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ABSTRACT Organisms have the property to adapt to a changing environment and keep certain components within a cell regu-
lated at the same level (homeostasis). ‘‘Perfect adaptation’’ describes an organism’s response to an external stepwise perturbation
by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect
adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activ-
ities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one
approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate
constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we
identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled
variable’s inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeo-
static mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control
(or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux
conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links
between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium
homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.
INTRODUCTION

Many physiologically important compounds are under tight

homeostatic regulation, where internal concentrations are

adapted (1) at certain levels, despite environmental distur-

bances. Two concepts have developed to understand homeo-

stasis: one is related to the intrinsic properties of the network

showing that the adaptation response is independent of (most

but not all) rate constant values (referred to here as robust

(2–4) adaptation/homeostasis), whereas the other concept

looks at the homeostasis due to a fine-tuning between rate con-

stants. Perfect adaptation describes an organism’s response to

an external stepwise perturbation by regulating some of its vari-

ables/components precisely to their original preperturbation

values. Perfect adaptation has been found, for example, in

bacterial chemotaxis (5–8), photoreceptor responses (9), and

MAP-kinase regulation (10–12). In this respect, perfect adap-

tation and homeostasis are closely related and in the following,

we look at homeostasis as a perfectly adapted process.

Robust perfect adaptation/homeostasis of a perturbed

system can be related to the concept of integral control (13)

or integral feedback (14). In this type of control mechanism,

the error between the value of the system output (controlled

variable, CV) and its setpoint is integrated, and the integral

value is fed to the input of the process (the so-called manipu-

lated variable, MV), which results in a robust adaptation of the

system output to the setpoint (Fig. 1). Recently, El-Samad

et al. (15) have shown that calcium homeostasis under hypo-
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calcemia conditions can be described on the basis of an inte-

gral feedback approach, where the error between the calcium

setpoint and the actual calcium level is related to the activity of

the parathyroid hormone (PTH), an important hormone in

calcium regulation.

However, the molecular mechanisms behind error-sensing

processes are little understood. To investigate the relation-

ship between the integral control/feedback concept and its

reaction kinetic realization, we provide here a kinetic anal-

ysis. We show that robust perfect adaptation (homeostasis)

is associated with a control species working under zero-order

flux conditions while acting on another control species in the

way of a ‘‘control of the controller’’. There is an interesting

and close analogy between the mechanisms shown here and

mechanisms found in mammalian iron and calcium homeo-

stasis, indicating that other homeostatic mechanisms may

underlie similar control structures.

Computational methods

Rate equations were solved numerically by using the

FORTRAN subroutine LSODE (Livermore Solver of Ordi-

nary Differential Equations) (16) and MATLAB (www.

mathworks.com). To make notations simpler, concentrations

are denoted by their names without square brackets.

RESULTS

Molecular representation of integral control

Fig. 2 a shows a simple scheme where a homeostatic-regu-

lated intermediate A is being synthesized, transformed, and
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degraded. Rate constant kpert indicates an environmental

perturbation, such as a sudden increase in A. To avoid

possible cell damage by excess of A, A has to be homeostati-

cally regulated. A way to achieve this is to use an A-induced

enzyme, Eadapt, which clears the cell for excess A. To make

the homeostasis perfect, i.e., A adapts always to the same Aset

value, the rate in the formation of Eadapt has to be propor-

tional to the difference (i.e., the error) between A and its

setpoint, Aset, as indicated by the following equations and

shown in Fig. 2, a and b:

dA

dt
¼ ksynth þ k pert �

VEtr
max A

KEtr

M þ A
� V

Eadapt
max A

K
Eadapt

M þ A
; (1)

dEadapt

dt
¼ kadaptðA� AsetÞ: (2)

However, writing the rate of formation of Eadapt in propor-

tion to the error (A – Aset) (Eqs. 1 and 2, and Fig. 2 c) does

still lack a molecular understanding of how the setpoint Aset

is determined. In addition, treating the setpoint Aset as a fixed

parameter can lead to the problem that, for certain param-

eter values, concentrations in Eadapt may become negative

(Fig. 2 b).

To avoid negative concentrations, the zero-order term in

Eq. 2, j0 ¼ kadaptAset, has to be replaced in a kinetically

plausible way. A possibility is the removal of Eadapt by an

additional controller/enzymatic species (Eset) working at

zero-order conditions. In this case, the set-value Aset is then

determined by Eset’s maximum velocity, VEset
max, divided by

the A-induced influx rate, which generates Eadapt (Eq. 3).

Fig. 3 shows two representations of this mechanism with

robust perfect adaptation/homeostasis in A avoiding any

negative concentrations. In Fig. 3 a, a fully expanded

Michaelis-Menten mechanism is shown, whereas in Fig. 3 b
the mechanism is formulated in terms of steady-state or rapid

equilibrium assumptions for the individual enzymatic steps.

The kinetic equations with rate constants are given in the

Appendix. For both cases, the setpoint in A is given by

Aset ¼
VEset

max

kadapt

¼ kEset
cat Etot

set

kadapt

; (3)

FIGURE 1 Scheme of integral control/feedback of a perturbed system,

where the system output is perfectly adapted to the setpoint (i.e., the error

e is robustly controlled to zero). MV and CV are the manipulated and

controlled variables, respectively. Symbols in gray denote the notation for

integral feedback by Yi et al. (14).
where Etot
set is the total concentration of enzyme Eset. Keeping

Aset fixed, the mechanism shows robust homeostasis in

A even when rate constants of the three enzymatic pathways

(Fig. 3 a) are varied by over six orders of magnitude! Fig. 4

shows the A-homeostasis for the scheme shown in Fig. 3 a,

using several perturbing and initial conditions (for details,

see Appendix and Fig. 3 legend). Fig. 4 a shows the homeo-

stasis in A when kpert is increased from 0.0 to 1.0 a.u. In

Fig. 4 b, a large positive excursion in A is observed when kpert

is increased from 1.0 to 1 � 103 a.u., which is accompanied

by an increased relaxation time in A for reaching Aset. Nega-

tive excursions in A are observed when kpert is decreased.

This is illustrated in Fig. 4 c when kpert is decreased from

1.0 to 1 � 10�3 a.u.

However, due to the introduction of enzymatic zero-order

kinetics (for avoiding negative concentrations in Eadapt), both

mechanisms in Fig. 3 show homeostasis only for perturba-

tions, which result in increased or moderate decreased levels

in A. When a perturbation removes A too quickly, then the

homeostasis in A breaks down. We therefore call this type

a b

c

FIGURE 2 (a) Reaction scheme of system with rate Eqs. 1 and 2. Species

A is formed by a zero-order process with rate constant ksynth and then trans-

formed to the product A1. Rate constant kpert is related to a perturbing process

(wavy line), which increases the level of A. To remove excess A, A is forming

enzyme species Eadapt, which removes A with the flux V
Eadapt

max A=ðKEadapt

M þ AÞ
(indicated by the vertical arrow). To get robust adaptation in A independent

of kpert, Eadapt is removed through a zero-order flux j0¼ kadaptAset. (b) Calcu-

lation showing that negative Eadapt concentrations may arise when Aset is

regarded as a fixed setpoint. Initial concentrations of A and Eadapt are zero;

kadapt ¼ 5, kpert ¼ ksynth ¼ 0.5, V
Eadapt
max ¼ 1, K

Eadapt

M ¼ 1, VEtr
max ¼ 110, KEtr

M ¼
100, and Aset ¼ 2. Concentration and timescales are in arbitrary units

(a.u.). (c) Scheme of the adaptive process shown in panel a containing the

setpoint Aset, the integral controller and the process units. The controlled var-

iable (CV) is A. Eqs. 1 and 2 are written as dA/dt ¼ f2($) – f1($) þ kpert,

dEadapt/dt¼ kadapt(A – Aset), respectively, with f1ð$Þ ¼ V
Eadapt
max A=ðKEadapt

M þ AÞ,
f2ð$Þ ¼ ksynth � VEtr

maxA=ðKEtr

M þ AÞ, and V
Eadapt
max ¼ K $ Eadapt. K is the turnover

number for Eadapt, i.e., K ¼ k
Eadapt

cat . MV: manipulated variable.
Biophysical Journal 97(5) 1244–1253
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a

b

FIGURE 3 To avoid negative concentrations in Eadapt, j0
(Fig. 2 a) is represented as an enzymatic zero-order

process. (a) Fully expanded Michaelis-Menten mechanism.

The rate equations together with rate constants are shown

in the Appendix. To obtain robust homeostasis in A, Eset

removes active Eadapt into an inactive form Eadapt* under

zero-order conditions with Aset given by Eq. 3. (b) Same

mechanism as in panel a, but formulating the Michaelis-

Menten mechanism under steady-state/rapid equilibrium

conditions. Rate equations are given in the Appendix. A

zip-archive containing MATLAB and Berkeley Madonna

versions of the model shown in Fig. 3 A with instructions

and annotation available in the Supporting Material.
of homeostatic control for inflow-homeostatic control. In

Fig. 4 d such a breakdown in A-homeostasis is illustrated

by the A steady-state level (Ass) in relation to the (total)

concentration of the A-removing enzyme Etr. When the

removal rate in A becomes greater than the total production

rate (ksynth þ kpert), Ass decreases below Aset and homeostasis

in A is lost. This type of homeostatic failure can be avoided by

using controllers, which specifically address the removal of A
(outflow-homeostasis). A mechanism for calcium homeo-

stasis under outflow conditions (hypocalcemia) was recently

suggested by El-Samad et al. (15), but in this mechanism, the

problem of zero-order fluxes and their association with nega-

tive concentrations was not addressed. Specific examples of

other inflow and outflow homeostatic mechanisms are dis-

cussed below. Fig. 4 e illustrates the breakdown in A-homeo-

stasis when the kinetics in the removal of Eadapt by Eset is no

longer zero-order. For sufficiently large kEset

f values, the KEset

M

becomes much lower than Eadapt, ensuring zero-order kinetics

in the removal of Eadapt and leading to Ass values which are

equal to Aset. For lower kEset

f values, the KEset

M increases and

the zero-order kinetics in the removal of Eadapt are eventually

lost leading to Ass values lower than Aset and to the loss in the

homeostasis of A. As shown in Fig. 4 e, the Ass values under

non-zero-order conditions also depend on kpert. In Fig. 4 f, two

A-time profiles are shown for two perturbations, one applied

for zero-order conditions (kEset

f ¼ 1012, upper curve), and

the other for non-zero-order conditions (kEset

f ¼ 106, lower
curve). In both cases, kpert is increased from 1.0 to 5.0 a.u.

at t ¼ 5.0 a.u. Clearly, zero-order kinetics in the removal of

Eadapt is required to ensure robust homeostasis in A.

Robust perfect temperature compensation

Temperature is an important environmental parameter,

which influences each reaction step in a reaction kinetic

Biophysical Journal 97(5) 1244–1253
network. Van ’t Hoff’s rule states that the velocity of a chem-

ical or biochemical process increases generally by a factor

between 2 and 3 (the so-called Q10) when the temperature

is increased by 10�C. A Q10 of 2 corresponds to an activation

energy of ~50 kJ/mol (17). In general, the concentration of

a chemical component, a flux within a kinetic network, or

the period length of an oscillatory network, can show

temperature compensation/adaptation near a given reference

temperature, Tref, when the following balancing equation,

here written for the concentration in A, is satisfied (18–21):

dlnA

dT
¼ 1

RT2

X
i

CA
ki

Ei: (4)

Here CA
ki
¼ vlnA

vlnki
is the control coefficient (22,23) describing

how sensitive concentration A is with respect to variations

to the network’s rate constants ki. The values R, T, and Ei

describe the gas constant, the temperature (in Kelvin), and

activation energy (in J/mol) of the process indexed by i,
respectively. The balancing equation (Eq. 4) requires a

fine-tuning between the control coefficients and activation

energies. In general, the resulting temperature compensation

in A is not robust, i.e., temperature compensation is only

observed within a local region around Tref (see, for example,

(24)). Considering the network in Fig. 3, we have 21 rate

constants with associated activation energies, and in general,

temperature compensation in A is given by Eq. 4 including

all 21 terms.

However, this situation changes dramatically when one

assumes that Eadapt is removed by Eset under saturating

(zero-order kinetics) conditions and that Eset’s turnover is

negligible compared to the other fluxes associated with

Eset. In this case, most of the control coefficients become

zero, except for two, which are related to the rate constants

kadapt and kEset
cat . Together with the concentration of Eset, kadapt
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b

e f

FIGURE 4 Robust perfect adaptation in A with Aset ¼
1.0. (a) Model described in Fig. 3 a with rate constants

as given in the Appendix. At t ¼ 5.0 time units, kpert is

increased from 0.0 to 1.0. (b) Initial conditions as given

in the Appendix with kpert ¼ 1.0. At t ¼ 5.0 time units, kpert

is increased from 1.0 to 103 a.u. (c) Initial conditions as in

panel b. At t ¼ 5.0 time units, kpert is decreased from 1.0 to

10�3 a.u. (d) Same initial conditions as in panel b, but Etr is

successively increased leading eventually to the breakdown

in homeostasis indicated by the decreasing Ass values. This

breakdown can be opposed to a certain degree by

increasing the values of kpert or ksynth. In the figure, kpert

or ksynth were increased from their original values 1.0 and

3.0 to 10.0 and 12.0, respectively, thereby extending the

homeostasis to larger Etr values (dashed line). However,

at higher Etr concentrations the homeostasis fails again

with decreasing Ass values (data not shown). (e) Calculated

Ass values for varying log kEset

f with ksynth ¼ 3.0 a.u. and

kpert ¼ 1.0 a.u. (solid circles), or with ksynth ¼ 3.0 a.u. and

kpert ¼ 5.0 a.u. (open circles). For kEset

f < 109 a.u., perfect

homeostasis in A is lost (indicated by the condition

that Ass < Aset), because for decreasing kEset

f the

KEset

M ¼ ðkEset
cat þ kEset

r Þ=kEset

f associated with the removal of

Eadapt by Eset increases, which eventually leads to the loss

of the zero-order kinetics in the Eadapt degradation. (f)
Time profiles in A with two different kEset

f values. At t¼ 5.0

time units, kpert is increased from 1.0 to 5.0 a.u. 1 ¼ Perfect

homeostasis in A for kEset

f ¼ 1012 a.u.; 2 ¼ Loss of perfect

homeostasis in A when kEset

f ¼ 106 a.u., which is due to the

loss of zero-order kinetics in the degradation of Eadapt.
and kEset
cat define the setpoint for A (Eq. 3). Due to the concen-

tration summation theorem (22,25,26),X
i

CA
ki
¼ 0: (5)

CA
kadapt

and CA
k

Eset
cat

have the same magnitude but opposite signs.

This indicates that the network can show robust temperature

compensation in the level of A when the activation energies

for kadapt and kEset
cat are equal. In fact, when all activation ener-

gies are equal, say each reaction step has an activation energy

Ea, then all concentrations of the reaction intermediates in the

network, Ij, become robust perfectly adapted, as seen by

Eq. 6:

dlnIj

dT
¼ 1

RT2

X
i

C
Ij

ki
Ea ¼

Ea

RT2

X
i

C
Ij

ki
¼ 0: (6)

Fig. 5, a and b, shows this situation for 5�C and 100�C.

When activation energies are different (except for the activa-

tion energies of kadapt and kEset
cat ), then only A shows robust

temperature compensation, whereas the concentrations of

the other intermediates are no longer invariant. This is indi-
cated in Fig. 5, c and d, for temperature changes between 5�C
and 100�C.

DISCUSSION

Zero-order kinetics, integral feedback,
and homeostatic breakdown

Integral feedback (14) or integral control (13) is a concept

from control theory assuring that the output (the CV,

Fig. 1) of a perturbed process is kept at a certain setpoint

by integrating the associated error e such that e approaches

zero (Fig. 1).

To keep the level of A homeostatic-regulated by integral

control/feedback, the rate of formation of an additional

species (Eadapt) has to be linked to the error, integrated,

and then fed into the production rate of A. Integrated A is

subtracted from Aset and the error e is recalculated (Fig. 2 c).

Essential for this approach is the definition of the error e
through Eq. 2, which provides the actual condition that A
approaches Aset when the system’s steady state is reached.

Critically in this respect is the kinetic interpretation of the
Biophysical Journal 97(5) 1244–1253
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a b

c d

FIGURE 5 Robust perfect temperature compensation of

the model described in Fig. 3 a. Rate constants (Appendix)

refer to 25�C with Aset ¼ 1. (a) All activation energies are

50 kJ/mol and temperature is 5�C. (b) All activation ener-

gies are 50 kJ/mol and temperature is 100�C. Please note

the much shorter timescale compared to panel a needed

for the system to approach the same steady state. (c) Acti-

vation energies are as given in the Appendix. The system is

initially at its steady state at 5�C. At 0.02 time units, the

temperature is changed to 100�C showing perfect homeo-

stasis only in A. (d) Activation energies as in panel c.

The system is initially at its steady state at 100�C. At

40.0 time units the temperature is changed to 5�C showing

perfect homeostasis only in A.
term kadaptAset. To avoid unrealistic situations such as nega-

tive concentrations (Fig. 2 b), the zero-order flux needs to

be put into a proper mechanistic perspective. To achieve

this, the mechanism shown in Fig. 3 includes an additional

enzymatic species (Eset) leading to zero-order degradation/

inactivation in Eadapt. This step is essential to obtain robust

homeostasis. It requires that the level of Eset is kept constant

and that the ratio between kadapt and kEset
cat remains unchanged.

The latter condition is similar to that found by Levchenko

and Iglesias for a model of eukaryotic chemotaxis (27) and

a model by Ingalls et al. for a fast excitation-slow inhibition

mechanism (Fig. 12.7 in (28)), where activation and inhibi-

tion steps are simultaneously activated by a common envi-

ronmental signal. It may be noted that such a control is,

principally, still based on balancing. In our model (Fig. 3 a),

the balancing between 21 components has been effectively

reduced to three parameters, as indicated by Eq. 3.

Interestingly, the kinetic restriction that concentrations

must be positive leads to the breakdown of homeostasis for

the mechanism in Fig. 3 at high removal/outflow rates in

A. Whereas the homeostasis in Fig. 2 is robust for both

high inflow and high outflow rates in A (leading sometimes

to unrealistic negative concentrations in Eadapt), the chemi-

cally realistic mechanism shown in Fig. 3 works only for

(high) inflow and moderate outflow rates in A. To address

the situation of A-homeostasis at higher outflow rates

(outflow-homeostasis), another homeostatic mechanism is

necessary. Fig. 6 shows four motifs of homeostatic control

mechanisms, two addressing inflow-homeostasis (Fig. 6, a
and b) and two addressing outflow-homeostasis (Fig. 6, c
and d). Each of these mechanisms work properly when the

perturbing inflow and outflow conditions in A match their

appropriate working conditions, but will fail otherwise, i.e.,

Biophysical Journal 97(5) 1244–1253
when total outflow in A becomes too large for an inflow-

homeostatic controller or when total inflow in A becomes

too large in an outflow-homeostatic controller. Thus, bio-

chemical homeostasis will, in general, require at least two

types of mechanisms, i.e., one addressing inflow-homeo-

stasis and another addressing outflow-homeostasis.

Fig. 6 a shows an outline of the inflow-control mecha-

nisms described in Fig. 3. The inflow-control mechanism

in Fig. 6 b shows a related scheme suggested by Yi et al.,

including a zero order reaction step (14), where instead of

the increased removal of A the formation of A is inhibited

by a molecular feedback loop.

Fig. 6 c shows an outflow-homeostatic mechanisms

closely related to the scheme by El-Samad et al. (15), but

avoiding negative concentrations, as shown in their Fig. 8.

In our Fig. 6 d, outflow homeostatic control is achieved by

inhibiting the outflow of A through Eadapt. In the Appendix

we show kinetic representations of these four mechanisms.

Robust perfect adaptation can be related to the concept of

integral control or integral feedback (13,14), which involves

a negative feedback in the control-theoretic formulation of

the system as indicated in Fig. 1 or Fig. 2 c. Although some

schemes, as in Fig. 6, b and d, or in the literature (14,29),

contain molecular feedback inhibitions (molecular negative

feedbacks), the presence of robust perfect adaptation, i.e.,

the behavior of a control-theoretic negative feedback, does

not necessarily require molecular negative feedbacks. An

example of robust perfect adaptation with integral feedback

behavior but without molecular feedback loops is given by

a consecutive reaction such as / A / B /, where B (or

the flux forming B) can show robust perfect adaptation for

any stepwise change in the rate constant forming intermediate

B (11,30,31), as long as A is formed by zero-order kinetics.
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c d

FIGURE 6 Homeostatic control motifs. Due to the kinetic restriction that

concentrations need to be positive, two classes of homeostatic controllers

arise: 1), inflow homeostatic controllers leading to homeostasis in the

concentration of A for increasing (and moderate decreasing) perturbations

in A (panels a and b); and 2), outflow homeostatic controllers leading to

homeostasis in A for decreasing (and moderate increasing) perturbations

in A (panels c and d). Rate equations with example parameter values are

given in the Appendix. Note that many of the parameter values may be

changed within certain limits (besides changing kpert) without affecting

the homeostasis. (a) Schematic representation of the two (inflow) homeo-

static models shown in Fig. 3. Robust homeostasis is due to the zero-order

kinetic removal of Eadapt. (b) Inflow homeostatic model where Eadapt inhibits

the inflow of A through ksynth. To maintain homeostasis the perturbation

needs to be applied to the same reaction channel as ksynth. The integral feed-

back is due to the zero-order removal of Eadapt and is not related to the phys-

ico-chemical negative feedback from Eadapt to (ksynth þ kpert). (c) Outflow

homeostatic controller by removing Eadapt through A. (d) Outflow homeo-

static controller by inhibiting Etr through Eadapt. Similar to panel b, homeo-

stasis is obtained when the perturbation increases the outflow of A through

the same reaction channel that is used by enzyme Etr.
Thus, the essential part to get robust homeostasis in the mech-

anisms shown in Fig. 6, and as illustrated in Fig. 4, e and f, is

the presence of the zero-order kinetic term (i.e., ‘‘control of

the controller’’).

Possible regulation points in homeostatic
mechanisms

Iron homeostasis

Iron is an essential element for all mammalian cells, but gets

toxic when in excess. Special transport and regulatory

processes are therefore needed to ensure iron homeostasis

within the organism as a whole as well as in individual cells

(32). Ferroportin (33) and hepcidin (34) have been suggested

to be two key players in iron homeostasis. Ferroportin is an

iron exporter, which transports iron from cells such as

macrophages or intestinal or liver cells into the blood

plasma. Hepcidin, a liver-produced hormone, is a negative

regulator of iron absorption with antimicrobial properties,

which itself is under homeostatic regulation. An interesting

regulatory aspect, which relates to the models in Fig. 3, is

that hepcidin binds to ferroportin and leads to its degradation

in a similar way as Eset removes Eadapt. Considering the inter-

action between ferroportin and hepcidin, the mechanism in

Fig. 3 suggests that under iron inflow conditions, hepcidin

may serve as a setpoint controller for cell-internal iron

concentrations with ferroportin having the role as Eadapt,

i.e., removing iron (A) out of the cell. The binding between

ferroportin (Eadapt) and hepcidin (Eset), which leads to the

degradation of ferroportin (Eadapt) (34), may thus provide
a mechanism of how hepcidin acts as a ‘‘control of the

controller’’ and leads to potential robust homeostasis. Hepci-

din works at concentrations as low as 10 nM (34) and can

efficiently reduce upregulated ferroportin levels when iron

influx into the cell is high (35). It is not known whether

the removal of ferroportin by hepcidin at normal iron

concentrations is a zero-order process.

Calcium homeostasis

Fig. 7 shows a scheme of calcium homeostasis in humans.

Calcitonin (CT), parathyroid hormone (PTH), and the active

form of vitamin D (calcitriol) are important (but not the

only) factors involved in the regulation of Ca2þ and bone

metabolism (36). PTH increases bone resorption and plasma

Ca2þ levels. Calcitriol increases intestinal Ca2þ absorption,

bone resorption, and plasma Ca2þ. Calcitonin (CT) decreases

bone resorption and plasma Ca2þ. CaSR denotes the calcium-

sensing receptor in the nephron, which appears to mediate

effects of hypercalcemia on calcium excretion (37). In case

of low calcium levels or when the outflow of calcium needs

to be compensated for, an outflow-control mechanism like

that indicated in Fig. 6 c may come into play. The mechanism

is similar to that suggested by El-Samad et al. (15) for hypo-

calcemia. In this mechanism, Eadapt plays the role of PTH. The

level of PTH is decreased by increased calcium levels. Robust

calcium homeostasis is obtained due to a zero kinetic forma-

tion rate of Eadapt (PTH) and its downregulation by calcium. In

the case of high calcium levels, an inflow-control mechanism

like that shown in Fig. 6 a appears to be operative. High

calcium (A) levels activate CT and CaSR, which are
Biophysical Journal 97(5) 1244–1253



1250 Ni et al.
responsible for the removal of plasma calcium by transporting

it into the bone and/or by excretion through the urine. Homeo-

static control may be achieved by zero-order kinetic inactiva-

tion of CT and/or CaSR.

Robust temperature compensation

It is interesting that the occurrence of robust (activation-

energy-independent) temperature compensation for a certain

intermediate is closely associated with a robust homeostatic

control of that intermediate. This indicates that calcium, iron,

and other homeostatic mechanisms may be capable of

showing temperature compensation. Unfortunately, there

have been few studies in this direction. Herrera et al. (38)

studied the temperature dependence of calcium homeostasis

in rat pachytene spermatocytes and rat round spermatids in

suspension without external calcium concentration. The

pachytene spermatocytes showed practically unchanged

calcium levels at 10 nmol/L when the temperature was varied

(increased) between 16�C and 33�C. Above 33�C, the

internal calcium levels quickly increased, reaching levels at

120 nmol/L at 40�C. In the rat round spermatids, the internal

calcium levels did not show any temperature compensation,

FIGURE 7 Schematic representation of blood calcium homeostasis in hu-

mans. Important regulators are parathyroid hormone (PTH), calcitonin (CT),

vitamin D, and the calcium-sensing receptor in the nephron. For a discussion

of how these regulators may participate in inflow- and outflow mechanisms,

see main text.
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but a monotonic increase from 30 nmol/L to ~150 nmol/L

was observed when the temperature was varied from 5�C
to 40�C. Interestingly, the temperature compensation in the

calcium homeostasis in the pachytene spermatocytes appears

to be due to a balance between two opposing reactions, i.e.,

between uptake and leakage to and from the cell’s internal

calcium stores, with determined activation energies of

62 kJ/mol and 55 kJ/mol, respectively.

Although robust homeostatic and adaptation mechanisms

appear to be attractive concepts, it is still unclear to what

extent temperature compensation (of oscillatory or nonoscil-

latory processes) is due to a balancing between individual

reaction steps (18,21) or due to mechanisms as outlined in

Fig. 5, where the balancing is reduced to a few parameters

(39). Characteristic to all physiological and chemical temper-

ature compensated systems (20,24,38,40–48) is that the com-

pensation mechanism operates at a local (for the organism)

important temperature range and not globally over the whole

temperature range such as shown in Fig. 5. However, this

does not necessarily invalidate homeostatic control struc-

tures as those shown in Figs. 3 and 6. The controllers (for

example, Eadapt and Eset) have to be seen in the context of

the dynamics of the whole cell and the whole organism

(2), a systems (biology) perspective (49–51), where the

controllers themselves are controlled and influenced by

factors important for other cellular purposes.

APPENDIX

Rate equations, rate constants, and activation
energies for the mechanism in Fig. 3 a.

Rate equations

dA

dt
¼ kpert þ ksynth � kEtr

f AEtr � k
Eadapt

f AEadapt

þ kEadapt
r

�
Eadapt$A

�
þ kEtr

r ðEtr$AÞ (7)

dEadapt

dt
¼ kadaptA� k

Eadapt

f AEadapt

þ
�

k
Eadapt

cat þ kEadapt
r

��
Eadapt$A

�

� kEset

f EsetEadapt þ kEset

r

�
Eadapt$Eset

�
;

(8)

d
�
Eadapt$A

�
dt

¼ k
Eadapt

f AEadapt �
�

k
Eadapt

cat þ kEadapt
r

��
Eadapt$A

�
;

(9)

dP

dt
¼ k

Eadapt

cat

�
Eadapt$A

�
� kP

d P; (10)

dEset

dt
¼ kEset

s � kEset

f EsetEadapt

þ
�
kEset

r þ kEset

cat

��
Eadapt$Eset

�
� kEset

d Eset;
(11)
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d
�
Eadapt$Eset

�
dt

¼ kEset

f EsetEadapt �
�
kEset

r þ kEset

cat

��
Eadapt$Eset

�
;

(12)

dE�adapt

dt
¼ kEset

cat

�
Eadapt$Eset

�
� k

E�
adapt

d E�adapt; (13)

dEtr

dt
¼ kEtr

s � kEtr

d Etr � kEtr

f AEtr þ
�
kEtr

r þ kEtr

cat

�
ðEtr$AÞ;

(14)

dðEtr$AÞ
dt

¼ kEtr

f AEtr �
�
kEtr

r þ kEtr

cat

�
ðEtr$AÞ; (15)

dA1

dt
¼ kEtr

catðEtr$AÞ � kA1

d A1: (16)

Rate constants with activation energies

The following rate constants and activation energies (given in parenthesis)

have been used unless otherwise stated in the text. Rate constant values refer

to 25�C. The Arrhenius equation ki ¼ Ai$exp(�Ei/(RT)) has been used to

calculate the rate constant ki at other temperatures (Ai: preexponential factor,

assumed to be temperature-independent; Ei, activation energy; R, gas

constant; and T, temperature in Kelvin). All rate constants are given in arbi-

trary units (a.u.):

kpert R0 ð70 kJ=molÞ;

k
Eadapt

f ¼ 4:0 ð50 kJ=molÞ;

kEadapt
r ¼ 2:0 ð40 kJ=molÞ;

k
Eadapt

cat ¼ 3:0 ð80 kJ=molÞ;

kadapt ¼ 3:0 ð90 kJ=molÞ;

kP
d ¼ 1:0 ð80 kJ=molÞ;

kEset

s ¼ 1:0e� 13 ð70 kJ=molÞ;

kEset

d ¼ 1:0e� 7 ð50 kJ=molÞ;

kEset

f ¼ 1:0e þ 11 ð70 kJ=molÞ;

kEset

r ¼ 1:0e þ 7 ð60 kJ=molÞ;

kEset

cat ¼ 6:0e þ 6 ð90 kJ=molÞ;

k
E�

adapt

d ¼ 1:0 ð30 kJ=molÞ;

ksynth ¼ 3:0 ð40 kJ=molÞ;

kEtr

f ¼ 1:0 ð50 kJ=molÞ;

kEtr

r ¼ 5:0 ð60 kJ=molÞ;
kEtr

cat ¼ 5:0 ð50 kJ=molÞ;

kA1

d ¼ 1:0 ð40 kJ=molÞ;

kEtr

s ¼ 1:0 ð50 kJ=molÞ;

kEtr

d ¼ 10:0 ð70 kJ=molÞ:

Rate equations for the mechanism in Fig. 3 b/Fig. 6 a

dA

dt
¼ kpert þ ksynth �

V
Eadapt
max A

K
Eadapt

M þ A
� VEtr

maxA

KEtr

M þ A
; (17)

dEadapt

dt
¼ kadaptA�

VEset
maxEadapt

KEset

M þ Eadapt

: (18)

The following rate constants and initial concentrations give perfect homeo-

stasis with Aset ¼ 1.0, ksynth ¼ 1.0, and kpert R 0: k
Eadapt

cat ¼ 1.0; K
Eadapt

M ¼ 2.0;

kadapt ¼ 3.0; kEset
cat ¼ 6.0eþ6; KEset

M ¼ 1.0e�6; kEtr
cat ¼ 0.01; and KEtr

M ¼ 5.0,

where V
Eadapt
max ¼ k

Eadapt

cat $Etot
adapt; VEtr

max ¼ kEtr
cat$Etot

tr ; and VEset
max ¼ kEset

cat $Etot
set.

Initial concentrations: A ¼ 1.0; Eadapt ¼ 0.01; Etot
set ¼ 5.0e�7; and

Etot
tr ¼ 0.1. Concentrations of Etot

tr and Etot
set are kept constant.

Rate equations for the mechanism in Fig. 6 b

dA

dt
¼

�
ksynth þ kpert

�
�

K
Eadapt

I þ Eadapt

�� VEtr
maxA�

KEtr

M þ A
�; (19)

dEadapt

dt
¼ kadaptA�

VEset
maxEadapt�

KEset

M þ Eadapt

�: (20)

The following rate constants with zero initial concentrations (both a.u.)

give perfect homeostasis in A with Aset ¼ 1.0, when varying kpert (R0):

ksynth ¼ 10.0; K
Eadapt

I ¼ 0.1; VEtr
max ¼ 40; KEtr

M ¼ 1.0; kadapt ¼ 1.0; VEset
max ¼

1.0; and KEset

M ¼ 1.0e�6.

Rate equations for the mechanism in Fig. 6 c

dA

dt
¼ ksynth þ kEadapt � kpertA�

VEtr
maxA�

KEtr

M þ A
�; (21)

dEadapt

dt
¼ j0 �

VEset
maxEadaptA�

KEset

M þ Eadapt

�: (22)

The following rate constants with zero initial concentrations (both a.u.)

give perfect homeostasis in A with Aset ¼ 1.0 when varying kpert (R0.1):

ksynth ¼ 1.0; k ¼ 1.0; and VEtr
max ¼ 1; KEtr

M ¼ 0.1; zero-order flux j0 ¼ 1.0;

VEset
max ¼ 1.0; and KEset

M ¼ 1.0e�6.

Rate equations for the mechanism in Fig. 6 d

dA

dt
¼ ksynth �

�
VEtr

max þ kpert

�
A

�
KEtr

M þ A
��

K
Eadapt

I þ Eadapt

�; (23)
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dEadapt

dt
¼ j0 �

VEset
maxEadaptA�

KEset

M þ Eadapt

�: (24)

The following rate constants with zero initial concentrations (both a.u.)

give perfect homeostasis in A with Aset ¼ 1.0 when varying kpert (R0):

ksynth ¼ 1.0; VEtr
max ¼ 10; KEtr

M ¼ 1.0; and K
Eadapt

I ¼ 1.0; zero-order flux

j0 ¼ 1.0; VEset
max ¼ 1.0; and KEset

M ¼ 1.0e�6.

SUPPORTING MATERIAL

Supporting Material files are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(09)01166-7.
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