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Abstract 
The biological clock, present in nearly all eukaryotes, has evolved such that organisms can adapt 
to our planet's rotation in order to anticipate the coming day or night as well as to anticipate 
unfavorable seasons. As all modern high-precision chronometers, the biological clock uses 
oscillation as a timekeeping element. In this review we describe briefly the discovery, historical 
development, and general properties of circadian oscillators. The issue of temperature 
compensation is discussed and our present understanding of the underlying genetic and 
biochemical mechanisms in circadian oscillators are described with special emphasis on 
Neurospora crassa, mammals and plants. 
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Introduction  

Androsthenes from Thasus, a member of an expedition sent out by Alexander the Great, 
made first systematic observations on diurnal rhythms in plants. Although his original report is 
lost, fragments describe that during his journey he observed astonishing leaf rhythms in 
Tamarindus indica which suggested to him that these trees were sleeping during the night [1, 2]. 
The first modern report that leaf rhythms are endogenously generated date back to de Mairan, an 
astronomer, who showed that leaf rhythms in Mimosa plants continued even in the absence of an 
external light/dark cycle [3]. De Mairan's studies were quickly followed-up, as for example by the 
physician Zinn on 'plant sleep' [4], or by Linnaeus' famous 'flower clock' described in his 
Philosophia Botanica [5].  In the beginning of the 19th century the pharmacist Julien-Joseph 
Virey found that human mortality shows daily and seasonal variations. Virey also reported on the 
effect of drugs with respect to their administration times, and appears therefore to be the first 
person working in the field which now is called “chronopharmacology” [6]. 

However, the endogenous character of plant leaf movements was not universally 
accepted. Wilhelm Pfeffer, while trying to demonstrate that leaf movements in bean plants were 
caused by environmental influences, showed by well-designed experiments, that these 
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oscillations indeed have an endogenous cause [7]. During the same period, similar findings were 
made by Szymanski [8] on animals. 

In the 1930’s Erwin Bünning suggested that intracellular time measurement leads to 
seasonal adaptations, such as flower induction, migration and hibernation, which is based on an 
oscillatory and genetically determined physiological clock with a period of approximately one 
day. While Bünnings’s hypothesis first caused major opposition, it became generally accepted 
during the 1950’s [9, 10]. His textbook “The Physiological Clock” [10] still makes an interesting 
introduction to the field.   

Today, the name circadian indicates that under free-running conditions the period length 
of these physiological oscillators is circa one day (derived from lat. dies, day and circa about) 
after a suggestion by Franz Halberg. Additional defining properties of circadian oscillators are: (i) 
being endogenously generated; (ii) showing a free-running rhythm; (iii) can be phase-shifted by 
environmental perturbations, for example by light, temperature, chemicals; (iv) they show 
entrainment, i.e., circadian oscillators can track rhythmic environmental changes, and  (v) show 
temperature compensation, meaning that the free-running period is (approximately) the same at 
different but constant temperatures.  

Circadian rhythms are important for the daily and seasonal adaptation of practically all 
higher (eukaryotic) organisms, but are also found in light-sensing prokaryotes such as 
cyanobacteria [11]. However, adaptation of organisms to their environments does not only 
involve circadian oscillations, but also ultradian as well as infradian oscillators [10, 12-16].  

In this review we give a brief description of eukaryotic circadian oscillators with special 
emphasis on the model organisms Neurospora crassa, Arabidopsis thaliana and the mammalian 
clock. Drosophila, while a major model system, is left out here due to space limitations. 

 
 
Genetics and Model Organisms 

In the beginning of the 1970’s [17] the first successfully generated clock mutants were 
generated with the fruit fly Drosophila melanogaster [18] and the filamentous fungus 
Neurospora crassa [19], and rats were found to lose their circadian rhythms by hypothalamic or 
suprachiasmatic lesions [20, 21]. Remarkably, in 1990 Ralph et al. could restore circadian wheel-
running activities in Syrian hamsters that had their suprachiasmatic nucleus (SCN) removed, by 
transplanting back intact SCN tissue [22], indicating that the mammalian circadian clock is 
located in the SCN [23]. 

Early genetic and molecular biology studies on Drosophila [24] and Neurospora [25] 
indicated a common mechanism involving a transcriptional translational negative feedback loop 
(Fig. 1) [26-30], but newer findings suggest the presence of multiple loops and oscillators [31-
36].  

 
Circadian oscillators are based on feedback mechanisms 

The study of biological clocks had always a good share of theoretical studies and 
modeling approaches [37-39]. Kinetic models of transcriptional-translational negative feedback 
loops, some based on Goodwin's equations [40, 41], showed that many aspects of circadian 
oscillations including temperature compensation and phase resetting can be described [38, 42-59]. 
Early predictions using the Goodwin oscillator indicated [42, 60] that clock protein 
stability/turnover should determine the circadian period length, where short period mutants 
should have a clock protein which is more rapidly turned over compared with wild-type, while in 
long period mutants the clock protein should be more stable than in wild-type. Using Neurospora, 
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it was demonstrated that phosphorylation of the clock protein FREQUENCY (FRQ) is important 
for its stability [61-64]. When certain phosphorylation sites in FRQ were blocked (for example 
replacing Ser 314 by an Ile) [62], FRQ stability increases and leads, as theoretically predicted 
[42, 60], to larger period lengths. In several follow-up papers by the Liu group [65-67], it was 
found that phosphorylated FRQ is turned over by the ubiquitin-proteasome pathway [68]. The 
study of FRQ-decay kinetics in Neurospora clock mutants confirmed the theoretically predicted 
period-stability relationship with an intimate link to temperature compensation [53, 64]. Thus, 
Neurospora's circadian period appears to be a fine-tuned process including phosporylation / 
dephospohorylation reactions of FRQ by several kinases and phosphatases, leading to a regulated 
turnover through the ubiquitin-proteasome pathway [27, 28, 69-72]. Similar observations have 
also been made for mammalian systems showing that the decreased period for the CK1ε tau 
mutation in mice and Syrian hamsters is related to an increased degradation in PER-protein [73, 
74]. Certain posttranslational regulation elements of clock proteins appear to be conserved from 
Neurospora to mammals and involve the kinases CK1 and CK2 and the phosphatase PP2A [69]. 

Positive feedback loops (Fig. 1) have also been identified as part of circadian clock 
mechanism, as for example in Drosophila [35, 75-78]. Some models showed that the presence of 
interlocked positive and negative feedback loops may increase the stability and tuneability of the 
oscillator [79], while in other cases [80, 81] the presence of an additional positive feedback did 
not seem to affect the robustness of the oscillator. In case of the Drosophila oscillator, which at 
present includes two negative and one positive feedback loop, the positive loop is necessary to 
describe the influence of dosage of the per-gene and vri- on the period [75, 82-84].  

There is a close similarity from a mechanistic/kinetic viewpoint between circadian 
rhythms and in vitro physicochemical oscillators [85-96], as both have positive and negative 
feedback loops [97]. Today, the mechanisms of many physicochemical oscillators have been 
determined, including systems that even can show temperature compensation [93, 98, 99]. 

 
 

The Issue of Temperature Compensation 
 Temperature compensation (TC) is one of the defining clock properties of circadian 
rhythms. TC means that the circadian period is homeostatically regulated towards variations in 
temperature, i.e., the circadian period is constant at different (constant) temperatures. TC is only 
operative within a certain, for the organism important temperature range. For most of the 
circadian oscillators the precise mechanism how TC is achieved is still not known. A variety of 
suggestions how TC may be achieved have been considered during the years [38, 51].  
 In the 'balancing/opposing reaction approach', first suggested in 1957 [100], then later 
kinetically formulated for chemical oscillators [54], each temperature-induced change in a rate 
constant of a reaction step will in principle lead to an increase or decrease in the period length. 
For certain combinations of activation energies the positive and negative influences of the various 
rate constants on the period length cancel and the system will show TC within a given 
temperature range. To achieve TC the activation energies need to be fine-tuned in such a way that 
the sum of the product between the sensitivities and the activation energies becomes zero [51, 
101, 102]. This approach allows one to describe TC of any systemic property which depends on 
the rate constants, such as for non-oscillatory steady-state fluxes or steady-state concentrations 
[50], and has been extended to describe pH-compensation [103, 104]. Several experimental 
findings suggest (see below) that 'balancing' is at least one mechanism to achieve temperature 
compensation in circadian rhythms.  
 Hong et al. [105] recently argued that a balancing approach would not be sufficiently 
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robust to account for the many mutations, which do not affect temperature compensation. They 
propose a switch-like mechanism for circadian rhythms that concentrates period sensitivity in just 
two parameters, by forcing the system to alternate between a stable steady state and a stable limit 
cycle. Indeed, there appears to be a close relationship between robust homeostasis and 
temperature compensation [106], but such a relationship for circadian oscillators is still poorly 
understood. 
 Despite TC, temperature has a significant influence on other circadian properties such as 
entrainment, phase shifting, or amplitude [55].  
  
  
The Neurospora Circadian Clock 
The FRQ-oscillator 
 Neurospora crassa is a model organism [107] that has been extensively used in the study 
of circadian rhythms [27, 28, 69, 70, 108-111]. In 1959 Pittendrigh [112] found that Neurospora 
shows a circadian rhythm in its asexual production of spores (conidia). The use of the band (bd) 
mutation introduced later by Sargent and coworkers [28, 107] allowed monitoring of the free-
running temperature compensated conidiation rhythm in growth tubes (Fig. 2). A firefly 
luciferase-based reporter assay was first constructed by Morgan et al. [113], where the sequence 
of the luciferase gene was partly optimized to reflect the codon usage by N. crassa. Both light-
induced and circadian activities could be continuously monitored using this assay. A fully codon-
optimized system was recently generated by Gooch et al. [114], which showed a dramatic 
increase in the light output of the luciferase-catalyzed reaction and which has also been applied to 
study the output dynamics under conditions of choline deficiency [115] (see also FRQ-
independent oscillators below). 

The basic mechanism behind the conidiation rhythm is due to a transcriptional 
translational negative feedback loop, where the FRQ-protein inhibits its own transcription (FRQ 
oscillator, Fig. 3). WHITE COLLAR-1 (WC-1) and WHITE COLLAR-2 (WC-2) are Zn-finger 
proteins acting as a heterodimeric transcription factor, the so-called White Collar Complex 
(WCC). The WCC plays central roles in a variety of different physiological processes, including 
(blue) light activation of genes [107, 116-124], with WC-1 as a flavin-binding blue light 
photoreceptor. The frq promoter contains two light responsive elements (LREs), where the distral 
element ("clock (C)-box") [125] appears necessary for rhythmicity in darkness. Each LRE 
contains two GATN sequence repeats, each probably capable of binding the Zn-finger domain 
from either WC-1 or WC-2. In darkness, circadian rhythms are observed in frq-mRNA, FRQ-
protein, as well as in WC-1 [126]. Hong et al. [127] showed by model calculations that the 
binding of WCC to the frq-promoter is of importance for maintaining temperature compensation. 
Alternative to a rapid degradation of the complex between FRQ and WCC, in order to close the 
negative feedback loop, there is evidence for a FRQ-mediated clearance of WC-1 out of the 
nucleus [128]. Recent experimental evidence suggests that FRQ is rapidly shuttled between the 
nucleus and the cytoplasma [129], which may be part of a FRQ-mediated mechanism to clear 
WC-1 out of the nucleus. 

While WC-1 has been considered to be always bound to WC-2, which has been found to 
be in excess compared to WC-1 and at constant concentrations [120, 130, 131], recent ChIP 
experiments indicate differential binding affinities of WC-1, WC-2 towards the LREs and a 
breakup of the WCC [132]. It was found that WC-1 is always bound to both LREs, while binding 
of WC-2 in darkness to the C-box is oscillatory (circadian) and highly correlated with the binding 
of the chromatin-remodeling enzyme CLOCKSWITCH (CSW-1) to the C-box [132].  
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Due to a temperature-regulated alternative splicing mechanism, the FRQ-protein is found 
in a long (l-FRQ) and a short form (s-FRQ). When individually expressed, each form shows 
temperature compensated oscillations, but together they extend the temperature range for which 
temperature compensation is observed [133-135]. A recent kinetic model by Akman et al. [136] 
describes the temperature-induced two FRQ isoforms and the associated temperature 
compensation not only for the bd mutant, but also for frq1, frq7 and frqS513I mutants.  

As already mentioned above, the expressed FRQ-protein (i.e., both the s- and l-form) is 
post-translationally modified by a variety of kinases as well as phosphatases leading to a fine-
tuned stability of the protein, which regulates the period of Neurospora's circadian rhythm [63]. 
Casein Kinase 2  (CK2) has been found to be a key regulator of temperature compensation in 
Neurospora [94]. The chrono and period-3 mutations have be found to be within the β1 and α 
subunits of CK2. Reducing the dose of these subunits, signifcantly alters temperature 
compensation indicating that temperature compensation is due to a balancing of positive and 
negative contributions to the period [137].  

Besides regulating FRQ-protein stability by proteasomal degradation [67], there is now 
evidence that frq-mRNA is regulated by the Exosome and defining an additional 
posttranscriptional negative feedback loop [138]. 

FRQ dimerizes by a coiled-coil domain, which is important for maintaining circadian 
rhythmicity [139]. FRQ also binds to a "FRQ-interacting RNA helicase", FRH [140]. 
Downregulation of FRH using RNA interference has been found to lead to increased frq-mRNA 
levels indicating that FRH is important in the negative loop of Neurospora's clock mechanism 
[72]. 
 When transferring cultures from darkness to continuous light conditions, the circadian 
rhythm is abolished, frq-mRNA and FRQ-protein levels reach a steady state (after partial 
adaptation responses) and growth tubes show constant conidiation [120, 141, 142]. The light 
resetting behavior of the Neurospora clock which has been characterized by several groups is 
well described by a Goodwin oscillator using the assumption that light overrides the inhibitory 
effect of FRQ on its own transcription and increases frq transcription [143]. VIVID (VVD) is 
another light-upregulated and light-responsive protein, which contains a blue light receptor [144-
146]. The role of VVD is associated with the control of the phase of Neuropsora's circadian 
rhythm, its light resetting and transient light response [144, 147-149] as well as in the temperature 
compensation of the circadian phase [150]. In the vvdKO the phosphorylation pattern of FRQ is 
altered. At DD4 more of the lower-phosphorylated forms are seen in vvdKO while in the wild-type 
strain FRQ is hyperphosphorylated [150] indicating that VVD somehow interacts with FRQ 
and/or FRQ-phosphorylating or dephosphorylating processes. Schneider et al. [151] have recently 
found that a vvd mutant strain can show rhythmic conidiation under constant light (LL) condition. 
The period of this strain ranges between 6 to 21 hr in LL dependent upon the light intensity, the 
carbon source in the medium and the presence of other mutations. The rhythms in LL require the 
wc-1 genes, but not the frq gene and FRQ does not show oscillations. Schneider et al. [151] 
therefore conclude that the conidiation rhythm observed in LL in the vvd strain is driven by an 
oscillator independent of FRQ. 
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FRQ-independent oscillators  
 Surprisingly, certain circadian or noncircadian oscillations do not seem to require a 
functional FRQ protein. They are often referred to as "FRQ-less oscillators" (FLOs) [152, 153]. 
The first strain containing a FLO, frq9, was characterized by Loros et al. [154]. In this strain a 
complete loss in temperature compensation in its conidiation rhythm was observed. This strain 
produces a short nonfunctional form of FRQ, and the observed phenotype, showing noncircadian 
banding appearing after a certain induction time, was confirmed using a true frq-knockout strain 
(frq10) [155].  

Several FLOs have now been identified, and alternative hypotheses for the 'circadian 
pacemaker' in Neurospora have been put forward [151, 152, 156-160]. Many of these FLOs lack 
one or more of the defining properties of circadian rhythms and are therefore noncircadian [31]. 
There is presently a disagreement whether some of the FLOs can be entrained by temperature 
cycles [161-163]. 

de Paula et al. [31, 32] recently found a FLO, which shows circadian (i.e., temperature 
compensated) oscillations in the activity of the clock-controlled gene 16 (ccg-16) both in 
darkness as well as under continuous light conditions. The oscillator requires WC-1 and WC-2 
and there is the possibility that this WC-FLO is involved in the generation of WC-1 rhythms. 

When nitrate ion is the only nitrogen source, the nitrate assimilation pathway is turned on 
showing oscillations in nitrate reductase (NR) activity with a period length of approximately 24 
hours [33]. These oscillations do not require a functional FRQ, but do require WC-1, and are 
observed both in darkness as well as under continuous light conditions. The 'nitrate FLO' contains 
a negative feedback loop, where the downstream product of NR, the NITROGEN 
METABOLITE REGULATOR (NMR) protein inhibits the transcription of nit-3 (the structural 
gene of NR) by binding to its transcription factor NIT-2 [164, 165]. The existence of such a 
nitrogen oscillator allows efficient nitrogen uptake at the phase when physiological activity is 
high. 

 
 

 
The Mammalian Circadian Clock 
The master clock 

Today, the SCN is recognized not only to act as a central clock, but also as a synchronizer 
of circadian rhythmicity in other tissues [14]. It is now generally accepted that the retina 
measures the light intensity through a non-image photoreception and transmits this signal to the 
SCN. This is mediated by the pigment melanopsin [166], which is accepted as a major 
component in the synchronisation of circadian clocks. 
 The SCN has efferents to peripheral tissues, which constitutes a part of the sympathetic 
outflow from the brain to the kidneys, bladder, spleen, adrenal and thyroid glands, as well as to 
white and brown adipose tissue. The SCN is also involved in the parasympathetic nervous system 
with innervation of the liver, pancreas, thyroid and submandibular glands. Possibly, there is also a 
modulation of the neuroendocrine systems, as well [167]. In addition, secretion of melatonin from 
the pineal gland is regulated through nerve pulses from SCN, whereby the modulatory role of 
melatonin on the sleep/wake rhythms, blood pressure and other functions is effected via the blood 
stream [12, 14]. 
 It has also been found that transforming growth factor alpha (TGF-alpha) functions as an 
output signal from the mammalian clock in the SCN, mediated through the EGF receptors on the 
neurons in the hypothalamic subparaventricular zone in mice [168, 169]. 
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The cellular clockwork 

There is now increasing evidence that clock genes are expressed in the oocyte and during 
early embryonic development [170]. The mammalian circadian clock is a complex autoregulatory 
transcriptional and translational feedback program, which is composed of positive and negative 
regulators [171]. Two basic helix-loop-helix transcription factors, CLOCK AND BMAL1, form a 
heterodimer, which constitute the positive elements and drive transcription of three Period (Per) 
and two Cryptochrome (Cry) genes (Fig. 4). In the nucleus, the heterodimers bind to E-box 
enhancer elements in the promoter regions of the genes encoding Per1, Per2, Per3, Cry1 and 
Cry2 and enhance transcription [172]. In intact animals transcription of Per1 starts before dawn 
and has a peak in Per1-mRNA about 6 hours later. The levels then rapidly subside before the end 
of the day. The resulting peak of the PER1 protein comes 6 hours after its mRNA. Per3 
transcripts accumulate at the beginning of the day and subside after 4-6 hours, while Per2 mRNA 
accumulation occurs later than the two others and peaks at dusk. The transcripts of Cry1 and Cry2 
reach a peak at 6 to 8 hours after dawn and thereafter decline. In contrast to the transcripts, the 
resulting proteins all oscillate with the same phasing and reach maximum levels at dusk. The PER 
and CRY proteins are bound and phosphorylated by a casein kinase 1 epsilon/delta (CK1є/δ). It 
has been found that phosphorylation by CK1є/δ  is temperature-insensitive and period-
determining [173], probably by an  "instantaneous" [51] temperature compensation mechanism of 
the enzyme. In addition, PER and CRY proteins translocate to the nucleus and act as negative 
regulators, both of their own transcription and by directly interacting with the CLOCK-BMAL1 
heterodimer. Their transcription is therefore inhibited during the night (see [171]). It has recently 
been found that CLOCK possesses intrinsic histone acetyltransferase activity in mouse liver cells, 
which contributes to chromatin-remodelling events related to circadian control of gene 
expression. In addition, CLOCK mediates acetylation of BMAL1, which serves as another 
regulatory element in the clock. Thereby, BMAL1 undergoes rhythmic acetylation in the liver, 
where the timing parallels the down-regulation of circadian transcription in clock-controlled 
genes [174]. 

At least two other proteins may modulate PER1 activity in mammalian cells by regulating 
the circadian periodicity [175]. In addition, Rev-erb-α modulates the clock by prolonging the 
periodicity and also coordinating metabolic pathways [176]. Light then resets the master clock in 
the SCN, where the pigment melanopsin plays a central role [166]. However, the effect is 
depending on the time when it acts, causing both phase shift and modulation of the circadian 
phase [166, 177]. In addition, at least two different types of microRNA exist which are 
interacting with the CLOCK-BMAL1 complex, whereby the circadian period is lengthened and 
the entrainment of the master clock by light is attenuated [176]. 

 
 
Peripheral clocks 
 The cloning and characterization of mammalian clock genes has revealed that they are 
generally expressed in a circadian manner in almost all organs of the body [178]. For nearly 30 
years it has been known that the rate of cell proliferation undergoes substantial circadian 
variations, where the phasing differs from tissue to tissue. It has been shown that the molecular 
circadian clock exerts a direct control on the cell division cycle in proliferating tissues by 
modulating the activity of cyclins and cyclin dependent kinases [179]. Still, it is not clear what 
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causes the phase delay in some tissues. On the other hand, rhythms of body temperature in 
rodents can sustain peripheral circadian clocks, being an indirect mechanism for phase 
synchronisation [180]. Peripheral clocks appear also important for the regulation of 
cardiovascular and metabolic functions [181].  

Since the 1980s numerous reports have described cyclic variations in different parts of 
hemopoiesis, both in the maturing compartments of the bone marrow and in the relative numbers 
of different types of leukocytes in peripheral blood [182-187]. It has been postulated that the 
whole immune system is both exogenously regulated and controlled by the endogenous clock 
from SCN [188]. In particular, BMAL1 seems to be important for the development of B cells 
along a circadian time scale [189]. In line with this, it has recently been reported that the 
circadian expression of monocyte chemoattractant protein-1 (MCP-1/JE), which is important for 
the phagocytic functions in macrophages, is directly controlled by BMAL1 [190].  
 
Stem cells 
 Several years ago, it was shown that the clonability of murine progenitor cells underwent 
circadian variations when cultured in semisolid medium [191-194]. These variations were 
synchronous with the proliferative activity of the bone marrow, indicating a general systemic 
regulation of hemopoiesis. Later, it was shown that the different clock genes were not only 
expressed in hemopoietic stem cells in mice [195], but also appeared to be developmentally 
regulated [196]. Subsequent sampling of human stem and progenitor cells (CD34+) from the 
bone marrow showed a different pattern, both with regard to phasing and amplitude [197]. 
Maximum mRNA level for Per1, Per2 and Cry2 were found during the morning, whereas Rev-
erb α, Bmal1 and Clock did not show significant circadian variations.  

Recently, it has been found that hemopoietic cell trafficking is due to regulated adhesion 
and attraction to the bone marrow microenvironment [198]. In line with this it was reported that 
hemopoietic stem cell release in mice is regulated through circadian oscillations, peaking at 5 
hours after the initiation of light, and reaching a nadir at 5 hours after darkness [199].  

Cultured human mesenchymal stem cells from the bone marrow can show circadian 
rhythms using serum shock [200-202] and cAMP analogs. The phosphorylation status of both 
PER1 and GSK3β was essential for getting circadian rhythms [203]. Since such stem cells are 
essential for normal hemopoiesis to take place in vivo, this appears to be a promising model for 
studying molecular networks related to the circadian clocks. 
 
Cell culture studies 
 During the last decade circadian oscillations have also been observed in mammalian cells 
from peripheral tissues, and mainly in murine and rat fibroblasts (for review, see [204]). It was 
shown that serum shock induced the circadian expression of various clock genes both in 
fibroblasts and hepatoma cells from rats [202]. Later it was shown that cAMP, protein kinase C, 
glucocorticoid hormones and Ca2+ had the same effect [200]. Surprisingly, it was found that 
multiple signaling pathways in the cells could elicit circadian gene expression [201]. 

Importantly, the induction of circadian rhythms in clock gene expression in fibroblasts in 
vitro did not have any relation to the proliferative activity in general.  

It has been found that the cycling of cryptochromes appear not necessary for circadian 
clock functions in mouse fibroblasts [205], challenging the view of a transcriptional-translational 
feedback loop in which the cycling of the CRY1 and CRY2 is thought to be necessary (Fig. 4). 
Hence, there may be a certain redundancy in the factors participating in circadian cycling, or 
there are individual differences between various differentiated cell types [206].  
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The plant circadian clock 
Background 
 Circadian components in important processes as flowering and other daylength-dependent 
physiological phenomena were early recognized [207]. Circadian rhythms in CO2 exchange [208, 
209], enzyme activities, and transcript levels were since reported (for reviews see [10, 210, 211]). 
Recently, circadian rhythms in chromatin structure were observed in plants [212].  

One of the most extensively studied gene families in plants, the CAB genes 
(CHLOROPHYLL A/B-BINDING PROTEIN), was shown to be expressed in a circadian manner, 
and also to be induced by light in many different plants including the model plant Arabidopsis 
[213-216]. These genes are encoded in the nucleus, translated in the cytosol, and then the proteins 
are imported into the chloroplasts to become components of the photosynthesis apparatus. Based 
on the properties of the CAB promoter, a pioneering method for picking clock mutants was 
developed [217]. A fragment of the CAB promoter, which was essential for light and circadian 
expression, was coupled to a luciferase reporter gene, and transformed into Arabidopsis. These 
transgenic Arabidopsis lines were then used to select for mutants in CAB rhythms recorded by 
fluorescence. A short period mutant, toc1 (timing of cab 1), was identified and further 
characterized. In toc1 plants the fluorescence rhythm linked to the CAB promoter was shortened 
to 20.9 h, whereas control plants showed a period length of 24.7. The rhythm in leaf movement 
also showed a shorter period (23.3 h) in the toc1 mutant, compared with control plants (25.2 h). 
The TOC1 gene was later cloned, and identified [218] as a gene encoding a PPR protein 
(pseudoresponse regulator protein). TOC1 (or PPR1) is member of a small gene family in plants, 
comprising PPR1, PPR3, PPR5, PPR7, and PPR9, with partly overlapping functions. These 
proteins are reminiscent of the prokaryotic two-component kinases. They have a receiver domain 
containing a histidine, but the phospho-accepting aspartate residue present in prokaryotic two-
components kinases is absent, suggesting that they do not function as the usual phospho-transfer 
proteins [219]. Further investigations showed that all five PPR genes were important for the clock 
functions [220, 221]. 
 
TOC1, LHY and CCA1 are essential elements in a plant clock mechanism 
 It is now well established that expression of TOC1 is influenced by a feedback loop 
comprising two closely related MYB factors CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) 
and LHY (LATE ELONGATED HYPOCOTYL) in addition to TOC1 itself [222]. In this loop 
TOC1 acts as a positive regulator of CCA1 and LHY expression, whereas CCA1 and LHY act to 
inhibit TOC1 expression. CCA1 and LHY bind to the promoter of TOC1, and thereby repress 
transcription of TOC1. The mechanism by which TOC1 promotes expression of CCA1 and LHY 
is not clear, but probably involves another protein, PIF3 (PHYTOCHROME INTERACTING 
FACTOR) [223, 224]. The mutual influence of TOC1 and CCA1/LHY have been well established 
through mutants, double mutants, and over-expressors. The results all support a regulatory model 
consistent with the positive and negative components of a feedback loop (Fig. 5) (for reviews see: 
[212, 220, 225, 226]. However, TOC1 alone cannot induce expression of CCA1 and LHY. Other 
genes are also necessary, i.e. GI, ELF4 and LUX. The number of genes known to be related to the 
TOC-CCA1/LHY feedback loop is increasing, and a list of 20 genes was presented in a recent 
review by McClung [220]. 
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Cryptochromes are the only conserved genes that appear to be commonly involved in 
eukaryotic clocks, i.e. in Drosophila, mammals and plants [227]. In plants, cryptochromes among 
other photoreceptors, are important for light-input to the clock. However, as for mammals, the 
cryptochromes are not essential for the plant core clock mechanism because in the cry1 cry2 
double knockout CAB expression was still circadian, although the period length was extended 
[228].  

Changes in chromatin structure, are another emerging common feature of eukaryotic 
clocks. Recently circadian chromatin changes were also found in plants. Chromatin 
immunoprecipitation (ChiP) assays were performed with an antiacetylated Histones 3 antibody 
(αACH3), and subsequent PCR analysis of the TOC1 promoter [229]. The results showed that 
histones bound to the TOC1 promoter were acetylated in a circadian manner. The FACT 
(facilitates chromatin transcription) complex was also found to bind to the TOC1 promoter in a 
circadian manner, further confirming the chromatin remodeling in parallel with TOC1 expression 
[229]. 

Recently is has also been shown for Arabidopsis that phosphorylation and degradation of 
the TOC1 protein is important for clock function [221]. 
 The balancing hypothesis for temperature compensation (see above) is supported by 
experiments showing that temperature compensation is achieved due to a dynamic balance 
between the genes GI and LHY [230]. These findings have also been confirmed by numerical 
simulations using an interlocking-loop model [231, 232] showing that balancing LHY against GI 
and other evening-expressed genes can largely account for temperature compensation in wild-
type plants and the temperature-specific phenotypes of GI mutants. 
 
 
Conclusion 
 Circadian oscillators have evolved to adapt organisms to our planet's day/night cycles and 
to anticipate and meet unfavorable seasons. The core circadian oscillators are based on 
transcriptional-translational negative feedback loops and we are starting to understand and model 
the behaviors of the main molecular players within these oscillators and environmental 
influences. While transcriptional-translational negative feedback loops together with certain 
kinases and phosphatases appear to be conserved control structures among different organisms, 
the clock proteins are much more diverse and appear to have evolved independently. 
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Figure Legends 
 
Figure 1.  
Schematic representation of a molecular mechanism for circadian oscillations with negative and 
positive feedback loops. Positive components/transcription factors interact with the promoter 
regions of clock genes leading to their expression and forming corresponding mRNAs and 
proteins. Some clock gene activation mechanisms may involve positive feedback loops. As 
supported by model calculations [40, 42, 43], the crucial element for getting oscillations is 
presence of one (or several) negative feedback loop(s), in which a clock protein inhibits its own 
transcription. Environmental influences affect the clock mechanism through a series of receptors 
which alter properties of clock proteins and their transcription factors through kinases and 
phosphatases, where some of phospohorylation and dephosphorylation pathways appear to be 
mechanistically conserved [69]. 
 
Figure 2. 
Growth tubes monitoring the free-running circadian rhythm in Neurospora. The sterile tubes 
contain growth medium (agar) and are sealed on each side with cotton plugs allowing air 
exchange. Inoculation with mycelium or conidia occur at one side of the tube. Under free-running 
conditions, generally in darkness or under a red safety light, the mycelium then grows along the 
tube with approximately constant speed [233]. Approximately every 22h conidia are formed seen 
as the patches on the tube reflecting the output of the circadian clock. The period of the free-
running rhythm can be determined by measuring the distance between the conidial patches and 
dividing this distance by the growth speed. 
 
Figure 3. 
Scheme of the circadian core network in Neurospora crassa. Several negative feedback loops 
have been identified. The FRQ protein plays a central role. Its highly regulated stability defines 
period length and temperature compensation of the conidiation rhythm [63, 64]. Additional 
feedback loops are also indicated. They seem to serve special purposes, for example when nitrate 
ion is the only source for nitrogen, or, as in the case of VIVID (VVD), playing a role in the 
phasing of the rhythm.  
 
Figure 4. 
Model of the circadian core network in mammals. The heterodimer CLOCK/BMAL activates 
genes containing an E-box. CRY, the PER proteins and REV-ERBα are negative elements, while 
the ROR proteins together with CLOCK and BMAL1 define positive elements. For a more 
detailed discussion, see main text. 
 
Figure 5. 
Feedback loops of the plant circadian network. Three loops are presently considered, the dawn-
phased CCA1/LHY containing loop, which negatively regulates TOC1, a morning-phased loop 
containing the PRR proteins inhibiting the formation of CCA1/LHY, and an evening-phased 
loop, probably through GIGANTEA (GI) activating TOC1.
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