect adaptation motifs emerge when considering suggested models of bacterial and eukaryotic chemotaxis.

Key words: kinetics; adaptation; robustness; control theory; transfer function; systems biology
Introduction

In order to cope with a changing environment organisms have the ability to adapt (1, 2) to persistent external perturbations. Several modes of adaptation exist (3, 4), ranging from no adaptation at all, to partial adaptation, perfect adaptation, or overadaptation (Fig. 1a). The term perfect adaptation describes a system’s response when certain variables return to precisely their original pre-perturbation values during a step-wise perturbation.

Perfect adaptation has been found in a variety of instances, for example in bacterial (5–11) and eukaryotic (12) chemotaxis, in certain photoreceptor responses (13, 14), and in MAP-kinase regulation (15–17). Two concepts have evolved how perfect adaptation may be understood. In one approach, a fine-tuning/balancing of the rate constants is needed to show perfect adaptation (8, 18–21), while in the other approach the adaptation process is a network property which needs no fine-tuning (12, 16, 22–24). Yi et al. (23) coined the term for this behavior as ‘robust perfect adaptation’ and indicated that this form of adaptation can be formulated in terms of integral feedback (16, 23), a concept employed in control theory (25–29). Although integral feedback can describe robust perfect adaptation in general terms, it does not directly predict where in a network it will occur.

We became interested in the question how to predict the location of robust perfect adaptation sites in reaction kinetic networks. By transforming an earlier global approach for the condition of temperature compensation (30, 31) to a single reaction site within a network receiving a signal from a receptor, it became evident that a necessary (but not sufficient) condition for robust perfect adaptation is related to the presence of a zero control (sensitivity) coefficient (32–35) of the actual steady state concentration with respect to the rate constant at this site (36).

In this paper we combine kinetic and control engineering methods to predict where in a kinetic network ‘perfect adaptation motifs’ can occur and how the adaptation kinetics, either robust or non-robust, can be characterized by their transfer functions and frequency responses.

Computational methods

MATLAB (www.mathworks.com) was used to determine transfer functions as well as step and frequency responses on linearized models. For comparison with the actual nonlinear model, rate equations were solved numer-
ically by using the FORTRAN subroutine LSODE (Livermore Solver of Ordinary Differential Equations) (37) and SIMULINK (www.mathworks.com).

Results

Transfer Function and Adaptation Kinetics

We consider a reaction kinetic network with \(M \) chemical components \((I_j)\) and \(N \) elementary reactions steps, where each step \(i \) is associated with a rate constant \(k_i \). The network can be stimulated by changing one of the rate constants \((k_i)\) by means of a step function. This stimulation is considered to occur due to a signal from a receptor acting specifically and proportionally (at least at low stimulation amplitudes) on \(k_i \) due to an external step-wise perturbation of the receptor. In this respect, the rate constants are considered to be dependent upon time \(t \). The kinetics of the network are described by the rate equations for each chemical component \(I_j \):

\[
\frac{dI_j(t)}{dt} = f_j(k_1(t), \ldots, k_N(t), I_1(t), \ldots, I_M(t))
\]

(1)

In order to find the steady state concentrations \(I_{j,ss} \), the derivatives in Eq. 1 are set to zero and the resulting equations are solved with respect to the steady state concentrations.

Perfect adaptation sites in a network are identified by applying a step-wise perturbation on each rate constant \(k_i \) and finding the corresponding perfectly adapted responses for some of the intermediates \(I_j \). A necessary (but not sufficient) condition for robust perfect adaptation is that the control coefficient \((32, 38)\)

\[
C_{I_j,ss}^{k_i} = \frac{\partial \ln I_{j,ss}}{\partial \ln k_i}
\]

becomes zero. This condition indicates that the steady state concentration \(I_{j,ss} \) is independent of (changes in) \(k_i \). \(C_{I_j,ss}^{k_i} = 0 \) is only a necessary condition, because there may be steady state concentrations which are completely independent of certain rate constants. For example, the change of a rate constant in an irreversible chain of consecutive reactions will not affect any steady state level located upstream in the chain. We call such a relationship between rate constants \(k_i \) and steady state levels \(I_{j,ss} \) as disconnected. Therefore, an additional functional relationship is needed, which describes if and how steady state concentration \(I_{j,ss} \) and rate constant \(k_i \) are connected to each other. Such a description is given by the transfer function matrix \(H(s) \) (25–27, 29). In order to find \(H(s) \), Eq. 1 is first linearized around the steady state (ss) values \(I_{ss} = [I_{1,ss}, \ldots, I_{M,ss}] \) and
the pre-perturbation values of $k = [k_1, \ldots, k_N]$, giving the following linear model:

$$\Delta \dot{I}(t) = A \cdot \Delta I(t) + B \cdot \Delta k(t)$$

(2)

where $\Delta k(t) = [\Delta k_1(t), \ldots, \Delta k_N(t)]^T$ is a vector of small deviations around the pre-perturbation values of k, and $\Delta I(t) = [\Delta I_1(t), \ldots, \Delta I_M(t)]^T$ is a vector of small deviations around the steady state concentrations I_{ss}. The matrix A is the system matrix ($M \times M$) defined by $A_{ij} = \frac{\partial f_i}{\partial I_j}|_{ss}$, and B is the input matrix ($M \times N$) defined by $B_{ij} = \frac{\partial f_i}{\partial k_j}|_{ss}$. Applying the Laplace transform (from the real-valued t-axis to the complex-valued s-plane) to the linearized model in Eq. 2, gives the $M \times N$ transfer function matrix $H(s)$ as

$$H(s) = \frac{\Delta I(s)}{\Delta k(s)} = (sI - A)^{-1}B$$

(3)

$H(s)$ describes the connections between a small change in all possible inputs, here the array of Laplace transformed rate constants $\Delta k(s) = [\Delta k_1(s), \ldots, \Delta k_N(s)]^T$, and the resulting small changes in all possible outputs, i.e., the array of all Laplace transformed concentration changes $\Delta I(s) = [\Delta I_1(s), \ldots, \Delta I_M(s)]^T$. I is the identity matrix ($M \times M$). The matrix $(sI - A)^{-1}$ is calculated by means of the cofactors of $(sI - A)$ divided by the determinant of $(sI - A)$. The condition $\det(sI - A) = 0$ determines the poles of the system, which are identical to the eigenvalues of $(sI - A)$. In general, the elements $H_{ji}(s)$ of the transfer function matrix $H(s)$ are written as:

$$H_{ji}(s) = \frac{\Delta I_j(s)}{\Delta k_i(s)} = \frac{K \cdot \prod_{r=1}^{n} (s - z_r)}{\prod_{q=1}^{m} (s - p_q)} = \frac{n(s)}{d(s)}$$

(4)

where z_r are the transfer function’s zeros, p_q are the poles, and K is the gain. As indicated in Eq. 4, $H_{ji}(s)$ is described as the ratio between two polynomials, the numerator-polynomial $n(s)$ and the denominator-polynomial $d(s)$.

Robust and Non-robust Perfect Adaptation

When for a given $H_{ji}(s)$ $n(s)$ has a zero in origo of the s-plane regardless of the values in any of the rate constants, the system shows robust perfect...
adaptation in $I_j(t)$ with respect to a step-wise increase in the rate constant k_i (Fig. 1a). The reason for this is that the solution $s = 0$ for $n(s) = 0$, as shown in case 3 in Fig. 1b, is rate constant independent. Hence, a variation in k_i will not affect the steady state concentration of $I_j(t)$. In situations when the solution to $n(s) = 0$ has a zero in origo of the s-plane, but this solution is dependent of the values of certain rate constants, the system shows non-robust (rate constant dependent) perfect adaptation in $I_j(t)$ with respect to a step-wise change in k_i.

Partial Adaptation and Overadaptation

Partial adaptation (Fig. 1a) is observed when the solution to $n(s) = 0$ is real and lies in the left half of the s-plane (Fig. 1b). Overadaptation is observed when the solution to $n(s) = 0$ is real and lies in the right half of the s-plane (Fig. 1b). In both cases the solution to $n(s) = 0$ will be rate constant dependent.

No Adaptation

If $n(s)$ is a constant and does not have any zeros, no adaptation can be observed (Figs. 1a, b).

Fig. 1 summarizes the various adaptation types with the respective zeros for $n(s)$ and the corresponding frequency responses shown as Bode plots (Fig. 1c, only magnitudes are shown). In the case $H_{ji}(s) = 0$, $I_{j,ss}$ is (what we called) ‘disconnected’ from the rate constant k_i, and consequently, $C_{ki,ss}^{I_{j,ss}} = 0$.

Influence of the Transfer Function’s Poles and Zeros on Adaptation Kinetics

The solution to $d(s) = 0$ identifies the poles of the transfer function. If the poles are negative and real, the system is overdamped and the step response has no overshooting. If the poles are complex conjugated with a negative real part, the system is underdamped and the step response shows overshooting. However, the total response of a system will be determined by both the poles and the zeros of the transfer function. Fig. 2 shows how the step response of a system with a zero in origo (mid-figure) is influenced by an additional zero in the left half plane (left figure) and by an additional zero in the right half plane (right figure) leading to different perfect adaptation responses.
In the following we will illustrate the above conditions for different 'perfect adaptation motifs' and show how changes in these motifs can alter the adaptation response.

Conditions for Robust Perfect Adaptation

To get robust perfect adaptation in reaction kinetic networks two conditions are necessary. The first condition is that the network needs to be open, i.e., being capable to maintain a steady state. Closed systems, which are confined by the *Principle of Detailed Balance* (44), approach equilibrium and will generally not exhibit, as illustrated below, robust perfect adaptation. However, certain closed systems which contain positive and/or negative feedback loops can transiently exhibit oscillations and steady states (55), and may therefore, during such a transient, show robust perfect adaptation. The second condition to be met in order to get robust perfect adaptation is that the network contains one or more irreversible reaction steps. The placement of these irreversible reactions within the network is crucial for getting robust perfect adaptation (see below).

To illustrate this, we consider the following reversible two-component system of first-order reactions, where the wavy line indicates a (receptor-mediated) step-wise stimulation in k_2:

$$
\frac{k_i}{k_i} \Rightarrow \begin{array}{c} A \xrightleftharpoons[k_2]{k_2} B \xrightleftharpoons[k_3]{k_3} \end{array}
$$

The corresponding transfer function $H_{B,k_2}(s)$ is:

$$
H_{B,k_2}(s) = \frac{\Delta B(s)}{\Delta k_2(s)} = \frac{A_{ss}(s + k_{-1})}{s^2 + (k_3 + k_{-1} + k_{-2} + k_2)s + k_3(k_2 + k_{-1}) + k_{-1}k_{-2}}
$$

(5)

Since the solution to $n(s) = 0$ for $H_{B,k_2}(s)$ is given by $s = -k_{-1}$, a step in k_2 will show partial adaptation in $B(t)$ as schematically indicated in case 2 of Fig. 1b. When $k_{-1} = 0$, $H_{B,k_2}(s)$ has a zero in origo and a step-wise change in k_2 will now lead to robust perfect adaptation in $B(t)$. A more detailed
description of the steady states of this system together with a derivation of Eq. 5 is given in the Supporting Information.

Thus, a simple motif that can show robust perfect adaptation is scheme M1:

$$
\begin{align*}
 & \rightarrow \quad A \xrightarrow{\ k_1 \ } B \xrightarrow{\ k_2 \ } B \xrightarrow{\ k_3 \ } B \\
 & \quad \text{(M1)}
\end{align*}
$$

where the irreversibility in the first step is essential for getting robust perfect adaptation in $B(t)$ through a step-wise stimulation of k_2 (or k_{-2}). To get a rapid overview where in the network robust perfect adaptation occurs, circular tags are placed at the rate constants (inputs) and at the associated perfectly adapting intermediates (outputs) as indicated in scheme M1.

In the following we analyze the adaptation response for a variety of irreversible (non-equilibrium) steady state networks, where some of them are related to adaptation dynamics observed in biological systems.

Network Size and Frequency Response

We consider the following chain of consecutive reactions

$$
\begin{align*}
 & \rightarrow \quad A \xrightarrow{\ k_1 \ } B_1 \xrightarrow{\ k_2 \ } B_2 \xrightarrow{\ k_3 \ } \cdots \xrightarrow{\ k_n \ } B_n \\
 & \quad \text{(M2)}
\end{align*}
$$

Circular tags indicate the rate constants (inputs) and the associated intermediates (outputs) which show robust perfect adaptation. For example, robust perfect adaptation is observed in every B_i when k_2 undergoes a step-wise change. The transfer function from the input $\Delta k_2(s)$ to the various ΔB_i’s is given by

$$
H_{B_\ell,k_2}(s) = \frac{\Delta B_\ell(s)}{\Delta k_2(s)} = \begin{cases}
 \frac{A_{ss} \cdot s^{\ell+2}}{\prod_{j=2}^{\ell} (s + k_j)} & \text{if } \ell = 1; \\
 \frac{A_{ss} \cdot s^{\ell+1}}{\prod_{i=3}^{\ell+1} k_i} & \text{if } 2 \leq \ell \leq n. \\
 \frac{A_{ss} \cdot s^{\ell+2}}{\prod_{j=2}^{\ell+2} (s + k_j)} & \text{if } \ell = n.
\end{cases}
$$

(6)
In both cases of Eq. 6, the only solution to the numerator polynomial \(n(s) = 0 \) is \(s = 0 \), i.e., a zero in origo independent of the rate constants.

Besides studying the step response of a system, we can analyze how a system responds to external periodic stimulations (25, 39). This is generally done with a sinusoidal perturbation with a varying frequency \(\omega \), which is applied to the linearized model. The amplitudes and phases are determined as a function of \(\omega \) and presented in form of a Bode plot (25, 27).

Fig. 3 shows the step responses and Bode plots for M2 with \(n = 6 \). Although each of the \(B_i \)'s show perfect adaptation (Fig. 3a) with similar adaptation kinetics, the frequency responses for the \(B_i \)'s differ when a sinusoidal perturbation is applied to \(k_2 \). With increasing \(n \) in scheme M2 the negative slope at high frequencies \(\omega \) (Fig. 3b) will decrease by an additional 20dB per decade change in \(\omega \) for each \(B_i \) that is added to the network. This means that for a given experimental result where the step response for an intermediate looks like one of the responses in Fig. 3a, the size (or the order) of the network cannot be determined unless a frequency response as shown in Figs. 3b, c is obtained.

Application of consecutive reaction models

Lumping all intermediates \(B_i \) of scheme M2 into a single variable \(B \) gives motif M1*, which has also been studied by Hao et al. (16).

\[
\begin{array}{c}
\longrightarrow & A \xrightarrow{k_i} & B \xrightarrow{k_{ij}} & \quad (M1^*)
\end{array}
\]

The step-response of \(B(t) \) is shown in Fig. 4a, and this response is strikingly similar to the photoadaptation in *Limulus* as determined by measuring the activity (discharge frequency) of a single optic-nerve (13) shown in Fig. 4b.

Remarkably, when two robust perfect adaptation motifs M1* are coupled together by mutual inhibition as shown in scheme M1**,

\[
\begin{array}{c}
\quad (M1^{**})
\end{array}
\]
we observe adaptation responses which are not only radically different from
the isolated motif’s (M1*) responses, but which show a striking similarity to
experimental observations when two photoreceptors of Limulus are mutually
inhibiting each other (13) (Figs. 4c, d)!

This suggests that schemes M1* or M1**, despite their simplicity, could
be considered as ‘building blocks’ for the photoadaptation responses of single
and coupled optic nerves in Limulus.

Moreover, Brodie et al. (40) studied the frequency response of the Limu-
lus lateral eye. Assuming a reaction model as scheme M2, the experimental
Bode plot in the Brodie et al. study (Fig. 4 in Ref. (40)) indicates a network
length of $n \approx 16$ (including models of experimental set-up) downstream from
the site at which the signal from the receptor is perceived.

Influence of Feedback and Feedforward Loops

Feedback and feedforward loops are common regulatory elements. When
including negative feedback or positive feedforward loops in consecutive net-
works we generally observe additional over- or undershooting behaviors but
the distribution of the robust perfectly adapted sites within the network re-
mains mostly unaffected. A more detailed description of these behaviors are
given in the Supporting Information.

Cyclic Reactions

Turning to cyclic reactions we found networks that can show both rate
constant independent (robust) and rate constant dependent (non-robust)
perfect adaptation. For the sake of simplicity we consider here cyclic schemes
with 3 intermediates. A selection of four schemes (1-4) is given in M3.
Although reaction scheme 1 has an irreversible input (k_1), the two output
reactions with rate constants k_3 and k_5 produce a transfer function matrix
$H(s)$ where none of its elements $H_{ji}(s)$ have a zero in the origo independent
Perfect adaptation motifs

of the rate constants.

\[H_{A,k_4}(s) = \frac{n(s)}{d(s)} = \frac{B_{ss} \left((-k_{-2} + k_6)s - k_5 k_{-2} + k_6 k_3 \right)}{d(s)} \quad (7) \]

has the following solution to \(n(s) = 0 \):

\[s = \frac{k_5 k_{-2} - k_6 k_3}{-k_{-2} + k_6} \quad (8) \]

which is rate constant dependent. Therefore, a zero in origo for \(H_{A,k_4}(s) \) is obtained with perfect adaptation in \(A(t) \) when a step perturbation is applied to \(k_4 \) if \(k_5 k_{-2} - k_6 k_3 = 0 \). Otherwise, partial adaptation or overadaptation (dependent of the values of the rate constants) can be observed. Thus, scheme 1 can demonstrate rate constant dependent non-robust perfect adaptation.

By increasing the number of irreversible steps in 1, intermediates \(B \) and \(C \) become robust perfectly adapted (see scheme 2). No robust perfect adaptation in \(A \) is observed even when \(k_{-2} = 0 \). Reversing one of the output reactions in scheme 1 \((k_5, \text{see scheme 3}) \), \(B \) shows robust perfect adaptation with respect to all rate constants in the ring. Increasing the number of irreversible steps of scheme 3 leads, as shown in 4, to robust perfect adaptation in all intermediates for step-wise perturbations in different \(k_i \). This illustrates, as already seen for consecutive reaction M1 that the presence of irreversibility and the placement of input and output reactions are crucial for the occurrence of robust perfect adaptation. We found it interesting that
in scheme 3 (and in larger cyclic networks) all types of adaptation responses can be observed (Fig. 5).

Schemes 2 and 4 of M3 show a close resemblance to the Barkai-Leibler (BL) model (22) of bacterial chemotaxis. The BL-model has been discussed (41) using the (thermodynamically) closed form as shown in M4:

\[\text{C} \xrightarrow{k_1} \text{R}_a \xleftarrow{k_2} \text{C} \xrightarrow{k_j} \text{CheB} \]

The presence of a zero-order reaction step from C to Ri assures perfect adaptation in the active form of the receptor R*_a when applying a step-wise perturbation to k_1 or k_2. In view of the results for schemes 2 and 4 of M3, the presence of a zero-order term in M4 is not absolutely required when describing scheme M4 as an open far-from equilibrium steady state system (42, 43), by explicitly including system-input and system-output reactions. It may also be noted that by representing scheme M4, as shown, formally as a closed system (41), it violates the Principle of Detailed Balance (44), and may for certain rate constant values lead to negative concentrations in C.

Scheme M5 shows a model suggested by Levchenko and Iglesias (12) in order to describe perfect adaptation in eukaryotic chemotaxis. In this model an activator A drives the receptor to its active form R*_a, while an inhibitor I converts the active receptor into an inactive form R_i.
Levchenko and Iglesias observed that perfect adaptation is obtained when activation and inhibition of the receptor is mediated by a common signal which activates A and I by a fixed proportion, i.e., $k_{5}^{\text{per}} = \alpha k_{1}^{\text{per}}$, where α is any real positive constant. This suggestion for getting perfect adaptation is indicated in scheme M5 by white circular tags at k_{5} and k_{1} with corresponding white tags at R_{a}^{*} and R_{i} (indicating that both R_{a}^{*} and R_{i} show perfect adaptation). However, by combining the method of zero control coefficients with an analysis of the corresponding transfer functions, five additional possibilities for perfect adaptation can be found, complementing the suggestion by Levchenko and Iglesias. Assuming first-order kinetics (12), the steady state concentration of active receptor $R_{a,ss}^{*}$ can be expressed in terms of the total receptor concentration $R_{\text{tot}} = R_{a,ss}^{*} + R_{i,ss}$ as (see Supporting Information):

$$R_{a,ss}^{*} = \frac{k_{1}k_{3}k_{6}}{k_{1}k_{3}k_{6} + k_{2}k_{4}k_{5}} R_{\text{tot}} \quad (9)$$

From Eq. 9 we see that for any substitution $k_{i} = \alpha k_{j}$ with $i \in \{2, 4, 5\}$ and $j \in \{1, 3, 6\}$ the control coefficient $C_{R_{a,ss}^{*}k_{j}} = \frac{\partial \ln R_{a,ss}^{*}}{\partial \ln k_{j}}$ becomes zero, suggesting that a common step-wise activation of k_{i} and k_{j} ($k_{i}^{\text{per}} = \alpha k_{j}^{\text{per}}$) may lead to perfect adaptation. Inspecting the corresponding transfer functions (see Supporting Information) it was found that perfect adaptation is observed in six cases (indicated in scheme M5) out of the nine possibilities that are suggested by a zero control coefficient $C_{R_{a,ss}^{*}k_{j}}$ (data not shown). Table 1 shows all possible rate constant substitution combinations and the resulting number of perfect adaptation possibilities. In Table 1, substitutions which lead to perfect adaptation are indicated in bold-face, while those showing no perfect adaptation are indicated in italic.
Discussion

Adaptation processes are important for providing robustness (45, 46) to biological systems. To our knowledge, no systematic attempts have so far been made to investigate the possible adaptation responses (Fig. 1) in reaction kinetic networks. Here we have shown how robust perfect adaptation sites and their responses (Fig. 2) can be identified by finding zero control coefficients and by analyzing the corresponding transfer functions. Somewhat to our surprise, already small networks can show a relative large number of robust perfect adaptation sites, which, during evolution, may have been of importance where in a network the signal from a receptor is received. For certain cyclic networks such as scheme 3 of M3 we can even observe simultaneously all adaptation types (Fig. 1) in the same network (Fig. 5).

A prerequisite to observe robust perfect adaptation is the presence of irreversibility in the network (as seen in the transition from scheme S1 to M1) and treating the network as an open far from equilibrium system (42, 43).

While the identification of robust perfect adaptation sites can be linked to the identification of (exact) zero control coefficients and the analysis of the associated transfer functions, the determination of non-robust (rate constant dependent) adaptation sites in a reaction network is less straightforward. It requires an analysis on how control coefficients depend on the rate constants. In addition, rate constant dependent adaptation may even occur in the presence of nonzero control coefficients when receptor signals from the same environmental variable are acting at different sites in the network.

To illustrate this latter case (which can be considered as an extension of the $k_i^{per} = \alpha k_j^{per}$ suggestion by Levchenko and Iglesias (12)) consider a network where component $I_{j,ss}$ is dependent of a subset of P rate constants. Each rate constant $\{k_i\}_{i=1}^{P}$ is associated with a receptor signal from the same environmental variable Θ (light, a hormone, etc.) changing the values of the k_i's through Θ. The influence of Θ on $I_{j,ss}$ can be written as:

$$
\frac{d \ln I_{j,ss}}{d \ln \Theta} = \sum_{i=1}^{P} C_{k_i}^{I_{j,ss}} \frac{\partial \ln k_i}{\partial \ln \Theta}
$$

When $C_{k_i}^{I_{j,ss}} \neq 0$ perfect adaptation may still be possible, but positive and negative contributions of the $C_{k_i}^{I_{j,ss}}$'s are needed such that Eq. 10 becomes zero. This type of balancing approach requires a fine-tuning of the parameters $\frac{\partial \ln k_i}{\partial \ln \Theta}$ for a given set of control coefficients. Eq. 10 has been suggested as
a mechanism for temperature compensation (47, 48) of circadian rhythms (30, 47, 49–52) and steady state fluxes (31) in ectotherms. An analysis of the influence of temperature on reaction kinetic networks in terms of control coefficients and transfer functions will be given elsewhere.

The analysis presented here is based on linearizing a system around a steady state. This has the advantage of making the analysis more tractable (26). Although a linearized model is a good approximation for a nonlinear system when applying small perturbations (27, 29, 53, 54), the linearized system may not describe correctly system responses when using large perturbations. In this respect, studies using linearized models may be complemented by numerical techniques (54, 56, 57), or by trying to apply methods such as feedback control (29).

Adaptation mechanisms contribute to the robustness of biological systems and there are attempts to provide a mathematical description of robustness (45, 46). In this respect, we think that the here described methods are useful in identifying and characterizing adaptation responses within reaction kinetic networks.

Acknowledgments

We thank Morten Tengesdal and Ludger Rensing for comments on the manuscript. This research was supported in part by the National Science Foundation under Grant No. PHY05-51164. The KITP preprint number of this manuscript is NSF-KITP-07-213.

Supporting Information Available

The Supporting Information (10 pages) contains derivations of the transfer functions for scheme S1 and scheme M5, derivation of the amount of released/absorbed B during adaptation in scheme M1*, and a description of the influences of negative feedback and positive feedforward loops on adaptation behaviors in consecutive reactions. This information is available free of charge via the Internet at http://pubs.acs.org.

References

Perfect adaptation motifs

<table>
<thead>
<tr>
<th>index i</th>
<th>substituted by index j</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 6 3 6 3 1</td>
</tr>
<tr>
<td>4</td>
<td>3 1 6 3 1 6</td>
</tr>
<tr>
<td>5</td>
<td>6 3 1 1 6 3</td>
</tr>
</tbody>
</table>

number of perfect adaptations: 0 3 3 2 2 2

TABLE 1: Overview over $k_j \rightarrow k_i$ substitutions (scheme M5)
Figure Legends

Figure 1.
(a) Step responses, (b) zeros, and (c) frequency responses for four different transfer functions showing 1: no adaptation, 2: partial adaptation, 3: perfect adaptation, and 4: overadaptation. The four transfer functions are described by $H_i(s) = \frac{n_i(s)}{d(s)}$, $i = 1, \ldots, 4$ with the same denominator $d(s) = (0.2s + 1)(0.35s + 1)(0.45s + 1)$, i.e., a third-order overdamped system. In order to visualize the impact of different zeros, the numerators are: $n_1(s) = 1.5$, $n_2(s) = (s + 1)$, $n_3(s) = s$, and $n_4(s) = s - 1$.

Figure 2.
(a) Step responses, (b) zeros, and (c) frequency responses for three different transfer functions all showing perfect adaptation, i.e., they all have at least a zero in origo. All three transfer functions are given as $H_i(s) = \frac{n_i(s)}{d(s)}$, $i = 1, \ldots, 3$ with the same denominator as in Fig. 1. The basic transfer function has only a zero in origo, i.e. $n_2(s) = s$. In order to visualize the impact of an additional zero in the left and right half plane respectively, the numerators of the two other transfer functions are $n_1(s) = (s + 1)s$ and $n_3(s) = (1 - s)s$.

Figure 3.
(a) Step responses for the first six B_i’s (identified by their i’s) in scheme M2 when a step is applied on k_2. Rate equations are: $\frac{dA}{dt} = k_1 - k_2 \cdot A; \frac{dB_1}{dt} = k_2 \cdot A - k_3 \cdot B_1; \frac{dB_i}{dt} = k_{i+1} \cdot B_i - k_{i+2} \cdot B_i$, where all rate constants are, for the sake of simplicity, set equal to 1.0. (b) and (c) show the corresponding Bode plot, i.e., the influence of frequency on the magnitude and phase of the six B_i’s, respectively.

Figure 4.
(a, upper panel) Robust perfect adaptation in $B(t)$ of scheme M1* with rate equations $\frac{dA}{dt} = k_1 - k_2 \cdot A, \frac{dB}{dt} = k_2 \cdot A - k_3 \cdot B$. Time and concentrations are given in arbitrary units (a.u.). Rate constant values are $k_1 = 1.0, k_2 = 0.55, k_3 = 0.5$. At time $t = 30$, (indicated by 1), k_2 is increased from 0.55 to 1.0 and then reset to 0.55 at $t = 60$ (at 2). Hatched areas indicate the amount of released/absorbed B during adaptation. The amount of
released/absorbed B during adaptation is given by \((f - 1)k_1/fk_2k_3\), where \(f\) describes the stimulation strength, i.e., the ratio between the perturbed \(k_2\) (\(k_2^{\text{per}}\)) and its pre-perturbed value (\(k_2\)) with \(k_2^{\text{per}} = f \cdot k_2\) (see Supporting Information). This indicates that for high stimulations (\(f \gg 1\)) the amount of released/absorbed \(B\) becomes independent of the stimulation strength \(f\).

(a, lower panel) Same system as in the upper panel, but at \(B\) of released/absorbed \(f\).

(b) Photoad-aption with respect to a step-wise perturbation of a single photoreceptor in Limulus. Shown are changes in the optic-nerve discharge frequency for a 2-second incremental flash (upper panel) or a 2-second decremental flash (lower panel). Open and closed circles represent experimental determinations of the nerve’s discharge frequencies. The bottom lines in upper and lower panels indicate onset and termination of the stimulus. Redrawn after Fig. 16 from Ratliff et al. (13).

(c) Partial adaptation in \(B\) and \(B'\) of two coupled M1* motifs (scheme M**) showing close resemblance to experimental observations (Fig. 4d). The following rate equations and rate constants have been used: \(dA/dt = k_1/k_1 + A - k_2 \cdot A; dB/dt = k_2 \cdot A - k_3 \cdot B; dA'/dt = k_4/k_4 + A' - k_5 \cdot A'; dB'/dt = k_5 \cdot A' - k_6/k_6 + A'\) with \(k_1 = k_4 = 1.0, k_2 = k_5 = 0.55, k_3 = k_6 = 0.5, K_{f_1} = 0.5,\) and \(K_{f_2} = 0.35\). At \(t = 50\), \(k_2\) is increased from 0.55 to 1.0 and reset to 0.55 at \(t = 100\). (d) Partial adaptation in two adjacent photoreceptors of Limulus (redrawn after Fig. 17 from Ratliff et al. (13)). One receptor was constantly illuminated (black dots), while the other receptor (open circles) received an increased illumination between 0 and 2s, and is reset to its pre-perturbation value after 2s.

Figure 5.

Different adaptation kinetics observed for scheme 3 in M3. (a) no adap-
tation in \(A\) for a step perturbation in \(k_5\), (b) partial adaptation in \(C\) for a step perturbation in \(k_{-6}\), (c) perfect (robust) adaptation in \(B\) for a step perturbation in \(k_{-4}\), and (d) overadaptation in \(A\) for a step perturbation in \(k_{-4}\). Rate equations: \(dA/dt = k_1 - (k_2 + k_{-6}) \cdot A + k_6 \cdot C + k_{-2} \cdot B; dB/dt = k_2 \cdot A - (k_4 + k_{-2} + k_3) \cdot B + k_{-4} \cdot C; dC/dt = k_5 - (k_{-4} + k_6) \cdot C + k_4 \cdot B + k_{-6} \cdot A,\) with rate constants: \(k_1 = 1.1, k_2 = 1.2, k_{-2} = 1.7, k_3 = 1.3, k_4 = 1.4, k_{-4} = 1.8, k_5 = 1.5, k_6 = 0.1, k_{-6} = 1.9.\)
Figure 1.
Figure 2.
Figure 3.
Perfect adaptation motifs

Figure 4.
Perfect adaptation motifs

Figure 5.