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Introducing Temperature-Compensation in Any
Reaction Kinetic Oscillator Model

by

Peter Ruoff

ABSTRACT

The positive and negative feedback loops in oscillatory reactions provide a basis for obtaining
temperature-compensation in any reaction-kinetic model of chemical or biological oscillators. The
present paper shows that positive and negative feedback reactions play the role of “opposing reactions”
whose existence was suggested by Hastings and Sweeney for more than 30 years ago. The principle is
illustrated with the Brusselator model.

INTRODUCTION

Many circadian rhythms (Biinning, E., 1964; Edmunds, Jr., L. N., 1988; Engelmann,
W., 1988; Hastings, J. W. and Schweiger, H.-G., 1976; Sweeney, B. M., 1987;
Winfree, A. T., 1980) although not all (Engelmann, W., 1988) can exhibit so-
called temperature-compensation, i.e., the period length of the rhythm is little
affected to temperature changes which occur within a certain physiological range.
The influence of temperature is normally reported by Qm values (Biinning, E., 1964;
Edmunds, Jr., L. N, 1988; Engelmann, W., 1988; Hastings, J. W. and Schweiger,
H.-G., 1976; Sweeney, B. M., 1987; Winfree, A. T., 1980) which describe the
relative frequency or period change when the temperature is increased by 10
centigrades. For temperature-compensated circadian rhythms typical Q,, values
are between 1 and 1.1. In a few cases, Q,, values are greater than 1.2 or lower
than 1 (Biinning, E., 1964). This temperature insensitivity of circadian rhythms
is it considerable contrast to chemical or biochemical oscillatory systems where
Q,, values normally lie between 2-4 as expressed by Van’t Hoff’s rule (Neumiiller,
O.-A., 1988). It should be noted, however, that there are examples of purely
chemical systems which have Q,, values lower than 1 (Skrabal, A., 1915).

To rationalize temperature-compensation in reaction kinetic terms, Hastings
and Sweeney (Hastings, J. W, and Sweeney, B. M., 1957) proposed in 1957 the
general idea of two opposing and compensating reactions. During the 1960’s and
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1970’s several approaches to explain temperature-compensation in several mod-
els appeared (Engelmann, W. et al., 1974; Johnsson, A., 1983; Johnsson, A. and
Karlsson, H. G., 1972; Pavlidis, T., 1973; Pavlidis, T. and Kauzmann, W., 1969;
Pavlidis, T. et al., 1968; Rossler, O. E., 1975), where each of the studies were
emphasizing specific aspects of the investigated model oscillators.

As a result of an earlier study of light-induced circadian rhythms in higher
plants (Lillo, C., 1984; Lillo, C. and Henriksen, A., 1984; Lillo, C. and Ruoff, P.,
1984), we were considering the problem how temperature-compensation can be
achieved in reaction kinetic terms. This paper describes a general method how
temperature-compensation can be obtained in any reaction kinetic model: the
positive and negative feedback loops of the oscillator act as the “opposing”
reactions, where a practically unlimited number of different combinations of rate
constant values can lead to temperature-compensation.

THE CONSTRUCTION OF A TEMPERATURE-COMPENSATED
REACTION KINETIC OSCILLATOR MODEL

A necessary condition for the existence of any physico-chemical oscillatory
system is the presence of at least one destabilizing positive feedback and one
stabilizing negative feedback both acting simultaneously on one of the kinetic
variables in the system. This rule is known as the antagonistic feedback concept,
which was formulated by Franck in the late 1970’s (Franck, U. F., 1978; Franck,
U. F,, 1980).

Here we describe that an increase of rate constants belonging to positive
feedback reactions increase frequency (decrease period length), while increasing
rate constants of negative feedback reactions will lower frequency (increase
period length). Thus, for a certain set of activation energies, positive and negative
feedback reactions will, due to their opposing temperature-behaviours, tend to
compensate the influence of temperature on period length. We illustrate this
behaviour with the Brusselator model which is one of the simplest chemical
model oscillators (Prigogine, 1. and Lefever, R., 1968).

The Brusselator consists of four irreversible reaction steps R1-R4 with two
kinetic variables X and Y and the rate constants k,-k,. Pool chemicals A, B, D,
and E are assumed to be present with constant concentrations:

k1

A - X (RD)
k2

2X+Y - 3X (R2)
k3

B+X — Y+D R3)
k4

X —» E R4)
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Process R2, the autocatalytic generation of X, is the necessary destabilizing
positive feedback in order to get oscillations. Process R1 represents another
positive feedback relative to X, while processes R3 and R4 consume X and
therefore represent negative feedback reactions.

Reactions R1-R4 are treated as elementary processes (Prigogine, 1. and Lefever,
R., 1968) which results in the following rate equations:

%’E‘l =k, TA] + K, [XI2{Y] - k, [B}[X] - k, [X] (1)

Y] — i IXP Y] + Ky TBIX] @

Equations 1 and 2 are solved numerically by using the FORTRAN-program
LSODE (Hindmarsh, A. C., 1980). |

Analogous to empirical chemical rate equations (Laidler, K. J., 1987), we
express the period length P of the Brusselator by the following approximate
relationship:

P =Tk Mk Sk K 3)

where T, and o,’s are constants. Because o, and ., belong to positive feedback
reactions they are negative, while o, and o, have positive values. When the os-
cillator is temperature-compensated, P is approximately independent of tem-
perature T such that

oP 0
T (4)
Assuming an Arrhenius-type dependence of the k;’s on T, i.e.,
Ei
k=Ae RT 3
equation 2 leads to the condition:
2 o E=0 (6)
1

However, because equation 3 is an approximation, equation 6 is generally not
fulfilled over an extended temperature-range, and further “fine-tuning” of one or
several activation energies (E,’s) is normally necessary to obtain the desired de-
gree of temperature-compensation.

Fig. 1 shows the contributions of the positive and negative feedback reactions
to the period length in a temperature-compensated situation. Actually, we have
used the logarithm of the period P , because if equation 3 is an exact representa-
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Fig. 1. Logarithm of period length (log P) of a temperature-compensated Brusselator. Values of [A]
and [B] are fixed to 0.5 and 3.0 (arbitrary concentration units), respectively.

tion, simulated log P -T plots should be straight lines. The fact that the log P -T
plots in Fig.1 are curved shows that equation 3 is indeed only an approximation.

At T= 283 K, all rate constants are arbitrary set to 1.0, which results in a
period length of 23.3 time units. This refers to the intersection point in Fig.1. The
o,’s are determined by calculating the slope of the numerical logP - log(k,)
function, while keeping the other kj 4 at 1.0. The obtained c; values are listed in
Table 1. ‘

Activation energies E,, E,, E, are (arbitrary) set to 14.00 kJ/mol, and the pre-
exponential factors A, in the Arrhenius equation are determined according to the
condition k,(283K)=1.0. When E, is finally calculated according to equation 6
(which results in E;=9.02 kJ/mol), a decrease in period length with increasing
temperature is observed, where the average Q,,is 1.07 over a 0°C-40°C range. Fig.
1 shows the results when E, is further “fine-tuned” to 6.57 kJ/mol: the period of
the oscillator increases now slightly with increasing temperature and Q,, has a value
of 0.998. The results are summarized in Table 1. We note that when positive
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Table 1. Calculated o, A, E;, and Q,, values for the Brusselator model®.

i o E, (kJ/mol) A Qo
(arbitary units)

2 ~-0.954 14.00% 383.83 -

3 1.175 14.00? 383.83 -

4 0.984 14.00° 383.83 -

1 -1.870 9.02 46.25 1.07

1 -1.870 6.57 16.32 0.998

2 [A]=0.5, [B]=3.0 (arbitrary concentration units)
b fixed values

feedback reactions dominate, the Q,, values are greater than 1, and the period
length decreases with increasing temperature. When negative feedback reactions
dominate (like in Fig. 1), we get Q,, values lower than 1. In this case the period
increases with increasing temperature.

PHASE AND AMPLITUDE SHIFTS

Although period lengths in temperature-compensated oscillators may be remark-
ably constant over a certain temperature range, phases and amplitudes are generally
altered by temperature changes. In the temperature-compensated Brusselator,
positive temperature-steps lead to a phase delay and to an increase in amplitude,
while negative temperature-steps lead to the opposite (Fig. 2). Fig. 3 illustrates
the origin of the phase delay and amplitude increase for the 0°C — 40°C tem-
perature-step shown in Fig. 2.

The choice of activation energies E, (Table 1) which leads to the temperature-
compensation of Fig. 1 is only one possibility out of many other combinations as
to how temperature-compensation can be achieved. Equation 6, although not
strictly valid over an extended temperature range, can serve as a guideline for
obtaining other E;-combinations.

GENERALIZATION AND FURTHER WORK

For a model oscillator with n reaction kinetic component processes, period P
can be expressed by an extended equation 3:

n
P=1o [ ®)
i=1

As long as the period length P is a smooth and not too rapidly changing function
of the rate constants k,, equation 8 appears to be a satisfactory description of P
of any reaction kinetic oscillator model.
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Fig. 2. Effect of temperature-steps in the temperature-compensated Brusselator. The logarithm of
the X-concentration, [X], against time (both in arbitrary units) is shown. The dashed line
indicates the sudden change in temperature.

In a first approximation, E, values can be determined by equation 6, but fur-
ther “fine-tuning” of the E,’s will normally be necessary to obtain better tem-
perature-compensation.

We may speculate whether chemical oscillatory reactions (Field, R. J. and
Burger, M., 1985; Gray, P. and Scott, S. K., 1990) may be able to act as temperature-
compensated “in-vitro” systems. In view of the findings by Skrabal (Skrabal, A.
1915) that also purely chemical systems seem to be able to exhibit Q,, values lower
than 1, it appears interesting to try to design or modify chemical oscillatory
reactions such that they show Q , values close to one.



98 ) PETER RUOFF

1.5
] slow 143 147  40°C Limit Cycle
14
1 1.2
] A [0.0,23.3
0.5-
- | rapid
=3 ]
L) ]
04

-0.5- Temperature-jump
| 0°C - 40°C ' 14.9

e T —

-1.5 -1 -0.5 0 0.5 1 1.5
logIX]

Fig. 3. Log[Y] - log[X] phase plane plot corresponding to the upper trace of Fig. 2. The two oscilla-
tory states at 0°C and 40°C are represented by the indicated limit cycles. Numbers at points
along the 40°C limit cycle show times relative to the 0°C — 40°C step, while numbers at the
inner 0°C limit cycle show times if no temperature-jump would have occurred. The delay in
phase due to the 0°C — 40°C step occurs, because at high [Y] and low [X] values velocities
on the 40°C limit cycle are substantially lower than on the 0°C limit cycle. Velocities in the
rapid region of the phase plane (high [X], low [Y]) are only marginally higher on the 40°C limit
cycle. Positive temperature-steps in this region of the phase plane lead only to very small
phase advances.

More than 30 years ago, the existence of opposing reactions to explain tem-
perature-compensation in circadian rhythms was suggested (Hastings, J. W. and
Sweeney, B. M., 1957). The present paper shows that positive and negative
feedback reactions in fact play such a role, and that temperature-compensation
can be accomplished by these elements which form the oscillatory reaction.
Further work will investigate whether the principles derived in this paper are
sufficient to explain experimentally observed phase resetting behaviors in tem-
perature-perturbed circadian rhythms.
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